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Objectives. In glaucomatous eyes, the main aqueous humor (AH) outflow pathway is damaged by accumulated oxidative stress
arising from the microenvironment, vascular dysregulation, and aging, which results in increased outflow resistance and ocular
hypertension. Schlemm’s canal (SC) serves as the final filtration barrier of the main AH outflow pathway. The present study is
aimed at investigating the possible regulation of vasoactive intestinal peptide (VIP) on the cytoskeleton by stabilizing ZO-1 in
SC. Methods. Model of chronic ocular hypertension (COH) induced by episcleral venous cauterization was treated with topical
VIP. The ultrastructure of junctions, ZO-1 levels, and permeability of the SC inner wall to FITC-dextran (70 kDa) were
detected in the COH models. The F-actin distribution, F/G-actin ratio, and ZO-1 degradation pathway in human umbilical
vein endothelial cells (HUVECs) and HEK 293 cells were investigated. Results. ZO-1 in the outer wall of the SC was less than
that in the inner wall. COH elicited junction disruption, ZO-1 reduction, and increased permeability of the SC inner wall to
FITC-dextran in rats. ZO-1 plays an essential role in maintaining the F/G-actin ratio and F-actin distribution. VIP treatment
attenuated the downregulation of ZO-1 associated with COH or H2O2-induced oxidative damage. In H2O2-stimulated
HUVECs, the caspase-3 inhibitor prevents ZO-1 disruption. Caspase-3 activation promoted endolysosomal degradation of ZO-
1. Furthermore, a decrease in caspase-3 activation and cytoskeleton redistribution was demonstrated in VIP +H2O2-treated
cells. The knockdown of ZO-1 or the overexpression of caspase-3 blocked the effect of VIP on the cytoskeleton. Conclusion.
This study provides insights into the role of VIP in stabilizing the interaction between the actin cytoskeleton and cell junctions
and may provide a promising targeted strategy for glaucoma treatment.

1. Introduction

Primary open-angle glaucoma (POAG) is characterized by
pathological ocular hypertension and visual field defects
[1]. The exact pathogenesis of POAG remains unclear. Ele-
vated intraocular pressure (IOP) is a well-established risk

factor for the development and progression of glaucomatous
optic neuropathy [2]. Aqueous humor (AH) is secreted by
the ciliary body and finally drained through the trabecular
meshwork- (TM-) Schlemm’s canal (SC) pathway and the
uveoscleral outflow pathway. Once the balance between
AH production and outflow is disturbed, pathological IOP
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fluctuations occur. It is generally accepted that impaired AH
outflow induced by increased resistance of the TM-SC path-
way results in elevated IOP. In glaucomatous eyes, the TM-
SC pathway is damaged by accumulated oxidative stress aris-
ing from the microenvironment, vascular dysregulation, and
aging [3].

As the final filtration barrier of the AH outflow pathway,
the inner wall of the SC plays a critical role in IOP regula-
tion. It has been verified that the inner wall of the SC in glau-
comatous eyes is stiffer than that in normal eyes, indicating
an association between pathological changes in the biophys-
ical characteristics of SC endothelia (SCE) and ocular hyper-
tension [4, 5]. Drugs targeting Rho-kinase inhibition or actin
depolymerization were recently introduced to reduce cell
stiffness in the TM-SC pathway and, consequently, reduce
IOP [6–8]. However, current antiglaucoma drugs have failed
to manipulate the TM-SC pathway in clinic.

Finely organized semiflexible actin filaments determine
cell stiffness [9]. It was verified that abnormal actin polymer-
ization, such as stress fiber formation, may increase cell stiff-
ness [10]. Dynamic interactions exist between the
cytoskeleton and cell junctions, both of which regulate each
other. During Rho/myosin light chain (MLC) activation,
which induces blood-brain barrier disruption, sustained
actin polymerization occurs with the disassembly of cell
junctions [11]. Madara et al. observed rapid junction disas-
sembly after the administration of an F-actin disrupting
toxin in absorptive cells [12], suggesting that the redistribu-
tion of F-actin can be responsible for junction loss. In turn,
junction instability elicits F-actin redistribution. Odenwald
et al. reported that knockdown of the junction protein ZO-
1 resulted in the accumulation of dense cytoplasmic F-
actin in MDCK cells [13].

ZO-1 plays a vital role in mechanosensation, polarity,
and adhesion [14, 15]. In addition, ZO-1 serves as a cyto-
skeletal connector that directly anchors F-actin to cell junc-
tions with its actin-binding region and interacts with
multiple other junctional components [16, 17]. Oxidative
stress induced the dissociation of ZO-1 from junctions in
epithelial and endothelial cells [18, 19]. However, it is not
clear if ZO-1 of SCE changes in response to ocular hyperten-
sion and contributes to the disordering of F-actin.

Vasoactive intestinal peptide (VIP), which is composed
of 28 amino acids, is a neurotransmitter, neurotrophic, or
neuroprotective factor [20]. VIP was expressed around the
SC, and the receptor of VIP (VPAC2) has been observed
in SCE [21, 22]. In our previous study, VIP administration
was found to reduce IOP by modulating F-actin distribution
and the F-/G-actin ratio, which is closely related to cell stiff-
ness [23]. It has been reported that high glucose (HG)+ IL-
1β-induced reduction of ZO-1 in ARPE19 cells was reversed
by VIP [24]. Thus, we aimed to investigate whether VIP reg-
ulates the cytoskeleton through ZO-1.

In this study, we revealed that chronic ocular hyperten-
sion (COH) elicited junction disruption and ZO-1 reduction
in the inner wall of the SC. The essential role of ZO-1 in
maintaining the F/G-actin ratio and F-actin distribution
was revealed by the knockdown of ZO-1 in 293 cells. We
also demonstrated that VIP treatment attenuated ZO-1

decrease induced by COH in vivo or H2O2 in vitro. VIP
exerts neuroprotective effects by inhibiting caspase-3 activa-
tion, which mediates ZO-1 reduction [25–27]. We further
revealed that caspase-3 activation was decreased in the VIP
+ H2O2 group, which may have promoted ZO-1 degradation
through the endolysosomal pathway.

In contrast with IOP-lowering drugs targeting cell stiff-
ness in the TM-SC pathway, which tends to elicit the disrup-
tion of ZO-1, VIP reduces cell stiffness under the premise of
stabilizing cell-cell junctions [28]. This study increased our
understanding of the regulatory role of VIP in stabilizing
the interaction between the actin cytoskeleton and cell junc-
tions and suggests a promising target strategy for glaucoma
treatment.

2. Methods

2.1. Animals. Male Sprague-Dawley (SD) rats (6 weeks old),
C57BL/6 mice (8 weeks), Tie2Cre/+ mice, and AnxA1flox/flox

mice were purchased from Gempharmatech (Nanjing,
Jiangsu, China). Animals were fed with standard food and
water in a 12 h light/dark cycle. All the animal protocols
and procedures were in accordance with the Association
for Research in Vision and Ophthalmology (ARVO) State-
ment for the Use of Animals in Ophthalmic and Vision
Research and the Use Committee of Huazhong University
of Science and Technology.

2.2. Reagents, Plasmid Construction, siRNA, and Antibodies.
VIP (HSDAVFTDNYTRLRKQMAVKKYLNSILN, ≥98%)
was synthesized by Sangon Biotech (Shanghai, China).
Staurosporine (569397) and Ac-DEVD-CHO (235420) were
purchased from Sigma-Aldrich. Full length human ZO-1 or
caspase-3 was cloned into pcDNA3.1 (+). Sequence (5′ to 3′
) of siZO-1: si-1: GUUAUACGAGCGAUCUCAU, si-2:
GGAGGAAACAGCUAUAUGG. Sequence (5′ to 3′) of
sicaspase-3: si-1: CCGACAAGCUUGAAUUUAU, si-2:
GAAUUGAUGCGUGAUGUUU. The shRNA sequence
that targets mouse ANXA1 sequence was designed as fol-
lows: 5′-GCCTCACAACCATCGTGAAGT-3′; adenovirus
vectors expressing shANXA1 were constructed and gener-
ated by BrainVTA (Wuhan, China). The antibodies used in
this study were as follows: anti–ZO-1 (Invitrogen, 33-
9100), anti-cleaved caspase-3 (CST, 9661S), anti-caspase 3
(Proteintech, 19677-1-AP), anti-FLAG (CST, 14793S), anti-
FLAG (Proteintech, 66008-3-Ig), anti-LAMP1 (CST,
15665S), anti-GAPDH (Proteintech, 60004-1-Ig), anti-β-
actin (Proteintech, 60008-1-Ig), F-actin Staining Kit
(Abcam, ab112127 and ab112125), and Fluorescein
isothiocyanate-dextran (Sigma, FD70S).

2.3. Cell Culture and Transfection. Human embryonic kid-
ney 293 cell line (HEK293) was purchased from China Cen-
ter for Type Culture Collection (CCTCC). Human umbilical
vein endothelial cells (HUVECs) were given as a gift from
the division of Cardiology, Tongji Hospital. HEK293 and
HUVECs were cultured in DMEM (GIBCO, Gaithersburg,
MD, USA) supplemented with 10% fetal bovine serum
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(GIBCO) and 1% penicillin/streptomycin (Invitrogen) at
37°C with 5% CO2.

For transfection experiments, cells were seeded in 6-well
or 24-well plates. At 60-70% confluence, cells were trans-
fected with plasmid DNA or siRNA using Lipofectamine
3000 (Invitrogen). Cells were harvested for further analyses
48 h after transfection.

2.4. Immunofluorescence. Cells grown on glass coverslips
were fixed in 4% paraformaldehyde for 15min at room tem-
perature. After being washed twice with PBS, cells were
permeabilized with 0.1% Triton X-100 for 10min and
blocked with 5% BSA for 1 h at room temperature. These
cells were then incubated with anti–ZO-1 (Invitrogen,
1 : 100), anti-FLAG (CST, 1 : 500), or anti-LAMP1 (CST,
1 : 100) at 4°C overnight, followed by appropriate secondary
antibodies. For tissues, enucleated eyes were fixed in 4%
paraformaldehyde for 2 h at room temperature, embedded
in paraffin, and sectioned into 4μm. Frozen eyes were pre-
pared and sectioned into 10μm. Paraffin sections and frozen
sections for immunofluorescence were prepared using the
same protocol as for the cells (see above). Images were cap-
tured using an inverted confocal microscope (Olympus
FV3000). Three random visual fields were analyzed, and
the average was taken for each group in cells. Six sections
were analyzed, and the average was taken for each tissue in
SD rats or mice.

2.5. TEM Imaging. Enucleated eyes were fixed in 2.5% glu-
taraldehyde at 4°C overnight, then washed three times with
PBS, and fixed again in 2% osmium tetroxide for 2 h at room
temperature. Following dehydrated in serial dilutions of eth-
anol, enucleated eyes were embedded in Epon. Thin sections
(80 nm) of eyes were obtained using an Ultracut microtome
(Leica), stained with 2% uranyl acetate for 15min at room
temperature, and then dried overnight. Prepared sections
were observed and photographed by TEM (FEI Tecnai G2
20 TWIN, USA).

2.6. Western Blotting. Cell lysates were obtained in RIPA
Buffer (Beyotime, P0013) containing protease and phospha-
tase inhibitor cocktails, and protein concentrations were
quantified using BCA Protein Assay Kit (Beyotime, P0012).
Subsequently, cell lysates were boiled in loading buffer for
5min and subjected to SDS–PAGE, transferred to polyviny-
lidene fluoride (PVDF) membranes (Millipore). Membranes
were then blocked with 5% nonfat milk in Tris-buffered sal-
ine/Tween 20 (TBST) at room temperature for 1 h and incu-
bated with anti–ZO-1(Invitrogen, 1 : 500), anti-FLAG
(Proteintech, 1 : 1000), anti-cleaved caspase-3 (CST,
1 : 1000), anti-caspase 3 (Proteintech, 1 : 1000), anti-
GAPDH (Proteintech, 1 : 20000), and anti-β-actin (Protein-
tech, 1; 20000) at 4°C overnight. Following incubation with
the corresponding HRP-conjugated antibody (Proteintech,
1 : 100000). Chemiluminescence signal were detected using
the WesternBright ECL (Advansta) according to the manu-
facturer’s instructions.

2.7. Coimmunoprecipitation. For coimmunoprecipitation
(Co-IP) assays, freshly extracted cell lysates were incubated

with 5μl anti–ZO-1 for 1 h at 4° C. Subsequently, add 20μl
of resuspended Protein A/G PLUS-Agarose, incubated at 4°

C on a rotary shaker overnight. The agarose beads were cen-
trifuged (2500 rpm, 5min), discard supernatant, and washed
4 times with 1.0ml RIPA buffer. The precipitates were resus-
pended in 40μl SDS loading buffer and boiled for 5min, fur-
ther analyzed by western blot analysis according to standard
procedures.

2.8. Establishment of Chronic Ocular Hypertension Model.
Chronic ocular hypertension model in rats was induced by
episcleral vein cauterization (EVC) as previously described.
Briefly, rats were anesthetized with intraperitoneal injection
of ketamine (60mg/kg) and xylazine (5mg/kg). Following
application of topical anesthetic (proparacaine, 0.5% wt/vol
eye drop), limbal periphery incisions were made on conjunc-
tiva and Tenon’s capsule. Three of the episcleral veins in
right eye were identified, cauterized with an ophthalmic cau-
tery. Sham surgery (without cauterization) was performed
on the left eye. The incisions were carefully sutured, and
levofloxacin eye drops (0.5%) were topically applied tid to
prevent infection. Both eyes received drug interventions
through eye dropping three times a day
(9 : 00AM/3 : 00PM/9 : 00 PM) during day 14 to 27
postcauterization.

2.9. Paracellular Permeability to Fluorescein Isothiocyanate
(FITC) Dextran. In vitro, paracellular permeability is evalu-
ated using 70 kDa fluorescein isothiocyanate (FITC) dex-
tran. HUVEC were seeded on the top transwell chamber
with 0.4μm pore-size membrane (Corning, 3413) and
grown for a minimum of 2 days until full confluence. Cells
were treated with H2O2 (200μM) with or without VIP
(50μM) for 6 h at 37°C, followed by 3 washes with PBS.
FITC-dextran of 70 kDa (Sigma) was added to the top
chamber of the Transwell to a final concentration of
1mg/mL. After 1.5 hours, the sample was collected from
the bottom chamber and read in a fluorescence microplate
reader (Synergy2, BioTek, Winooski, VT, USA) at
485/528 nm.

In vivo, rats were anesthetized with intraperitoneal injec-
tion of ketamine and xylazine. For anterior chamber injec-
tion, a puncture was made using a 30G needle.
Subsequently, a 33G a microsyringe (Hamilton) was then
used to inject 5μl of 70 kDa FITC-dextran (1mg/ml) into
the anterior chamber. Samples were collected at indicated
time points.

2.10. Statistical Analyses. All data are presented as the
means ± SD from at least three independent experiments.
The statistical analyses were performed using the software
GraphPad Prism software (version 1.5.2, GraphPad Software
Inc.). Comparisons among multiple groups were assessed
using one-way analysis of variance (ANOVA) test, as indi-
cated in the figure legends. Comparisons among two groups
were assessed using Student’s t test. A value of P < 0:05 was
considered statistically significant.

3Oxidative Medicine and Cellular Longevity



Control COH

(a)

120

90

60

In
te

rc
el

lu
la

r w
id

th
(n

m
)

30

0
Ctl COH

p < 0.0001

(b)

O
ve

rla
pi

ng
 le

ng
th

(n
m

)

Ctl COH

p = 0.58283000
2500
2000

1000
1500

0
500

(c)

Iris
ZO-1

Lens CM

SC

(d)

ZO-1 Dapi Merge

Co
nt

ro
l

CO
H

(e)

Fl
uo

re
sc

en
ce

 in
te

ns
ity

of
 Z

O
-1

Ctl

0.010

0.006

0.004

0.002

0.000

0.008

COH

p = 0.0008

(f)

Figure 1: Continued.
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3. Results

3.1. Persistent Elevated IOP Elicits Junction Disruption in the
Inner Wall of Schlemm’s Canal (SC). At the outset, transmis-
sion electron microscopy (TEM) was performed to investi-
gate the ultrastructure of junctions between the endothelial
cells of Schlemm’s canal (SCECs) (Figure 1(a)). Junctions
with high electron density and overlaps were observed
between adjacent SCECs, which are consistent with previous
reports [16, 17]. The intercellular width of SCECs in chronic
ocular hypertension (COH) rat models was markedly
increased from 19.63 to 74.07 nm, while no difference was
observed in the overlapping length (Figures 1(b) and 1(c)).
Immunofluorescence staining of the anterior segment
revealed that ZO-1 was expressed in the TM and SC tissues
(Figures 1(d) and 1(e)). The levels of ZO1 in the inner wall
of the SC, neither in the outer wall of the SC nor TM
region, were significantly decreased in response to COH
(Figures 1(f)–1(h)). We also found that ZO-1 in the outer
wall of the SC was less than that in the inner wall
(Figure 1(i)). The inner wall of the SC plays a dual role
in maintaining AH homeostasis. It acts as a filter to allow
AH to drain from the anterior chamber and simulta-
neously contributes to the blood-aqueous barrier because
it is composed of a continuous endothelium [29]. Thus,
we evaluated the permeability of the SC inner wall to a
macromolecule (FITC-dextran, 70 kDa) in the TM-SC
pathway. After intracameral injection of a large-molecule
tracer, the fluorescence intensity of the TM-SC region
diminished over time and reached a low level at 6 days
in normal rats but 4 days in COH rats (Figures 1(j)–
1(m)). These results indicate that persistently elevated
IOP elicits junction disruption and a decrease in ZO-1 in
the inner wall of the SC.

3.2. Knockdown of ZO-1 Induces Increases in the F/G-Actin
Ratio and F-Actin Redistribution. Previous research has
revealed that the F-actin distribution in the SC became dis-
ordered in COH rats [22]. To investigate the impact of
reduced ZO-1 on the cytoskeleton, we used H2O2 to induce
oxidative stress injury in HEK 293 cells. As expected, the
ZO-1 levels demonstrated a concentration-dependent
response to H2O2 treatment (Figures 2(a) and 2(b)). How-
ever, H2O2 showed a rather complicated regulation of actin
dynamics and distribution; hence, we also transfected 293
cells with small interfering RNA against ZO-1 (siZO-1).
The interference efficiency was determined by western blot-
ting (Figures 2(c) and 2(d)). After H2O2 treatment or ZO-1
knockdown, the F/G-actin ratio in 293 cells markedly
increased (Figures 2(e) and 2(f)). In the control group, F-
actin was strongly distributed within the vicinity of the
plasma membrane. In the ZO-1 knockdown group, F-actin
showed a disorganized pattern (Figure 2(g)). Furthermore,
ZO-1 overexpression attenuated the increase in the F/G-
actin ratio induced by H2O2 (Figures 2(h) and 2(i)). These
in vitro data indicate the essential role of ZO-1 in maintain-
ing the organization of the cytoskeleton.

3.3. VIP Attenuates Junction Disassembly and a Decrease in
ZO-1. To determine whether VIP influences junction stabil-
ity and ZO-1 levels, VIP gradients were measured in H2O2-
treated human umbilical vein endothelial cells (HUVECs).
Pretreatment with VIP increased the ZO-1 expression in a
concentration-dependent manner; thus, 50μM was applied
as follows (Figures 3(a) and 3(b)). ZO-1 is normally located
in the peripheral cytoplasm along the membrane, which is
similar to previous reports [30, 31]. After H2O2 treatment,
the distribution of ZO-1 showed obvious discontinuity and
it was absent in some intercellular spaces. VIP increased
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Figure 1: The expression pattern of ZO-1 in the inner wall of Schlemm’s canal (SC). (a) Representative transmission electron microscopy
(TEM) images of junctions in the SC inner wall of COH rats. The bottom row shows enlarged images of red boxes in the row above. Bar
= 1μm. (b) and (c) Quantitative analysis (t test) of intercellular width and overlapping length in the SC inner wall. n = 8. (d) Schematic
of the AH outflow pathway (left) and the expression pattern of ZO-1 in SC (right). (e) Representative images of ZO-1
immunofluorescence staining (green) in SC. Rows 2 and 4 show enlarged images of white boxes in rows 1 and 3. Dashed lines outline
SC. Bar = 50 μm. Quantitative analysis (t test) of ZO-1 fluorescence intensity in inner (f) and outer wall (g) of SC in COH rats. n = 8. (h)
Quantitative analysis (t test) of ZO-1 fluorescence intensity in the TM of COH rats. n = 8. (i) Quantitative analysis (t test) of ZO-1
fluorescence intensity in the SC of untreated rats. n = 8. (j) and (l) Representative images and quantitative analysis (ANOVA) of residual
FITC-dextran (green) in the TM-SC region of untreated rats 2, 4, 6 d after injection. Rows 2, 4, and 6 show enlarged images of white
boxes in rows 1, 3, and 5. Dashed lines outline SC. White arrows indicate FITC-dextran. n = 8. Bar = 50μm. (k) and (m) Representative
images and quantitative analysis (t test) of residual FITC-dextran (green) in the TM-SC region of COH rats 4 d after injection. Rows 2
and 4 show enlarged images of white boxes in rows 1 and 3. Dashed lines outline SC. n = 8. Bar = 50μm. Data are presented as the mean
± SD. COH: chronic ocular hypertension; SC: Schlemm’s canal; CM: ciliary body; TM: trabecular meshwork.
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Figure 2: Continued.
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the ZO-1 levels and improved the intercellular distribution
(Figures 3(c) and 3(d)). To determine whether the junctional
function was restored, we performed a FITC-dextran perme-
ability assay using a transwell. HUVECs were grown to con-
fluence on transwell membranes, and H2O2 was added with
or without VIP. We found that VIP diminished the H2O2-
induced high permeability of the HUVEC monolayers to
70 kDa dextran (Figure 3(e)). VIP was topically administered
to COH rats for 2 weeks (Figure 3(f)). Electron microscopy
analysis revealed that the intercellular width of the SCECs
significantly decreased in the VIP-treated group compared
with the COH group (Figures 3(g) and 3(h)). Moreover,
we observed increased ZO-1 levels in the SC inner wall as
a result of VIP administration (Figures 3(i) and 3(j)). Corre-
spondingly, VIP promoted the normalization of residual
FITC-dextran in the TM-SC region 3 days after injection
(Figures 3(k) and 3(l)). These results indicate that VIP pre-

vents junction disassembly and a decrease in ZO-1, as well
as blood-aqueous barrier disruption.

3.4. VIP Rescues ZO-1 Levels and Distribution through
Inhibiting Caspase-3. A previous study revealed that VPAC2
was the main receptor for VIP in the SCE of SD rats [22].
VPAC2 serves as a receptor for both VIP and PACAP. Ago-
nists for VPAC2 (for example, VIP, PACAP, and PHI) have
been proven to exert neuroprotective effects by inhibiting
caspase-3 activation in astrocytes and neurons [25, 32, 33].
Since caspase-3 mediates the reduction of ZO-1, we investi-
gated whether VIP rescues ZO-1 levels and distribution via
caspase-3 inhibition [26]. It was revealed that VIP reduced
cleaved caspase-3 levels and caspase-3 activity in H2O2-
treated HUVECs, while no change was observed in VPAC2
expression (Figures 4(a)–4(c)). The caspase-3 specific inhib-
itor, Ac-DEVD-CHO, increased the ZO-1 levels and
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Figure 2: The function of ZO-1 on F/G-actin ratio and F-actin redistribution. (a) and (b) HEK 293 cells were treated with H2O2 (0, 100, and
200μM) for 6 h. Representative western blot images and quantitative analysis (t test) of ZO-1 levels. n = 3. (c) and (d) Representative
western blot images and quantitative analysis (t test) of ZO-1 levels in HEK 293 cells transfected with siZO-1, n = 3. (e) and (f)
Representative western blot images and quantitative analysis (t test) of F/G-actin ratio after H2O2 treatment (200 μM, 6 h) or ZO-1
knockdown. n = 3. (g) Representative image of phalloidin stained F-actin (red) in HEK 293 cells transfected with siZO-1. Bar = 5μm. (h)
and (i) Representative western blot images and quantitative analysis (ANOVA) of F/G-actin ratio after H2O2 treatment (200 μM, 6 h) in
HEK 293 cells transfected with ZO-1 overexpression plasmid. n = 3. Data are presented as the mean ± SD.
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distribution along the membrane, which was consistent with
VIP (Figures 4(d)–4(h)). Knockdown of caspase-3 by si-cas3
also rescued the ZO-1 levels (Figures 4(i) and 4(j)). To fur-
ther confirm the role of caspase-3, we overexpressed
caspase-3 in the presence of VIP. Overexpression of full-
length caspase-3 elicited an increase in the cleaved band at
17 kDa and reversed the upregulation effect of VIP on ZO-
1 (Figures 4(k)–4(m)). We immunoprecipitated ZO-1 and
blotted cleaved caspase-3 to detect the binding between these
two proteins. It was demonstrated that cleaved caspase-3
interacted with ZO-1 in response to H2O2, and this interac-
tion was diminished when VIP was administered
(Figure 4(n)). A previous study reported that ZO-1 was frag-
mented into cleavage products in apoptotic H184A1 cells
[27]. We generated a full-length ZO-1 with a C-terminal
FLAG tag; unfortunately, no fragment was detected in
H2O2-treated HUVECs, suggesting cleavage-independent
mechanisms by which caspase-3 activation causes ZO-1
reduction.

3.5. Caspase-3 Promotes ZO-1 Degradation through
Endolysosomal Pathway. Overexpression of caspase-3 had
no impact on ZO-1 mRNA levels; thus, we focused on the

degradation process (Figure 5(a)). The gradients of the
caspase-3 plasmid were transfected into 293 cells, and decre-
ments in endogenous ZO-1 and exogenous FLAG-ZO-1
were observed (Figures 5(b) and 5(c)). A time-course evalu-
ation using 10μg/ml of cycloheximide (CHX) revealed that
ZO-1 was undetectable 24 h after CHX treatment in the
presence of caspase-3 overexpression, indicating a shorter
half-life than normal (Figures 5(d) and 5(e)). Lysosomes
(chloroquine) and ubiquitin-proteasome (MG-132) inhibi-
tors were used to determine the contribution of two major
protein degradation pathways. We used two approaches to
increase caspase-3 activity: staurosporine for endogenous
ZO-1 and overexpression plasmid of caspase-3 for exoge-
nous ZO-1. ZO-1 reduction induced by staurosporine was
blocked with Ac-DEVD-CHO, suggesting a vital role for
caspase-3 in this process. Chloroquine reversed ZO-1
reduction induced by the two stimuli, while MG-132
showed no effect, implying that caspase-3 may downregu-
late ZO-1 via the lysosomal degradation pathway
(Figures 5(f)–5(m)). Consistent with the quantification
results for protein levels, ZO-1 was colocalized with the
early endosome marker EEA1 and lysosome marker
LAMP1 6h after staurosporine stimulation, suggesting that
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Figure 3: The function of VIP treatment on junction disassembly and ZO-1 decrease. (a) and (b) Representative western blot images and
quantitative analysis (ANOVA) of ZO-1 levels in H2O2 (200 μM, 6 h)-stimulated HUVECs pretreated with VIP (0, 10, and 50 μM). n = 3. (c)
Quantitative analysis (ANOVA) of FITC-dextran permeability in monolayer of HUVECs pretreated with VIP (50 μM). n = 3. (d) and (e)
Representative images and quantitative analysis (ANOVA) of ZO-1 immunofluorescence staining (green) in HUVECs pretreated with
VIP (50 μM). n = 8. Bar = 30μm. (f) The timeline for VIP treatment. VIP (50 μM) was topically administrated in COH rats for 2 weeks
before sample collection. (g) Representative TEM images of junctions between SCECs. The bottom row shows enlarged images of red
boxes in the row above. Red arrows indicate intercellular region. Bar = 1μm. (h) Quantitative analysis (ANOVA) of intercellular width in
SCECs. n = 8. (i) and (j) Representative images and quantitative analysis (ANOVA) of ZO-1 immunofluorescence staining (green) in
SCECs. Rows 2, 4, and 6 show enlarged images of white boxes in rows 1, 3, and 5. Dashed lines outline SC. n = 8. Bar = 50μm. (k) and
(l) Representative images and quantitative analysis (ANOVA) of residual FITC-dextran (green) in the TM-SC region. Rows 2, 4, and 6
show enlarged images of white boxes in rows 1, 3, and 5. Dashed lines outline SC. White arrows indicate FITC-dextran. n = 8. Bar = 50μ
m. Data are presented as the mean ± SD. COH: chronic ocular hypertension; SC: Schlemm’s canal.
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the endolysosomal system plays a vital role. VIP treatment
reduced this colocalization (Figures 6(a)–6(d)). These
results indicate that caspase-3 activation contributes to
the lysosomal degradation of ZO-1.

3.6. The Effect of VIP in Modulating Cytoskeleton. To verify
whether VIP modulates the cytoskeleton through junction
stabilization in H2O2-treated 293 cells, siZO-1 was applied
to the VIP group. VIP reduced the disorganization of F-
actin and the elevation of the F/G-actin ratio in response
to H2O2; however, ZO-1 knockdown blocked this effect
(Figures 7(a)–7(c)). A previous study revealed that AnxA1
−/− mice demonstrated a distorted actin cytoskeleton
accompanied by ZO-1 disruption in brain microvascular
endothelial cells [34]. Thinner F-actin fibrils were observed
in AnxA1 knockdown HUVECs, and VIP treatment induced
the appearance of clear transcellular F-actin fibrils, suggest-
ing a more normal actin organization (Figure 7(d)). SC is
characterized as a lymphatic-like vessel that expresses endo-
thelial and lymphatic valve proteins such as Tie2 and
FOXC2 [35, 36]. We employed Tie2Cre/+, AnxA1flox/flox

(TG) mice, which showed spontaneous F-actin redistribu-
tion in Schlemm’s canal. Consistent with the in vitro results,
VIP administration attenuated this redistribution
(Figure 7(e)). However, further studies are required to clarify
whether VIP can also regulate cytoskeleton through ZO-1-
dependent mechanisms in TG mice. These results demon-
strated the role of VIP in modulating F-actin distribution
and dynamics.

4. Discussion

The exact pathogenesis of IOP elevation in patients with
POAG remains unclear. Unlike the sinusoidal endothelium
(discontinuous and without a basement membrane), the
SC consists of a continuous endothelium with a discontinu-
ous basement membrane. The inner wall of the SC served as
the final filtration barrier of the AH outflow. The increased
cell stiffness of SCE may contribute to increased resistance
of the AH outflow pathway. Previous research has described
the disordered F-actin distribution of SC in COH rats, and
VIP treatment stabilizes the actin cytoskeleton via the Sp1–
LRRK2 pathway [22, 37]. We demonstrated that junction
disruption and ZO-1 reduction are prominent causes of
abnormal F-actin distribution and actin polymerization.
VIP treatment attenuates ZO-1 lysosomal degradation
through caspase-3 inhibition, thus, promoting F-actin to a
normal distribution (Figure 8).

Despite the relatively low flow rate of AH, the shear
stress in SC is estimated to range from 2 to 20dynes/cm2

at an elevated IOP, which is comparable to that in large
arteries (2–25 dynes/cm2) [38, 39]. Elevated shear stress
induces oxidative stress via different pathways, such as
TLR4 activation and MAP kinase tyrosine phosphorylation
[40–42]. Oxidative stress causes various forms of damage
to the TM, such as ECM accumulation [43], DNA damage
[44], cytoskeletal rearrangement, and cell loss [45], ulti-
mately resulting in reduced outflow facilities and increased
IOP. However, little is known about how oxidative stress
causes SCE damage. Lei et al. reported that angular aqueous

Re
la

tiv
e Z

O
-1

 le
ve

ls

1.5

1.0

0.5

0.0

p = 0.003

si Casp3
H2O2

–
–

–
+

+
+

(m)

220 kDa

17 kDa

220 kDa

17 kDa

ZO-1

Cleaved
casp3

ZO-1

Cleaved
casp3

VIP

IP:ZO-1

H2O2

–
–

–
+

+
+

Input

(n)

Figure 4: VIP regulates ZO-1 expression via caspase-3. (a)–(c) HUVECs were pretreated with VIP (50 μM) for 2 h before H2O2 (200 μM,
6 h). Representative western blot images and quantitative analysis (ANOVA) of cleaved caspase-3 and VPAC2 levels. n = 3. (d) Quantitative
analysis (ANOVA) of caspase-3 activity using caspase-3 activity assay kit. n = 5. (e) and (f) HUVECs were pretreated with caspase-3
inhibitor (Ac-DEVD-CHO, 20μM) 30min before H2O2 (200 μM, 6 h). Representative western blot images and quantitative analysis
(ANOVA) of ZO-1 levels in HUVECs. n = 3. (g) and (h) Representative immunofluorescence staining and quantitative analysis
(ANOVA) of ZO-1 in HUVECs pretreated with caspase-3 inhibitor. n = 6. Bar = 30 μm. (i) Representative western blot images of cleaved
caspase-3 after overexpression of full-length caspase-3. (j) and (k) Representative western blot images and quantitative analysis
(ANOVA) of ZO-1 levels in HEK 293 cells transfected with caspase-3 plasmid in the presence of H2O2 (200 μM) and VIP (50 μM). n = 4
. (l) and (m) Representative western blot images and quantitative analysis (ANOVA) of ZO-1 levels HEK 293 cells transfected with
siCasp3 in the presence of H2O2 (200 μM). n = 3. (n) Coimmunoprecipitation of ZO-1 and cleaved caspase-3. Data are presented as the
mean ± SD.
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plexus (functional equivalent to human SC) endothelial cells
from porcine eyes showed increased levels of junction pro-
teins after exposure to 40% oxygen for 14 days in vitro
[46]. In contrast, we revealed that persistently elevated IOP
elicited junction disruption and ZO-1 reduction in the inner
wall of the SC, suggesting a rather complex mechanism

in vivo. In the present study, we surmise that the accumu-
lated oxidative stress induced by increased shear stress on
SCE led to ZO-1 reduction. The interaction between ZO-1
and actin may be involved in multiple biological processes,
including cell polarity, junction assembly, barrier permeabil-
ity, actin distribution, and actin dynamics [47]. The
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Figure 5: Caspase-3 promotes ZO-1 degradation. (a) RT-PCR analysis (t test) of ZO-1 mRNA levels in the HEK 293 cells transfected with
caspase-3 overexpression plasmid. n = 4. Endogenous (b) and exogenous (c) ZO-1 were detected by western blot in HEK 293 cells
transfected with the caspase-3 expression plasmid gradient. (d) and (e) At 48 h after caspase-3 transfection, CHX was added and
incubated for indicated time to evaluate the half-life of exogenous ZO-1 protein in HEK 293 cells. n = 3. (f)–(i) Chloroquine (30 μM) or
MG-132 (10 μM) was added 2 h before staurosporine treatment (20 nM, 3 h). Representative western blot images and quantitative
analysis (ANOVA) of endogenous ZO-1 levels in HEK 293 cells. n = 3. (j)–(m) Chloroquine (30 μM) and MG-132 (10 μM) were added
in HEK 293 cells transfected with the caspase-3 overexpression plasmid. Representative western blot images and quantitative analysis
(ANOVA) of exogenous ZO-1 levels. n = 3. Data are presented as the mean ± SD.
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deficiency of ZO-1 led to myosin II activation, stress fiber
formation, and loss of junctional mechanotransducers such
as vinculin and PAK2 [48]. In our experiments, ZO-1
knockdown or oxidative damage elicited the redistribution
of F-actin and the elevation of the F/G-actin ratio. Overex-
pression of ZO-1 attenuated the F/G-actin ratio elevation
induced by H2O2, indicating that increased actin polymeri-
zation is mediated in part by ZO-1 reduction during oxida-
tive damage. Thus, we speculated that persistently elevated
IOP may trigger oxidative stress in SCE, causing ZO-1
reduction and further leading to disordered F-actin and
F/G-actin dynamics, which in turn increased AH outflow
resistance.

VIP protects the distribution and levels of junction pro-
teins (for example, ZO-1, occludin, claudin-3, and claudin-

4) against colitis by inhibiting MLCK or PKCε [49, 50].
The present data demonstrated that VIP attenuates the dec-
rements in ZO-1 of SCE in COH rats and H2O2-treated
HUVECs. H2O2 leads to Gα12/Src-mediated tyrosine phos-
phorylation or PKCα-mediated serine phosphorylation of
ZO-1, which induces the dissociation of ZO-1 from junc-
tions in epithelial and endothelial cells [18, 19]. Our results
indicate that caspase-3 activation may also be involved in
oxidative stress-induced ZO-1 reduction since the caspase-
3 specific inhibitor improved this impairment. Caspase-3
activation was observed in oxidative damage induced by var-
ious stimuli, such as CoCl2, glutamate, and H2O2 [51–53].
PACAP, which shares receptors with VIP, and the VPAC2
agonist peptide histidine isoleucine (PHI), has been reported
to promote the deactivation of caspase-3 mainly through the
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Figure 6: Endo-lysosomal pathway determines ZO-1 degradation. HEK 293 cells were treated with staurosporine (20 nM) and VIP (50 μM)
for 6 h. (a) and (b) Representative images and quantitative analysis (ANOVA) of colocalization (white arrows) between FLAG-ZO-1 and
EEA1. n = 4. (c) and (d) Representative images and quantitative analysis (ANOVA) of colocalization between FLAG-ZO-1 and LAMP1.
n = 4. Bar = 20 μm. Data are presented as the mean ± SD.
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Figure 7: The effect of VIP on ZO-1 dependent and nondependent pathway in cytoskeleton modulation. VIP (50 μM) was administrated 2 h
before H2O2 (200 μM) in HEK 293 cells transfected with siZO-1. (a) Representative images of phalloidin stained F-actin (red). Bar = 5μm.
(b) and (c) Representative western blot images and quantitative analysis (ANOVA) of F/G-actin ratio. n = 3. (d) Representative images of
phalloidin stained F-actin (green) in AnxA1 knockdown HUVECs. Bar = 30 μm. (e) Representative image of phalloidin stained F-actin
(green) in SC of Tie2Cre/+, AnxA1flox/flox mice. Rows 2, 4, and 6 show enlarged images of white boxes in rows 1, 3, and 5. Dashed lines
outline SC. Bar = 40μm. Data are presented as the mean ± SD.
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inhibition of PKC signaling pathways in neurons [33, 54].
Similarly, VIP attenuates caspase-3 activation by interacting
with the VPAC2 receptor, thus, protecting lung alveolar L2
cells from cigarette smoke extract-induced oxidative damage
[55]. Therefore, we investigated whether VIP inhibits
caspase-3 activation in H2O2-treated HUVECs. Consistent
with previous reports, VIP decreased H2O2-induced
caspase-3 activity, as detected by the cleaved caspase-3 levels
and caspase-3 activity assay. We also verified the interaction
between cleaved caspase-3 and ZO-1 using Co-IP, which was
diminished after VIP administration. It was concluded that
VIP may protect cell junctions and ZO-1 through the inhibi-
tion of caspase-3 activation. However, more experiments are
needed to determine if there is an inhibitory effect of VIP on
the catalytic activity of caspase-3 in addition to reducing
cleaved caspase-3 levels, further unraveling the underlying
mechanisms.

It has previously been shown that caspase-3 may con-
tribute to ZO-1 reduction by cleaving ZO-1 into cleavage
products in apoptotic cells independent of the apoptotic
stimulus type [27]. We generated a full-length ZO-1 with a
C-terminal FLAG tag to detect multiple fragments of differ-
ent molecular weights. However, no fragments were detected
in the H2O2-treated cells. We surmise that this is because the
cells were harvested at a rather late apoptotic stage (signed
by floating cells) in a previous study, while the cells in our
experiment adhered at the end of H2O2-treatment, indicat-
ing the activation of caspase-3 without cell death. Additional
mechanisms may underlie the activated caspase-3 reduction
of ZO-1 independent of cleavage. Since caspase-3 has no
impact on ZO-1 at the transcriptional level, we determined
the degradation process of ZO-1. Under normal conditions,
ZO-1 has a half-life greater than 24 h, which is shortened to
approximately 8 h by the overexpression of caspase-3 in 293
cells. In virus-mediated endothelial barrier disruption, the
proteasome inhibitor, MG132, but not the lysosomal inhibi-

tor, chloroquine, was reported to attenuate ZO-1 degrada-
tion [56, 57]. Enhanced autophagy was also associated with
the redistribution and degradation of ZO-1 after OGD/R
and I/R injury [58]. In our study, caspase-3 may downregu-
late ZO-1 through the endolysosomal degradation pathway
identified by colocalization with endosome marker EEA1
and lysosome marker LAMP1 6h after staurosporine stimu-
lation, which was reduced by VIP treatment. Although the
endolysosomal pathway was observed to mediate ZO-1 deg-
radation, the data did not exclude the autophagy pathway
because the lysosomal inhibitor chloroquine also inhibits
autophagic degradation [59].

5. Conclusion

The present study revealed that VIP stabilizes the cytoskele-
ton of Schlemm’s canal endothelia by reducing caspase-3-
mediated ZO-1 lysosomal degradation. We demonstrated
that COH elicited junction disruption and ZO-1 reduction
in the inner wall of the Schlemm’s canal, which may result
in F-actin redistribution, further increasing AH outflow
resistance. The inhibition of ZO-1 degradation led to cyto-
skeleton protection in F-actin distribution and the F/G-actin
ratio. VIP treatment reduced ZO-1 lysosomal degradation
by inhibiting caspase-3. Thus, our investigation of VIP for
stabilizing the cytoskeleton against COH offers novel thera-
peutic perspectives to reduce AH outflow resistance by
maintaining the dynamic interaction between the cytoskele-
ton and cell junctions.
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