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Inflammatory injury is a hallmark of sepsis-induced acute respiratory distress syndrome (ARDS)/acute lung injury (ALI).
However, the mechanisms underlying inflammatory injury remain obscure. Here, we developed the novel strategy to
suppress lung inflammation through maintaining microvascular endothelial barrier integrity. VE-cadherin is the main
adherens junction protein that interacts with β-catenin and forms a complex. We found that lung inflammation was
accompanied by decreased VE-cadherin expression and increased β-catenin activity in animal models and human
pulmonary microvascular endothelial cells (HPMECs), illuminating the relationship among VE-cadherin/β-catenin complex,
microvascular endothelial barrier integrity, and inflammation. Furthermore, we showed that the VE-cadherin/β-catenin
complex dissociated upon lung inflammation, while Sirt3 promoted the stability of such a complex. Sirt3 was decreased
during lung inflammation in vivo and in vitro. Sirt3 deficiency not only led to the downregulation of VE-cadherin but also
enhanced the transcriptional activity of β-catenin that further increased β-catenin target gene MMP-7 expression, thereby
promoting inflammatory factor COX-2 expression. Sirt3 overexpression promoted VE-cadherin expression, inhibited β-
catenin transcriptional activity, strengthened the stability of the VE-cadherin/β-catenin complex, and suppressed
inflammation in HPMECs. Notably, Sirt3 deficiency significantly damaged microvascular endothelial barrier integrity and
intensified lung inflammation in animal model. These results demonstrated the role of Sirt3 in modulating microvascular
endothelial barrier integrity to inhibit inflammation. Therefore, strategies that aim at enhancing the stability of endothelial
VE-cadherin/β-catenin complex are potentially beneficial for preventing sepsis-induced lung inflammation.

1. Introduction

Sepsis-induced acute respiratory distress syndrome (ARD-
S)/acute lung injury (ALI) is characterized by severe hypox-
emia and acute respiratory failure and results in pulmonary
vascular injury, edema formation, and inflammation [1, 2].
Microvascular endothelial barrier dysfunction, the main
pathophysiological feature of ARDS/ALI, induces capillary

leakage and edema that further intensifies inflammatory
injury, thus causing high morbidity and mortality [2].
Inflammatory mediators that target the adherens junction
destroy microvascular endothelial cell junctions and promote
vascular permeability [3]. Adherens junctions are composed
of transmembrane proteins and form the interaction between
adjacent cells, which maintains the integrity of the microvas-
cular endothelial monolayer and modulates its barrier
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function. A single span transmembrane, the vascular endo-
thelial cadherin (VE-cadherin) is the main adherens junction
protein that is linked to the cortical F-actin cytoskeleton
intracellularly in the vascular endothelial cell. Upon inflam-
matory injury, in a vicious circle, VE-cadherin undergoes
phosphorylation, destabilization, and internalization that
directly damages the microvascular endothelial barrier and
intensifies inflammation [4, 5]. In the meantime, sepsis-
induced inflammation contributes to the breakdown of the
microvascular endothelial barrier that further amplifies
inflammation [6].

As an intracellular scaffold protein, β-catenin interacts
with VE-cadherin that not only regulates microvascular
endothelial barrier integrity but also participates in inflam-
mation [7, 8]. β-Catenin plays a significant role in ARD-
S/ALI. While the inhibition of β-catenin remarkably
increases animal survival in the sepsis-induced ALI model
[9], the activation of β-catenin contributes to inflammation
through mediating the downstream target gene expression
in ARDS/ALI [10, 11]. Once triggered by Wnt ligands, the
β-catenin protein is stabilized and accumulated in the cyto-
plasm and further translocates into the nucleus where β-
catenin binds to T-cell factor/lymphoid enhancer factor
(TCF/LEF) to initiate downstream target gene expression,
including matrix metallopeptidase-7 (MMP-7) [12, 13].
MMP-7 could increase permeability between endothelial
cells [14]. Additionally, the activation of β-catenin also
results in the upregulation of angiotension-2 protein, which
damages microvascular endothelial barrier integrity [15, 16].
However, the role of β-catenin and VE-cadherin interaction
in regulating microvascular endothelial barrier integrity
remains unclear in ARDS/ALI that warrants further
investigation.

The emerging roles of the Sirtuin (Sirt) family in sepsis-
induced ARDS/ALI have attracted extensive attention
[17–19]. The Sirt family belongs to the class III histone dea-
cetylases that are composed of Sirt1-7. Sirt1 is a nuclear
NAD+-dependent histone deacetylase, while Sirt3 is local-
ized in the mitochondria. Previous studies have fully
explored the role of Sirt1 in sepsis-induced ARDS/ALI, and
they found that Sirt1 protects lung from inflammation
[20–23]. Sirt1 also has been reported in maintaining vascular
endothelial barrier integrity in lung tissue [20]. Sirt3,
another member of the Sirt family, participates in mitochon-
drial oxidative stress, bioenergetics, apoptosis, mitochon-
drial fission, and metabolic reprogramming [24–26].
However, there is a lack of definite evidences elucidating
the effects and underlying mechanisms of Sirt3 in microvas-
cular endothelial barrier integrity. Therefore, the present
study is aimed at investigating whether Sirt3 alleviates
sepsis-induced inflammation by maintaining lung microvas-
cular endothelial barrier integrity via the interaction of β-
catenin and VE-cadherin.

2. Materials and Methods

2.1. Animal Treatment. The animal study was approved by
the Ethics Committee of the Institute of Chinese Materia
Medica, China Academy of Chinese Medical Sciences (No.

20,152,013), and was reported in compliance with the
ARRIVE guidelines [27]. Male C57BL/6 mice, weighing 20-
22 g, were purchased from the Laboratory Animal Center
of the Academy of Military Medical Sciences (Beijing, China,
Certificate No. SCXK 2002-0010) and randomly assigned to
the experimental groups to establish lipopolysaccharide-
(LPS-) and cecal ligation puncture- (CLP-) induced ALI
models. The Sirt3-/- mice were purchased from Cyagen Bio-
sciences (Suzhou, China). Mice were intraperitoneally
injected with sodium pentobarbital (1%, 50mg/kg) for anes-
thesia. The complete CLP model was carried out by perforat-
ing the ligation end and squeezing out feces as previously
described [28], while sham-operated mice were carried out
with the same surgery without cecum ligation or puncture.
Mice were administered LPS (20mg/kg/day, E. coli
0111:B4, Sigma-Aldrich, USA) in sterile saline by intraperi-
toneal injection to induce ALI, while control mice were
administrated sterile saline by intraperitoneal injection.
Before CLP surgery or LPS injection, mice were adminis-
tered 3-TYP (5mg/kg/day, Selleck Chemicals, USA) or
ICG-001 (5mg/kg/day, Selleck Chemicals, USA) in sterile
PBS by intraperitoneal injection for 2 days. Mice were sacri-
ficed at 3 h, 6 h, and 24 h after CLP surgery or LPS injection.
The lung tissues were immediately frozen and stored in liq-
uid nitrogen for subsequent experiments.

2.2. Cytokine and Chemokine Measurements. Serum
interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α)
from LPS- or CLP-induced ALI mice were measured
employing a commercially available ELISA kit and used
according to the manufacturer’s kit protocols (R&D Sys-
tems). Protein concentrations were measured spectrophoto-
metrically at 450nm and determined by establishing a
standard curve by employing standard proteins.

2.3. Cell Culture and Treatment. Human pulmonary micro-
vascular endothelial cells (HPMECs) were purchased from
the China Center for Type Culture Collection. HPMECs
were cultured in Endothelial Cell Medium (1001, ScienCell,
USA) supplemented with 10% fetal bovine serum at 37°C
with 5% carbon dioxide. HPMECs were treated with
0.5 ng/mL or 1.0 ng/mL LPS (E. coli 0111:B4, Sigma-Aldrich,
USA). The concentrations of 3-TYP and ICG-001 were both
10μM. After 12 h or 24h treatment, HPMEC cells were har-
vested for subsequent experiments.

2.4. Knock-In and Knockdown of Sirt3 In Vitro. The plasmid
expressing full-length human Sirt3 cDNA (Sirt3 over), the
plasmid containing empty plasmids (vector), the plasmid
expressing shRNA against human Sirt3 (Sirt3 shRNA), and
the plasmid containing scramble (scramble) were con-
structed by GeneChem (Shanghai, China). HPMECs were
seeded in a 6-well plate with 70-80% confluence. The plas-
mid and Lipofectamine 3000 (Invitrogen, USA) were
directly added to the medium, and the medium was removed
after 24 h treatment according to the manufacturer’s guide.

2.5. Histological Analysis. Briefly, lung tissues were fixed in
4% paraformaldehyde at room temperature for 24 h. After
processing for paraffin embedding, lung tissues were
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sectioned at 5μm. Hematoxylin and eosin (HE) staining was
performed by following the method routinely used in our
laboratory [29]. The images were acquired using a Leica
microscope (Leica Microsystems, Germany), and the lung
injury score was assessed by five easily identifiable patholog-
ical processes according to the official ATS workshop report
[30, 31].

2.6. Immunohistochemical Staining. Paraffin-embedded
mouse lung sections and immunohistochemical staining
for lung tissues were performed as described previously
[32]. After heating in citrate buffer (10mM sodium citrate,
pH6.0), the slides were blocked with 3% H2O2, incubated
with 10% goat serum at room temperature for 1 h, and then
incubated with primary antibodies at 4°C overnight. After
incubating with secondary antibodies, the slides were devel-
oped by 3,3-N-diaminobenzidine tetrahydrochloride. The
slides were then counterstained with Harris hematoxylin
and mounted on neutral gum. The images were acquired
with a Leica microscope (Leica Microsystems, Germany)
and analyzed using Image-Pro Plus 6.0 software according
to the mean optical density of positively stained areas in a
standard protocol [32, 33]. To represent the results better,
the value of protein expression in the sham-operated or con-
trol group was further normalized to 1 using the mean.

2.7. Immunofluorescence Staining and Confocal Microscopy.
Briefly, HPMECs were cultured on coverslips and fixed with
4% paraformaldehyde at 4°C. The slides were incubated with
10% goat serum for 1 h and with primary antibodies at 4°C
overnight and then incubated with secondary antibodies
for 2 h and incubated with propidium iodide for 10min.
The slides were mounted with 80% glycerinum in sterile
PBS and measured by a laser-scanning confocal microscope
(Leica Microsystems, Germany). To clearly present the
results, the value of protein expression in the control group
was further normalized to 1 using the mean.

2.8. Western Blot Analysis. Protein expression was examined
by Western blot as previously described [34]. HPMECs or
lung tissues were lysed using RIPA buffer, and protein con-
centration was examined using the Pierce BCA protein assay
kit (23227, Thermo Fisher Scientific, USA). The polyvinyli-
dene difluoride (PVDF) membranes were purchased from
GE Healthcare (10600023, USA). The following primary
antibodies were employed: VE-cadherin (1 : 1000, ab33168,
Abcam, USA), β-catenin (1 : 1000, 610154, BD Transduction
Laboratories, USA), dephosphorylated active β-catenin (05-
665, Millipore, Germany), Sirt3 (1 : 500, ab189860, Abcam,
USA), matrix metallopeptidase-7 (MMP-7, 1 : 400, ab5706;
Abcam, USA), and cyclooxygenase-2 (COX-2, 1 : 1000,
ab62331, Abcam, USA). α-Tubulin was purchased from the
Proteintech Company (Hubei, China). The secondary anti-
bodies of goat antirabbit (1 : 5000, ab6721; Abcam, USA) or
goat antimouse (1 : 5000, A21010; Abbkine, USA) were used.
PVDF membranes were visualized using a chemilumines-
cence Western blotting detection reagent. The signal inten-
sity of each immunoblot was analyzed using ImageJ
software (version 1.48v; NIH, USA), and each band density

was normalized by the α-tubulin protein expression level.
To clearly present the results, the value of protein expression
in the sham-operated or control group was further normal-
ized to 1 using the mean.

2.9. Quantitative Real-Time PCR (qRT-PCR). The mRNA
expression was analyzed by qRT-PCR as previously
described [35]. TRIzol Reagent (Invitrogen, USA) and Tran-
scriptor First Strand cDNA Synthesis Kit (Roche, Germany)
were used to extract total mRNA and synthesize cDNA,
respectively. SYBR® Premix Ex Taq™ II (Takara Bio, Otsu,
Shiga, Japan) was employed, and the primer sequences syn-
thesized by Sangon (Guangzhou, China) are listed in
Table 1. Samples were amplified by a Bio-Rad CFX96
Touch™ System (Bio-Rad, USA). The mRNA levels were
normalized to β-actin and determined by the ΔΔCt method.

2.10. Coimmunoprecipitation (Co-IP). Co-IP was used to
analyze the interaction of VE-cadherin and β-catenin. The
lysates of HPMECs or lung tissues were pretreated with pro-
tein A/G (GE Healthcare, USA) at 4°C for 1 h. The superna-
tant was incubated with anti-β-catenin (1 : 100) antibody
overnight at 4°C and then immunoprecipitated by protein
A/G overnight at 4°C. After washing six times, the com-
plexes were analyzed by Western blot and the total protein
was used as the input.

2.11. TCF/LEF Reporter Assay. TCF/LEF reporter assay was
carried out by the procedures described previously [13].
The Cignal TCF/LEF reporter assay kit (336841; Qiagen,
USA) was used according to the manufacturer’s protocol.
The p(GAGA)12-luc and pGL3-basic were transfected into
HPMECs using Lipofectamine 3000 (Invitrogen, USA), and
the medium was removed after 24 h culture. The fluores-
cence was analyzed using the dual-luciferase reporter assay
system (E1910; Promega, USA).

2.12. Chromatin Immunoprecipitation Assay (ChIP). ChIP
assay was performed using the Pierce Agarose ChIP Kit
(26156, New York, NY, USA) according to the manufac-
turer’s instructions. The DNA/protein complexes were
crosslinked in 1% formaldehyde (28906, NY, USA) for
10min. The chromatin in the nuclei obtained from cells or
tissues were digested by micrococcal nuclease at 4°C for
5min. The lysates were incubated with 3μg anti-β-catenin
antibody at 4°C overnight, and the immunoprecipitation
incubated with normal rabbit IgG was used as a control.
qRT-PCR was used to amplify MMP-7, and the primer
sequence is listed in Table 1. Fold enrichment relative to
the IgG antibody control (negative control) set to 1.0 was
calculated using the ΔΔCt method.

2.13. Proximity Ligation Assay (PLA). PLA was carried out
using the Duolink® In Situ PLA Kit (DUO92102, Sigma-
Aldrich, USA) according to the manufacturer’s protocol as
previously described [36]. Briefly, HPMECs cultured on cov-
erslips were fixed with 3 : 1 acetone methanol at -20°C for
5min and blocked with blocking solution for 30min. Then,
HPMECs were incubated with anti-VE-cadherin and anti-β-
catenin antibodies at 4°C overnight and incubated with PLA
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probes at room temperature for 1 h and then at 37°C for 2 h.
The amplifications were performed at 37°C, and HPMECs
were then stained by DAPI for 5min. The cells were exam-
ined by a laser-scanning confocal microscope (Leica Micro-
systems, Germany). To clearly present the results, the value
of protein expression in the control group was further nor-
malized to 1 using the mean.

2.14. Statistics. The results were expressed asmean ± SE, and
GraphPad Prism software version 6.0 (San Diego, CA, USA)
was employed for statistical analysis. Statistical analysis for
two groups employed by Student’s t-test; statistical analysis
for three or more groups was performed using one-way
analysis of variance (ANOVA) followed by Dunnett’s post
hoc test when F achieved p < 0:05 and there was no signifi-
cant variance in homogeneity. To avoid unwanted sources
of variation, results were normalized to control. p < 0:05
was considered significant. The number of replicates was 6
per group for each data set.

3. Results

3.1. Sepsis Damaged Microvascular Endothelial Adherens
Junction Integrity and Induced Inflammatory Injury in
Lung. To investigate the role of Sirt3 in maintaining lung
microvascular endothelial barrier integrity, we first estab-
lished LPS- and CLP-induced ALI mouse models. As shown
in Figure 1(a), HE staining results indicated that compared
with the control group, LPS caused the extensive accumula-
tion of neutrophils and cellular debris in lung tissue in a
time-dependent manner. Similar results were also found in
the CLP mouse model. As shown in Figure 1(b), compared
with the sham-operated group, CLP surgery induced lung
neutrophil infiltration and cellular debris deposition in a
time-dependent manner. These results demonstrated the
successful establishment of ALI models. Since the adherens
junctional integrity plays an important role in maintaining
lung function and preventing inflammatory injury [37], we
next determined the protein expression of VE-cadherin, an
important microvascular endothelial adherens junction pro-
tein. As shown in Figures 1(c) and 1(d), both LPS- and CLP-
induced ALI were accompanied by the remarkable downreg-
ulation of VE-cadherin protein in a time-dependent manner.

In addition, compared with the control group, serum IL-6
and TNF-α levels in the LPS group were significantly ele-
vated in a time-dependent manner (Figure 1(e)). Similar
results were also observed in the CLP-induced ALI model
(Figure 1(f)), indicating the breakdown of the lung micro-
vascular endothelial adherens junction involved in the lung
inflammatory injury, which was consistent with previous
studies [37, 38]. Next, we examined the VE-cadherin protein
expression in LPS-stimulated HPMECs. As shown in
Figures 1(g) and 1(h), LPS stimulation resulted in the down-
regulation of VE-cadherin protein in dose- and time-
dependent manners, which confirmed that the breakdown
of the lung microvascular barrier was related to the lung
inflammatory injury.

3.2. The Upregulation of β-Catenin Activity Was
Accompanied by Increased Inflammatory Injury and
Damaged Microvascular Endothelial Adherens Junction.
The interaction of β-catenin and VE-cadherin maintains
the adherens junctional integrity, while the breakdown of
the adherens junction releases β-catenin from the cytomem-
brane [8]. Therefore, we next examined whether β-catenin
was activated during ALI. As shown in Figures 2(a) and
2(b), compared with the control or the sham-operated
group, the expression of active β-catenin protein signifi-
cantly increased in the nucleus of lung tissues in LPS- and
CLP-induced ALI models in a time-dependent manner,
indicating the activation of β-catenin during ALI. As shown
in Figures 2(c) and 2(d), LPS stimulation also promoted β-
catenin activity in HPMECs in dose- and time-dependent
manners, which confirmed the positive correlation between
β-catenin activity and ALI. Since the activation of β-catenin
contributes to the destruction of the microvascular adherens
junction directly through increasing downstream gene
MMP-7 expression to damage the adherens junction [37,
39, 40], we next examined the expression of the ligand of
β-catenin, the Wnt family. As shown in Figure 2(e), com-
pared with the control group, the mRNA expressions of
Wnt1, Wnt2, Wnt5a, Wnt11, and Wnt16 were significantly
upregulated, while the mRNA expression of Wnt3a was sig-
nificantly downregulated in the LPS group in a time-
dependent manner, which also indicated the activation of
β-catenin. And these results were consistent with previous

Table 1: Nucleotide sequences of the primers used for qRT-PCR and ChIP.

Gene Forward Reverse Product size (bp)

Primers used for qRT-PCR

Wnt1 CTGGCTGGGTTTCTGCTAC GAGGAGGCTACGTTCACAATAC 106

Wnt2 CTCCTCAGCTGGAGTTGTATTT GGCGCTTCCCATCTTCTT 94

Wnt3a TGTTGGGCCACAGTATTCC GGCATGATCTCCACGTAGTT 111

Wnt5a CCTTCGCCCAGGTTGTAAT AGAGAGGCTGTGCTCCTATAA 102

Wnt11 AACAGGATCCCAAGCCAATAA CCATGGCACTTACACTTCATTTC 99

Wnt16 GGTTCAGCAGAAAGTTCCTAGA GCCTTCCAGCTTCATTGTTATG 102

GAPDH GGTGTGAACCATGAGAAGTATGA GAGTCCTTCCACGATACCAAAG 123

Primers used for ChIP

MMP-7 GGAGACCCAAAGAAGGGAATTA TGCTGTGTGGCTGGATTAG 105
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Figure 1: The downregulation of microvascular endothelial adherens junction protein VE-cadherin was accompanied by increased inflammation.
(a) HE staining of lung tissues and lung injury scores of the LPS-induced ALImousemodel at different times.Magnification: ×200. (b) HE staining
of lung tissues and lung injury scores of the CLP-induced ALI mouse model at different times.Magnification:×200. (c) The protein expression and
relative quantitative data of VE-cadherin in the LPS-induced ALI mouse model. (d) The protein expression and relative quantitative data of VE-
cadherin in the CLP-induced ALI mouse model. (e) The serum IL-6 and TNF-α levels in the LPS-induced ALI mouse model. (f) The serum IL-6
and TNF-α levels in the CLP-induced ALI mouse model. (g) The protein expression and relative quantitative data of VE-cadherin in HPMECs
after 24 h stimulation by LPS. (h) The protein expression and relative quantitative data of VE-cadherin in HPMECs after 1.0 ng/mL LPS
stimulation. ∗∗p < 0:01 compared with the CTL or sham-operated group (n = 6). Dot presents the single data results in the bar graph.
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Figure 2: Continued.
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studies [40, 41]. In the CLP-induced ALI mouse model,
compared with sham-operated group, the mRNA expres-
sions of Wnt1, Wnt2, Wnt5a, Wnt11, and Wnt16 increased
substantially, and the mRNA expression of Wnt3a decreased
in a time-dependent manner. These results demonstrated
that the activation of β-catenin during ALI was accompa-
nied by inflammation and damaged microvascular endothe-
lial adherens junction.

3.3. The Weakened Interaction of VE-Cadherin and β-
Catenin Enhanced β-Catenin Transcriptional Activity
during ALI. Next, the interactions of VE-cadherin and β-
catenin were investigated using the Co-IP method. As shown
in Figures 3(a) and 3(b), compared with the control or the
sham-operated group, the interaction of VE-cadherin and
β-catenin obviously lowered after LPS treatment or CLP sur-
gery in a time-dependent manner. The weakened interaction
of VE-cadherin and β-catenin may contribute to β-catenin
accumulation in the cytoplasm and translocation into the
nucleus to further trigger its transcriptional activity of
MMP-7. As shown in Figure 3(c), compared with the control
group, LPS stimulation promoted luciferase activity of
TCF/LEF activity in dose- and time-dependent manners,
indicating the activation of β-catenin in HPMECs during
lung inflammation. LPS stimulation also resulted in the sig-
nificant upregulation of the MMP-7 promoter (Figure 3(d)).
These results elucidated that ALI may induce inflammation

through promoting β-catenin activation that further
increased MMP-7 expression to aggravate the breakdown
of the microvascular adherens junction. Our further experi-
ments also confirmed these hypotheses. Treatment with the
β-catenin inhibitor ICG-001 significantly decreased serum
IL-6 and TNF-α levels (Figures 3(e) and 3(f)), indicating that
β-catenin activation was positively related to inflammation
in ALI. Notably, treatment with the Sirt3 inhibitor 3-TYP
significantly increased serum inflammatory factor levels in
LPS- and CLP-induced ALI models, indicating that Sirt3
was negatively related to lung inflammation.

3.4. The Downregulation of Sirt3 Is Accompanied by Lowered
Microvascular Adherens Junction Integrity and Elevated
Inflammation. Although we determined the relationship
between inflammatory injury and Sirt3, the expression of
Sirt3 during ALI remained unclear. Hence, we investigated
the expression of Sirt3 protein in ALI mouse models and
HPMECs. As shown in Figure 4(a), compared with the con-
trol group, Sirt3 expression significantly declined in the LPS
group in a time-dependent manner. Similar results were
found in the CLP model. Compared with the sham-
operated group, Sirt3 protein expression was significantly
downregulated in a time-dependent manner after CLP sur-
gery (Figure 4(b)). To address Sirt3 expression in lung
microvascular endothelial cells, HPMECs were employed.
LPS stimulation resulted in the remarkable downregulation
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Figure 2: β-Catenin was activated during sepsis-induced ALI. (a) Immunohistochemical staining and relative quantitative data of active β-
catenin in lung tissues of the LPS-induced ALI mouse model at different times. Magnification: ×400. (b) Immunohistochemical staining and
relative quantitative data of active β-catenin in lung tissues of the CLP-induced ALI mouse model at different times. Magnification: ×400. (c)
The protein expression and relative quantitative data of active β-catenin in HPMECs after 24 h stimulation by LPS. (d) The protein
expression and relative quantitative data of active β-catenin in HPMECs after 1.0 ng/mL LPS stimulation. (e) The mRNA levels of Wnt1,
Wnt2, Wnt3a, Wnt5a, Wnt11, and Wnt16 in lung tissues of the LPS-induced ALI mouse model at different times. (f) The mRNA levels
of Wnt1, Wnt2, Wnt3a, Wnt5a, Wnt11, and Wnt16 in lung tissues of the CLP-induced ALI mouse model at different times. ∗p < 0:05
and ∗∗p < 0:01 compared with the CTL or sham-operated group (n = 6). Dot presents the single data results in the bar graph.
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Figure 3: Continued.
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of Sirt3 protein in dose- and time-dependent manners
(Figures 4(c) and 4(d)). Immunofluorescent staining of the
Sirt3 protein also confirmed that the downregulation of Sirt3
was accompanied by lowered adherens junction integrity
during lung inflammation (Figure 4(e)).

3.5. Sirt3 Promoted Microvascular Endothelial Interaction of
VE-Cadherin and β-Catenin to Maintain Endothelial
Adherens Junction Integrity. To decipher the role of Sirt3
in the interaction of VE-cadherin and β-catenin, plasmids
expressing Sirt3 shRNA, scramble, Sirt3 over, and vector
were employed. As shown in Figure S1, the expression of
the Sirt3 protein significantly decreased in HPMECs after
transfection with Sirt3 shRNA, while the expression of the
Sirt3 protein significantly increased after transfection with
Sirt3 over. We first examined the effects of Sirt3 on β-
catenin and VE-cadherin expression. As shown in
Figure 5(a), compared with the scramble-transfected LPS
group, Sirt3 deficiency remarkably amplified LPS-induced
β-catenin upregulation and VE-cadherin downregulation

after being transfected with the Sirt3 shRNA plasmid,
while Sirt3 overexpression by the Sirt3 over plasmid
inhibited β-catenin protein expression and promoted VE-
cadherin protein expression in HPMECs (Figures 5(a) and
5(b)). Co-IP results elucidated that Sirt3 also affected the
interaction of β-catenin and the VE-cadherin protein. As
shown in Figures 5(c) and 5(d), LPS stimulation
suppressed the interaction of β-catenin and the VE-
cadherin protein in HPMECs. Sirt3 deficiency weakened
their interaction while Sirt3 overexpression strengthened
their interaction (Figures 5(c) and 5(d)).

We further investigated the effects of Sirt3 on β-catenin
transcriptional activity and Ang-2 expression that contrib-
utes to the breakdown of the microvascular endothelial
adherens junction. While Sirt3 deficiency elevated the lucif-
erase activity of the TCF/LEF reporter induced by LPS, Sirt3
overexpression suppressed the luciferase activity of the
TCF/LEF reporter (Figure 5(e)), indicating the regulatory
effects of Sirt3 on β-catenin transcriptional activity. Addi-
tionally, Sirt3 deficiency increased the expression of MMP-

LPS model

⁎⁎

LPS
3-TYP

ICG-001

IL
-6

 le
ve

l (
pg

/m
L)

0

210

420

630 ##

##

+– ++
–– –+
–– +–

⁎⁎

LPS
3-TYP

ICG-001

0

60

120

180 ##

##

+– ++
–– –+
–– +–

TN
F-
𝛼

 le
ve

l (
pg

/m
L)

(e)

CLP model

⁎⁎

LPS
3-TYP

ICG-001

IL
-6

 le
ve

l (
pg

/m
L)

0

200

400

600
##

##

+– ++
–– –+
–– +–

⁎⁎

CLP
3-TYP

ICG-001

0

60

120

180
##

##

+– ++
–– –+
–– +–

TN
F-
𝛼

 le
ve

l (
pg

/m
L)

(f)

Figure 3: The dissociation of VE-cadherin/β-catenin complex and the activation of β-catenin contributed to microvascular endothelial
adherens junction dysfunction and inflammation. (a) The protein expression and relative quantitative data of VE-cadherin in lung
tissues of LPS-induced ALI mouse model at different times. (b) The protein expression and relative quantitative data of VE-cadherin in
lung tissues of CLP-induced ALI mouse model at different times. (c) The luciferase activity of TCF/LEF reporter in HPMECs after 24 h
stimulation by LPS or 1.0 ng/mL LPS stimulation, respectively. (d) ChIP assay results of MMP-7 in HPMECs after 24 h stimulation by
LPS or 1.0 ng/mL LPS stimulation. (e) The serum IL-6 and TNF-α levels in the LPS-induced ALI mouse model after treatment with 3-
TYP or ICG-001. (f) The serum IL-6 and TNF-α levels in the CLP-induced ALI mouse model after treatment with 3-TYP or ICG-001.
∗∗p < 0:01 compared with the CTL- or sham-operated group (n = 6). ##p < 0:01 compared with the LPS or CLP group (n = 6). Dot
presents the single data results in the bar graph.
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7 promoters and Ang-2 mRNA expression, while Sirt3 over-
expression decreased the expression of MMP-7 promoters
and Ang-2 mRNA expression in HPMECs (Figures 5(f)
and 5(g)). Furthermore, knockdown of Sirt3 facilitated
the upregulation of the MMP-7 and COX-2 protein
expression induced by LPS, while overexpression of Sirt3
inhibited their protein expression (Figures 5(h) and 5(i)).
We also observed interaction between endogenous β-
catenin and VE-cadherin in the cytomembrane using in
situ PLA. Compared with the control group, distinct β-

catenin-VE-cadherin signals were lowered upon LPS stim-
ulation, indicating the weakened interaction of β-catenin
and the VE-cadherin protein by LPS stimulation
(Figure 5(j)). Of note, Sirt3 deficiency aggravated their
separation, while Sirt3 overexpression promoted their
interaction (Figure 5(j)). Taken together, these results
demonstrated that Sirt3 modulated the microvascular
endothelial adherens junction integrity to inhibit lung
inflammation through maintaining the interaction of β-
catenin and the VE-cadherin protein in vitro.
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Figure 4: The downregulation of Sirt3 was accompanied with increased lung inflammation during ALI. (a) Immunohistochemical staining
and relative quantitative data of Sirt3 in lung tissues of the LPS-induced ALI mouse model at different times. Magnification: ×400. (b)
Immunohistochemical staining and relative quantitative data of Sirt3 in lung tissues of the CLP-induced ALI mouse model at different
times. Magnification: ×400. (c) The protein expression and relative quantitative data of Sirt3 in HPMECs after 24 h stimulation by LPS.
(d) The protein expression and relative quantitative data of Sirt3 in HPMECs after 1.0 ng/mL LPS stimulation. (e) Immunofluorescence
staining and relative quantitative data of Sirt3 after 24 h stimulation by LPS. ∗p < 0:05 and ∗∗p < 0:01 compared with the CTL- or sham-
operated group (n = 6). Dot presents the single data results in the bar graph.
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Figure 5: Sirt3 enhanced the stability of VE-cadherin/β-catenin complex and inhibited β-catenin transcriptional activity to maintain
microvascular endothelial adherens junction integrity. (a) The protein expression and relative quantitative data of VE-cadherin and β-
catenin in HPMECs after transfection with scramble or Sirt3 shRNA. (b) The protein expression and relative quantitative data of VE-
cadherin and β-catenin in HPMECs after transfection with vector or Sirt3 over. (c) The protein expression and relative quantitative data
of VE-cadherin in HPMECs after transfection with scramble or Sirt3 shRNA. (d) The protein expression and relative quantitative data of
VE-cadherin in HPMECs after transfection with vector or Sirt3 over. (e) The luciferase activity of TCF/LEF reporter in HPMECs after
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after 24 h stimulation. (g) The mRNA levels of Ang-2 in HPMECs transfected with Sirt3 shRNA or Sirt3 over after 24 h stimulation. (h)
The protein expression and relative quantitative data of MMP-7 and COX-2 in HPMECs after transfection with scramble or Sirt3
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3.6. Sirt3 Suppressed Lung Inflammation by Maintaining the
Microvascular Endothelial Adherens Junction Integrity. To
confirm the role of Sirt3 on the microvascular endothelial
adherens junction integrity to inhibit lung inflammation,
we used the Sirt3-/- mouse model. As shown in Figure 6(a),
compared with the LPS group in the wild type mouse, the
protein expression of VE-cadherin significantly decreased,
while the protein expression of β-catenin and MMP-7 sig-
nificantly increased in the Sirt3-/- mouse. Similar results
were also found in the CLP model. Compared with the wild
type mouse, the downregulation of VE-cadherin and the
upregulation of β-catenin and MMP-7 were observed in
the Sirt3-/- mouse after CLP surgery (Figure 6(b)). In addi-
tion, compared with the control or the sham-operated
group, serum IL-6 and TNF-α levels in the Sirt3-/- mouse
were higher than those in the wild type mouse in the LPS-
or CLP-induced group (Figures 6(c) and 6(d)). These results
demonstrated that Sirt3 modulated the microvascular endo-
thelial adherens junction integrity to inhibit lung inflamma-
tion in vivo. HE staining and immunohistochemical staining
of COX-2 also showed that lung inflammation in the Sirt3-/-

mouse was worse than that in the wild type mouse
(Figure 6(e)). These results confirmed that Sirt3 modulated
the microvascular endothelial adherens junction integrity
to inhibit lung inflammation by acting on the interaction
of β-catenin and the VE-cadherin protein (Figure 7).

4. Discussion

Sepsis leads to high mortality and morbidity due to multiple
organ dysfunction including ARDS/ALI that causes severe
systemic inflammatory response syndrome. The microvas-

cular endothelial barrier dysfunction, microvascular perme-
ability imbalance, and capillary leakage induced by sepsis
play important roles in the occurrence and development of
organ dysfunction [42, 43]. The microvascular endothelial
barrier consists of single-layer continuous endothelial cells
between the blood and interstitial tissue that controls many
physiological roles including the transportation of water
and nutrients, the tension of blood vessels, the aggregation
and adhesion of inflammatory mediators, and hemostasis
and thrombosis. The adherens junction between microvascular
endothelial cells maintains microvascular endothelial barrier
function and modulates its stability and permeability, while
the breakdown of the adherens junction causes microvascular
endothelial barrier dysfunction, thus resulting in the increased
microvascular endothelial permeability and leakage [44, 45].
During sepsis-induced ARDS/ALI, the systemic inflammatory
response is rapidly activated, and a fast and effective defense
mechanism is triggered to alleviate microvascular endothelial
barrier permeability that further contributes to the production
and migration of monocytes, macrophages, and other immune
cells to resist pathogenic microorganisms and endotoxin inva-
sion. Meanwhile, sepsis leads to the release of excessive inflam-
matorymediators that results in the imbalance of microvascular
endothelial barrier permeability, the aggravation of microvascu-
lar leakage, and, ultimately, circulatory failure and multiple
organ dysfunction. The interaction among the microvascular
endothelial barrier, the adherens junction, and excessive inflam-
matory mediators plays a significant role in the pathophysiol-
ogy of sepsis-induced ARDS/ALI, which suggests that the
protection of the microvascular endothelial adherens junction
may serve as the novel therapeutic target and strategy to prevent
ARDS/ALI.
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Figure 6: Sirt3-mediated VE-cadherin/β-catenin complex maintained microvascular endothelial adherens junction integrity to suppress
inflammation. (a) The protein expression and relative quantitative data of VE-cadherin, β-catenin, and MMP-7 in LPS-induced ALI WT
and Sirt3-/- mouse model at 6 h. (b) The protein expression and relative quantitative data of VE-cadherin, β-catenin, and MMP-7 in
CLP-induced ALI WT and Sirt3-/- mouse model at 6 h. (c) The serum IL-6 and TNF-α levels in LPS-induced ALI WT and Sirt3-/- mouse
model at 6 h. (d) The serum IL-6 and TNF-α levels in CLP-induced ALI WT and Sirt3-/- mouse model at 6 h. (e) HE staining,
immunohistochemical staining, and relative quantitative data of COX-2 in lung tissues of LPS-induced ALI WT and Sirt3-/- mouse
model at 6 h. Magnification: ×200; HE. Magnification: ×400; COX-2. ∗p < 0:05 and ∗∗p < 0:01 compared with the CTL- or sham-
operated group (n = 6). ##p < 0:01 compared with the LPS or CLP group (n = 6). Dot presents the single data results in the bar graph.
WT: wild type.
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In the present study, we identified Sirt3 as a protective
factor for the adherens junction of the lung microvascular
endothelial barrier. Sirt3, the main mitochondrial molecule
in the Sirt family, alleviated ARDS/ALI through regulating
cellular bioenergetics, mitochondrial metabolism, and
inflammatory responses [25, 46, 47]. However, few studies
investigated the effect and mechanism of Sirt3 on the adhe-
rens junction of the lung microvascular endothelial barrier
to inhibit inflammation. Here, we found that in LPS- and
CLP-induced ALI mouse models, the protein expression of
Sirt3 declined in a time-dependent manner that was accom-
panied by the increased serum IL-6 and TNF-α levels, indi-
cating the occurrence of systemic inflammation.
Pharmacological inhibition of Sirt3 by 3-TYP treatment or
deletion of Sirt3 by gene editing technology significantly
amplified systemic inflammation in vivo. These results indi-
cated the effects of Sirt3 against inflammation in ALI. Addi-
tional experiments elucidated that Sirt3 maintained the
microvascular endothelial adherens junction in HPMECs.
Sirt3 overexpression significantly protected the adherens
junction of the lung microvascular endothelial barrier in
HPMECs, while Sirt3 deficiency promoted the breakdown
of the adherens junction of the lung microvascular endothe-
lial barrier. These results confirmed the protective role of
Sirt3 on maintaining the adherens junction of the lung

microvascular endothelial barrier to attenuate inflammation,
which first revealed that Sirt3 suppressed ARDS/ALI-
induced inflammation through maintaining the adherens
junction of the lung microvascular endothelial barrier.

Furthermore, we explored the underlying mechanism of
Sirt3 on maintaining the adherens junction of the lung
microvascular endothelial barrier. The integrity of the adhe-
rens junction involves the interaction between VE-cadherin
and β-catenin. The dimerization of VE-cadherin occurs in
the cytomembrane, and the dimerization of the adjacent cel-
lular VE-cadherin dimer forms cadherin clusters. The cyto-
plasmic domain of VE-cadherin contains the binding sites
of the VE-cadherin/β-catenin complex. In the physiological
status, VE-cadherin and β-catenin existed as a complex
and suppressed β-catenin transcriptional activity. However,
once microvascular endothelial cells were injured, the VE-
cadherin/β-catenin complex dissociated and the VE-
cadherin-dominant intercellular adherens junction became
damaged, which caused β-catenin accumulation in the cyto-
plasm and translocation into the nucleus to initiate β-
catenin transcriptional activity [48].

In the present study, we found that the protein expres-
sion of Sirt3 was positively related to VE-cadherin expres-
sion but negatively related to β-catenin activity in the ALI
model. Sirt3 overexpression strengthened the interaction of
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Figure 7: Sirt3 maintained microvascular endothelial adherens junction integrity to attenuate lung inflammation by acting on the stability of
VE-cadherin/β-catenin complex. Sepsis induced VE-cadherin downregulation, β-catenin activation, and, importantly, the dissociation of
VE-cadherin/β-catenin complex in lung microvascular endothelial cells and ALI animal models. These damaged adherens junctions and
triggered the β-catenin-mediated MMP-7 expression to further destroy VE-cadherin/β-catenin complex, which eventually resulted in the
breakdown of microvascular endothelial adherens junction. These events facilitated the transfer of inflammatory factor through
microvascular endothelial cells into the capillary and contributed to capillary leakage and ultimately lung inflammation. Notably, we first
found that Sirt3 could inhibit inflammation through maintaining microvascular endothelial adherens junction integrity by acting on the
interaction of VE-cadherin and β-catenin.
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VE-cadherin and β-catenin, while Sirt3 deficiency weakened
their interaction. Additionally, Sirt3 also regulated β-catenin
transcriptional activity. Accompanied by β-catenin released
from the complex, sepsis-induced ALI resulted in the upreg-
ulation of Wnt ligands that further accumulated β-catenin in
the cytoplasm and translocated into the nucleus, all of which
promoted β-catenin transcriptional activity. MMP-7, the
downstream target gene of β-catenin, participates in the
breakdown of the intercellular adherens junction that ulti-
mately results in microvascular leakage and inflammation
aggravation [48]. Here, the upregulations of MMP-7 were
detected during lung inflammation in vivo and in vitro. Sirt3
also induced Ang-2 expression to damage the lung micro-
vascular endothelial barrier. These results indicated the
underlying mechanism of Sirt3 on maintaining the adherens
junction of the lung microvascular endothelial barrier by
acting on the interaction of VE-cadherin and β-catenin
(Figure 7).

5. Conclusion

Although Sirt3 is known to modulate metabolism to sup-
press inflammation in ARDS/ALI, we first focus Sirt3 on
the microvascular endothelial barrier via the VE-cadher-
in/β-catenin complex. We identified for the first time Sirt3
as the crucial mediator of sepsis-induced lung microvascular
endothelial barrier integrity. In summary, the present study
provides novel insights into the mechanism of Sirt3 against
lung inflammatory injury. We identified Sirt3 as a modula-
tor of the adherens junction in the lung microvascular endo-
thelial barrier to suppress inflammation through regulating
the interaction of VE-cadherin and β-catenin. These results
provide the potential therapeutic target and novel strategy to
prevent inflammation in ARDS/ALI.
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