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Abdominal aortic aneurysms (AAAs) have posed a great threat to human life, and the necessity of its monitoring and treatment is
decided by symptomatology and/or the aneurysm size. Accumulating evidence suggests that circular RNAs (circRNAs) contribute a
part to the pathogenesis of AAAs. circRNAs are novel single-stranded RNAs with a closed loop structure and high stability, having
become the candidate biomarkers for numerous kinds of human disorders. Besides, circRNAs act as molecular “sponge” in
organisms, capable of regulating the transcription level. Here, we characterize that the molecular mechanisms underlying the
role of circRNAs in AAA development were further elucidated. In the present work, studies on the biosynthesis, bibliometrics,
and mechanisms of action of circRNAs were aims comprehensively reviewed, the role of circRNAs in the AAA pathogenic
mechanism was illustrated, and their potential in diagnosing AAAs was examined. Moreover, the current evidence about the
effects of circRNAs on AAA development through modulating endothelial cells (ECs), macrophages, and vascular smooth
muscle cells (VSMCs) was summarized. Through thorough investigation, the molecular mechanisms underlying the role of
circRNAs in AAA development were further elucidated. The results demonstrated that circRNAs had the application potential
in the diagnosis and prevention of AAAs in clinical practice. The study of circRNA regulatory pathways would be of great
assistance to the etiologic research of AAAs.

1. Introduction

Abdominal aortic aneurysms (AAAs) frequently induce car-
diovascular death among the elderly male population within
various European and Asian countries [1-3]. AAAs are fea-
tured by permanent expansion and weakening of a localized
abdominal aorta [4-6]. There are symptomatic, asymptom-
atic, and ruptured AAAs clinically [7]. As estimated by a
UK study, 1.5% of its population has an AAA greater than
30mm in size [8]. Besides, a USA multicenter aneurysm
screening study has suggested that 4.6% of its population

aged 65-74 suffers from an AAA [9]. In Sweden, the inci-
dence of the AAA among male population aged above 65 is
reported to be 1.8% [10]. Because of the lack of effective sur-
gical methods and unpredictability of the disease, continuous
enlargement of the aortic wall will lead to the wall rupture
and serious bleeding, resulting in a death rate as high as
80% [11]. A majority of AAA cases are progressive and
asymptomatic, which are usually discovered accidentally by
the diagnostic imaging of other diseases. The survival of
AAA patients after diagnosis has improved, but its morbidity
and mortality rates show an ascending trend [3]. Generally,
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the AAA-related mortality cannot be affected by AAA
screening, but may be lowered by other factors like smoking
less [12].

Conventionally, AAAs are mostly treated with elective
retroperitoneal or open transperitoneal surgery [13], but
now, the endovascular repair (EVAR) is recommended as a
better alternative to open surgerical repair [14-16]. Cur-
rently, no curative treatment is available for restricting
AAA development and preventing AAA rupture [17], and
the only strategy is to continuously monitor the aneurysm
size before surgery [18].

The pathogenic mechanism of AAAs is complicated and
involves multiple factors. Previous studies suggest that AAAs
are associated with the weakened defective adventitial/medial
arterial layers, like fibroblasts and smooth muscle cells
(SMCs) [19-22]. Recently, research on human tissue and ani-
mal models indicates that the AAA occurrence arises from
the dynamic vascular remodelling [23, 24]. Additionally,
the critical pathological features of AAAs are oxidative stress
(OS), vascular inflammation, aortic wall thinning due to the
loss of vascular smooth muscle cells (VSMCs), and aortic
extracellular matrix (ECM) decomposition [22, 24].

Due to strong gene expression regulation effects, epige-
netic alterations, such as histone modification, DNA methyl-
ation, and noncoding RNA (ncRNA) modification [25-27],
have been increasingly acknowledged as an importance con-
tributor to AAA development. It has been proven that epige-
netic modifications take place in the early embryogenesis and
primordial cell development processes, but it is of great sig-
nificance to explore the effects of these alterations in “later
life.” In such, “later life” epigenetic modifications caused by
the dietary intervention were analyzed [28]. Generally,
ncRNAs can be divided into small ncRNAs and long ncRNAs
(IncRNAs) according to the arbitrary threshold size of 200
nucleotides (nt). Among small ncRNAs, microRNAs (miR-
NAs) with a length of about 22nt have been extensively
investigated. By contrast, there is less studies on the functions
of IncRNAs with a length of over 200 nt. Although ncRNAs
have been demonstrated to regulate the interactions and
activities of fibroblasts, vascular inflammatory cells, endothe-
lial cells (ECs), and SMCs, the key factors resulting in AAA
occurrence remain unidentified. According to a new eukary-
otic gene expression feature discovered in 2012, circRNAs are
ubiquitously expressed in genes previously considered to
express linear ncRNAs or messenger RNAs (mRNAs) only.
circRNAs are RNA molecules with a circular and covalently
closed structure, which usually consist of exon sequences
and can be spliced at the typical splice sites.

In particular, many articles have demonstrated the
important roles of ncRNAs in cardiovascular diseases
(CVDs), such as aortic dissection and AAAs. Meanwhile, cir-
cRNAs are also considered to exhibit certain effects on some
CVDs, but their expression levels and roles in AAAs still
remain unclarified.

In the present work, the roles of circRNAs in the occur-
rence and development of AAAs were illustrated, and their
significance in treating AAAs was discussed. In addition,
the regulation effect of circRNAs and their corresponding
target genes on AAAs and the underlying mechanisms were
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also investigated. The ncRNAs that were previously recog-
nized to be involved in several processes leading in AAAs
were highlighted. The in-depth investigation on such cir-
cRNAs will shed lights on the prevention and treatment of
AAAs, and these circRNAs may be used as candidate prog-
nostic biomarkers and therapeutic targets for the prediction
of the AAA incidence and the evaluation of patient
prognosis.

2. Genetic Causes of AAA Pathogenesis

2.1. Mendelian Causes. A Mendelian factor that causes AAAs
often refers to single-gene mutations [29]. Marfan syndrome
can also induce AAAs, which is often accompanied by a fam-
ily history. Marfan syndrome arises mainly from FBN1 gene
mutation [30], accounting for an autosomal dominant
genetic disorder. The TGFSR1, TGFBR2, and TGFfR3 gene
mutations promote the production of matrix metalloprotein-
ases (MMPs) and eventually lead to medial degradation [31].
Other syndromes can provoke the occurrence of aortic root
aneurysms. In addition, some diseases derived from single-
gene mutations affect ECM components of the aortic wall.
The Ehlers Danlos syndrome, for instance, originates from
COL3AL1 gene mutation [32]. AAAs may be detected in cases
who develop autosomal recessive disorders, such as pseudox-
anthoma elasticum and homocystinuria, which stem from
ABCC6 and CBS gene mutations, respectively [29].

2.2. Non-Mendelian Causes. There are various non-
Mendelian factors leading to AAAs, including the ECM,
endothelial cell (EC) specification, SMCs differentiation,
inflammation, and cell adhesion.

2.2.1. ECM. The ECM is a complex network of macromolec-
ular substances that supports and connects tissue as well as
mediates tissue generation and cell physiological activities.
The proteins of the Matrix Metalloproteinases (MMP) family
can regulate the ECM turnover, which is related to the forma-
tion of genes that encode MMP and ECM components in
AAAs. Besides, upregulated MMP-2 and MMP-9 levels can
be detected within human AAA tissue [33, 34]. Moreover,
the single-nucleotide polymorphisms (SNPs) rs3025058 in
MMP-3 and rs2252070 in MMP-13 are suggested to lead to
a higher AAA risk [35]. Inhibiting the ablation of MMP-3
can promote aneurysm formation. Additionally, the G allele
of rs2252070 also contributes to a higher AAA risk [36].

2.2.2. SMC Differentiation. AAAs are related to rs1795061
localized at around 40 kb upstream of the SMYD2 transcrip-
tion start site [37]. SMYD proteins belong to the lysine meth-
yltransferases, and they play a vital part in the regulation of
cardiac and skeletal morphogenesis [38]. According to a
recent report, SMYD?2 is possibly associated with the patho-
genic mechanism of AAAs [39]. Importantly, Toghill et al.
evaluated DNA methylation within VSMCs collected from
AAA patients using targeted bisulphite next-generation
sequencing (NGS) for the first time. They found evident
DNA hypomethylation within the promoter region of
SYMD2 gene among AAA cases and a close association
between the average methylation degree of CpGs and gene
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expression levels [40]. Typically, methylation of the SMYD2
promoter region may be related to AAA development, rather
than its progression [40].

2.2.3. EC Specification. In the study of Jones et al., the SNP
rs2836411, an AAA risk variation localized at 21q22.2 in
the intrinsic region of ERG gene, was detected [37]. ERG
can encode one transcription factor (TF) existing in ECs
and hematopoietic cells (HPCs) under normal conditions.
ERG plays a part in the vascular development mediated by
the vascular endothelial growth factor (VEGF)/mitogen-acti-
vated protein kinase (MAPK) and also regulates new vessel
formation [41]. The minor (T) allele of rs2836411 correlates
with a greater risk of AAAs in several populations [42].

2.2.4. Inflammation. CD4"T cells are found to accumulate on
the aneurysm wall, and AAA-related SNPs are detected in
some human genes encoding such critical inflammatory com-
ponents. AAA patients show an increased circulating IL-6
level. IL-6 is secreted by the aneurysm, and its expression level
is related to the aneurysm surface area. Angiotensin II can
affect AAAs by acting on the IL-6 signaling pathway in mice.

3. Epigenetic Regulation of AAAs

Epigenetic modifications are induced by developmental or
environmental factors. They do not change the genetic code
but can regulate the tissue- or context-specific expression of
information encoded in DNA [43, 44]. Traditional views
hold that epigenetic markers are stable, which may be trans-
mitted to progeny, and control the steady differentiation of
different types of cells with significantly diverse gene expres-
sion profiles [45]. On the whole, epigenetic alterations are
divided into 3 major types: (1) DNA methylation, (2) histone
modifications, and (3) ncRNAs. Of them, ncRNAs will not
bring about heritable alterations, but they are usually deemed
as epigenetic mechanisms due to their vital regulating func-
tions in the genome nonprotein-coding regions. A small
number of studies have revealed the important role of the
above-mentioned three categories of epigenetic modifica-
tions in AAA occurrence [25-27, 40, 46, 47].

3.1. DNA Methylation in AAAs. DNA methylation, one of the
potent epigenetic mechanisms, is crucial in preserving the
DNA structure, deactivating the X chromosome and main-
taining chromosome stability. Besides, DNA methylation
also modulates components (retrotransposons and transpo-
sons) and regulates gene levels [48]. It is claimed that some
key processes contributing to AAA occurrence may be
affected by DNA methylation. Generally speaking, DNA
methylation is catalyzed by the DNA methyltransferases
(DNMTs), including DNMT1 (maintenance enzymes) and
DNMT3 (de novo enzymes). Researchers are focusing on
DNA methylation in T lymphocyte, and the analysis of dif-
ferent types of vascular cells, such as ECs, SMCs, and adven-
titial cells, may provide more targets specific to aneurysms
[47]. Increasing evidence suggests that T cell dysfunction,
especially the reduced suppression of CD4* CD25" regula-
tory T cells, induces AAA occurrence [46]. Apart from
DNA hypomethylation, DNA hypermethylation in certain

gene promoter regions also contributes to AAA occurrence.
This opinion is addressed in a recent article, which evaluates
the global methylation level in AAA patient-derived periph-
eral blood mononuclear cells (PBMCs) and compares it with
that in PBMCs from normal subjects [40]. The study con-
ducted by Skorvanova et al. revealed no association of
AAA development with DNA methylation of gelatinases
and their tissue inhibitors (e.g, MMP2, TIMP2, TIMP1,
and MMP9) [49].

3.2. Histone Acetylation in AAAs. Gene activation and inacti-
vation depend on specific signatures of histone modifications
in critical enhancer or promoter gene regions. Such modifica-
tions are harbored in histone deacetylases, histone acetylases,
together with methyltransferases [50]. The findings of our
work show that the abnormal epigenetic modifications in
AAAs are the changed expression of lysine [K] histone acetyl-
transferases (KAT's) and related histone acetylation. The above
results shed novel lights on the pathogenic mechanism of
AAAs [26]. As suggested in another study, the levels of some
histone deacetylases (HDACs) in AAA mice and ApoE
’"AAA mice infused with Angiotensin (Ang) II are higher than
those in normal controls [51]. As a class III HDAGC, Sirtuin 1
(SIRT1) is also studied for its role in AAA occurrence and
the mechanisms underlying vascular inflammation and aging.
The result suggests that SIRT1 in VSMCs provides a new ther-
apeutic target for preventing AAA occurrence [52].

3.3. ncRNAs in AAAs. It has been established that over 97% of
the genome can encode the noncoding transcripts, most of
which can be processed into short ncRNAs (such as miR-
NAs) and IncRNAs. There are various factors leading to
AAAs, and the pathology and pathogenic mechanisms of
AAAs at the molecular level remain largely unclear. There-
fore, it will become a novel research direction to investigate
the AAA etiology at the epigenetic level. Studies have shown
that ncRNAs take part in the AAA genesis. Many ncRNAs
are differentially expressed in AAA patients and regulate
gene expression at transcriptional and posttranscriptional
levels. The regulatory pathways of some ncRNAs have also
been confirmed, which is conducive to the study of other
molecular mechanisms [27, 53-56].

3.3.1. miRNAs in AAAs. MiRNAs are short (21-23-nt-long)
RNA molecules existing in eukaryotes, capable of regulating
the expression of other genes [57]. They are ncRNAs and
control posttranscriptional expression by specifically binding
with mRNAs [58]. In general, negative regulation is mainly
achieved by the degradation of mRNAs or inhibition of
mRNAs expression. MiRNAs can be regulated by a variety
of approaches. A miRNA may possess several target genes,
while several miRNAs may modulate the same target gene.
MiRNAs adjust target gene expression of one or more genes
through forming complicated regulatory networks [59, 60].
MiRNAs are closely associated with the AAA pathogenic
mechanism [61]. In AAA patients, miRNAs affect the patho-
genesis of AAAs by forming networks to regulate the ECM
turnover, MMP family, different inflammatory components,
and vascular smooth muscle development [62-65].



The most typical type of miRNAs is miRNA-29 family
members, which promote the AAA formation by regulating
fibrosis and the ECM. miRNA-29 inhibits the expression of
several ECM proteins and antiapoptotic factors in SMCs,
thereby boosting the aneurysm generation [66, 67]. Studies
have confirmed that AAAs with overexpressed miRNA-29b
are more prone to rupture. Reducing the miRNA-29b levels
can lower the probability of AAA rupture. Upregulation of
miRNA-21 can be detected in AAA patients and mouse
models. Overexpressed miRNA-21 can downregulate the
phosphatase and tensin homolog (PTEN) levels, thereby
inhibiting the viability of SMCs and maintaining vessel wall
stability in mouse models with elastin degradation-induced
aneurysms [68]. Moreover, Wang et al. have observed that
the anti-miRNA-21 drug-eluting stent successfully prevents
in-stent myointimal hyperplasia in a humanized rat model,
turther highlighting the complex roles of miRNA-21 in vari-
ous vascular pathologies [69]. Furthermore, a decline in
miRNA-33 leads to attenuated p38 and JNK (c-Jun N-
terminal kinase) signals as a result of increased ABCAI
expression, the inhibition effect of CaCl, and Ang II-
induced aneurysm formation in mice [70]. In conclusion,
the expression level of miRNAs is tightly bound to the
AAA development. Therefore, it is of great significance to
study the pathogenesis of AAAs.

3.3.2. IncRNAs in AAAs. IncRNAs are a type of ncRNAs lon-
ger than 200 nt without the protein encoding function, and
they are involved in regulating numerous processes [71]. In
recent years, many research groups have been devoted to
the study of IncRNAs and their pathological function [72].
However, a lot of efforts and in-depth exploration are still
required in this field. IncRNAs serve as a gene domain and
TF scaffold, guiding the transcription complex of activators
and inhibitors to the regulatory region to regulate transcrip-
tion [73, 74]. One IncRNA associated with the AAA is H19.
The H19 level in AAA samples is higher than that in normal
controls, and inhibiting the expression of H19 arrests the
growth of AAAs [53]. H19 seems to affect the pathogenesis
of AAAs through inflammation [55]. Another study has
shown that PVT1, an IncRNA, is upregulated in AAA
patients. Overexpression of PVT1 promotes apoptosis of
VSMCs and degradation of the ECM [75], and PVT1 knock-
out in vitro notably reduces the incidence of AAAs. It further
confirms that PVT1 promotes the formation of AAAs.
IncRNAs can also affect AAAs via acting on the development
and differentiation of SMCs. The representative example is
Inc-Ang362, which enhances the proliferation of VSMCs
[76]. Moreover, relevant studies have proven that SMILR
can regulate the migration and proliferation of VSMCs, and
SMILR knockout restrains the proliferation of SMCs [77],
indicating that IncRNAs also play an important part in
AAA occurrence and progression. Decreased plasma levels
of SMILR have been observed in TAA cases [78].

3.3.3. circRNAs in AAAs. Like IncRNAs, circRNA transcripts
have been a recent addition to the functionally relevant
ncRNAs in our genomic landscape. They have long been dis-
regarded since their discovery in the 1990s due in part to a
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limitation in their detection method, but the emerging novel
bioinformatics and deep RNA sequencing approaches pro-
vide the foundation for circRNA research [79]. Recent stud-
ies suggest that there are many endogenous circRNAs in
mammalian cells, and some of them show high abundances
and evolutionary conservation. circRNAs initially have been
shown to mediate miRNA functions (e.g., via sponging)
and control important events in transcription (e.g., RNA
folding and endonuclease protection) [80]. At present, cir-
cRNAs are proven to be stable, endogenous and functional
ncRNAs abundant in mammalian cells [81]. They may be
generated through directly ligating the 3 and 5" ends of lin-
ear RNAs by means of back-splicing [82]. The downstream
5" splice site (donor) will bind to the upstream 3’ site (accep-
tor) or serve as the intermediate during RNA processing
(Figure 1). Not every circRNA possesses many miRNA bind-
ing sites, so it remains controversial whether miRNAs are
suppressed by circRNAs.

3.3.4. Bibliometrics of ncRNAs in AAAs. Firstly, we explored
the relationship between publication volume and time in
Figure 2(a), the abscissa is the time series, and the ordinate
is publication volume. The purple dot represents the annual
publication volume for publication of circRNAs, correspond-
ing to the right ordinate axis. Meanwhile, the red block rep-
resents the annual publication volume of “ncRNAs and
AAAs,” corresponding to the left ordinate axis. Moreover,
green triangle represents the annual publication volume of
“circRNAs and AAAs” and also corresponds to left ordinate
axis. From 2009 to 2020, the number of papers published
on “ncRNAs and AAAs” has increased year by year. There
are large quantities of papers on circRNAs, up to more than
2000 papers, but few about the relationship between “cir-
cRNAs and AAAs,” but they are generally close. The past
few years have witnessed an ascending trend (Figure 2(a)).
Then, we also explored the relationship between publica-
tion volume and time for ncRNA in Figure 2(b). The cyan dot
represents the annual publication volume of circRNAs corre-
sponding to the right ordinate axis, the blue block represents
the annual publication volume of miRNAs corresponding to
the left ordinate axis, and the orange triangle represents the
annual publication volume of IncRNAs corresponding to left
ordinate axis. From 2000 to 2020, there are great many
papers published on ncRNAs (circRNAs, IncRNAs, and miR-
NAs) annually, and the total number is still climbing. The
miRNA publications account for the largest part of the total
number of published papers, up to more than 15000 publica-
tions, while circRNA publications take up the smallest share
(Figure 2(b)). The above data imply that the relationship
between “circRNAs and AAAs” may become a research hot-
spot and the international research direction in the future.
Keyword analysis is relatively essential to the research of
the entire paper. It can help us to figure out the research
direction. Figure 3(a) is the tag view of keywords, which
reflects the timing of keywords and the relationship network
diagram of cluster analysis. The size of the dot indicates the
frequency of occurrence, and the colour of the dot represents
the cluster and the time of occurrence. The curve describes
the interrelationship. The disease formation, target, and
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regulation mode can be roughly acquired through cluster
analysis. It can be seen from the time sequence that IncRNAs,
AAAs, and circRNAs are newly emerging keywords in recent
years. Figure 3(b) is a timeline view of analyzing keywords
from 1996 to 2020.

The classification method is to name the index terms in
the search keywords. We can get ten clusters with an order
from #0 to #10. The smaller the number # is, the more key-
words the cluster contains. Each cluster is composed of mul-
tiple closely related words. The largest cluster is “aortic
aneurysm” (#0), followed by “abdominal aortic aneurysm
formation” (#1). A module clustering value (Q value) greater
than >3 generally means a significant clustering structure. In
the figure, modularity Q = 0.684. Figure 4(a) is a network dia-
gram obtained based on the number of papers published and
cooperative relationships in each country, showing the inter-
connection between countries. The heat map in Figure 4(b)
presents the number of national papers published on the
world map.

4. Verified circRNAs in AAAs

Data on circRNAs in aneurysms are scarce, but abnormal
expression of circRNAs in aneurysms has been observed in
emerging studies. However, the functional role(s) of these

circRNAs in AAA development in animal models and their
therapeutic potential are yet to be elucidated.

4.1. circRNA Microarray Profiling of Human AAAs. Zhou
et al. from China observed differential expression of cir-
cRNAs in AAA samples and controls, so they subsequently
conducted high-throughput sequencing to determine the cir-
cRNA expression patterns in four pairs of aortic samples,
including four consecutive AAA cases undergoing open sur-
gery and four brain-dead heart-beating organ samples [83].
Finally, a total of 411 differentially expressed circRNAs were
detected in AAA samples, including 145 upregulated cir-
cRNAs and 266 downregulated circRNAs. Six abnormally
expressed circRNAs, namely, hsa_circ_0070382 (AFF1), hsa_
circ_0060063 (UQCCI1), hsa_circ_0028198 (ANAPC7), hsa_
circ_0027446 (HMGA2), hsa_circ_0002168 (TMEM189),
and hsa_circ_0005360 (LDLR), were then screened out for
RT-PCR analysis. Among the six circRNAs, 2 were upregu-
lated, and 4 were downregulated. According to a population-
based genome-wide association study, LDLR is the parental
gene of hsa_circ_0005360, and its variant is related to AAAs
[84]. Additionally, LDLR-deficient mice infused with Ang II
infusion are extensively used as AAA animal models [85-
87]. Given the alternative transcription of hsa_circ_0005360
in the LDLR exons, hsa_circ_0005360 possibly plays a vital
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part in the pathogenic mechanism of AAAs. In the mean-
time, the interaction networks of circRNAs/miRNAs were
also predicted by computational analysis (Table 1).

As indicated in the interaction networks of circRNAs/-
miRNAs, hsa_circ_0002168 and hsa_circ_0005360 contain
one binding site for miR-15a and miR-181b, respectively. It
is evident that overexpressed miR-181b in AAA patients
downregulates elastin and the MMP-3 tissue inhibitor,
thereby promoting AAA development [88]. As for miR-
15a, it negatively regulates CDKN2B expression and thereby
promotes VSMC apoptosis, possibly resulting in AAA path-

ogenesis [89]. Nonetheless, the hsa_circ_0002168/miR-15a
and hsa_circ_0005360/miR-181b axes should be further val-
idated in AAAs by more studies (Figure 5).

4.2. circRNA Microarray Profiling of Mouse AAAs Induced by
Ang II. Wang et al. collected two samples from each of the
AAA and control groups and analyzed the circRNA expres-
sion profiles. The AAA samples of C57BL/6] male mice were
treated with Ang II and 3,4-benzopyrene (BAP), and the cir-
cRNA expression in these AAA samples was compared with
that in the control group [90]. The gRT-PCR results showed
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that 271 circRNAs showed upregulation while 142 circRNAs
were downregulated (Table 1). After predicting the related
regulatory pathway, the authors mapped the downregulated
mRNAs into 7 pathways, including apoptosis. It should be
noted that apoptosis is well-received as a critical biological
process of VSMCs in AAAs, and VSMC apoptosis can also

be detected in AAAs induced by Bap/Ang II. In line with
the above results, Wang et al. examined the competitive
endogenous RNA (ceRNA) mechanism related to certain
apoptotic circRNAs. For instance, two miRNAs (mmu-let-
7a-2-3p and mmu-miR-199a-3p) of differentially expressed
mmu_circRNA_001265 and their response elements were
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FIGURE 5: Several circRNA mediated signaling pathways in AAA. In human and mouse abdominal aortic aneurysms, the plan view of the

abdominal aorta and several circRNA mediated signal pathways.

predicted. Another study suggests that IncRNA H19 causes
aneurysms partially through endogenously competing with
let-7a miRNA for inducing transcription of the target gene
(IL-6) [55].

4.3. Examples of Several circRNA-Guided Signaling
Pathways in AAAs

4.3.1. circRNA CCDC66. To prove the role of circRNA
CCDC66 in the pathogenesis of AAAs and identify its corre-
sponding pathway, Yang et al. carried out a study and found
that circCCDC66 played a role in the proliferation of VSMCs
[91]. Through further investigation, they discovered that
circCCDC66 promoted the expression of CCDC66, and
CCDC66 suppression had the same effect as circCCDC66
deletion on the development and apoptosis of VSMCs. More-
over, the RNA pull-down test results suggested that the con-
tent of circCCDC66 and CCDC66 was the highest in the
miR-342-3p group, indicating that circCCDC66 influenced
CCDC66 through miR-342-3p. Taken together, it is con-
cluded that overexpression of CCDC66 causes AAAs
through the circCCDC66/miR-342-3p/CCDC66 pathway
(Figure 5).

4.3.2. circRNA CBFB. Findings of this study reveal that miR-
28-5p, circCBFB, GRIA4, and LYPD3 are involved in AAAs.
circCBFB serves as the miR-28-5p sponge, capable of regulat-
ing the proliferation and apoptosis of VSMCs in a LYPD3/-
GRIA4-dependent manner [92]. With regard to the
relationship between circCBFB and AAAs, it is established
previously that the expression of miR-28-5p increases in
AAAs. Asreported by Yue et al., miR-28-5p promotes VSMC
apoptosis and suppresses their proliferation, thereby contrib-
uting to AAA occurrence [92]. Moreover, bioinformatic

analysis verifies LYPD3 and GRIA4 as the potential miR-
28-5p target genes. The mechanical experiments of this study
suggest that miR-28-5p targets GRIA4 and LYPD3 and
restrains their expression in VSMCs. Additionally, functional
analysis proves that GRIA4 and LYPD3 deficiency promotes
the apoptosis of VSMCs. More innovative strategies are
required to identify the role of the circCBFB molecule in
AAAs. Based on the above analysis, it can be concluded that
circCBFB induces cell apoptosis and AAA formation through
the circCBFB/miR-28-5p/GRIA4/LYPD3 pathway (Figure 5).

4.3.3. circRNA CDRI. There are over 70 miR-7 binding sites
in the cerebellar degeneration-related protein 1 antisense
RNA (CDRlas), and these sites regulate the effect of CDR1as
on the target gene expression [93]. According to recent
research, the expression levels of CDR1as and CKAP4 (the
estimated miR-7 target) are lower in AAA cases than those
in normal controls [94]. Zhao et al. suggested that the
CDR1as/miR-7/CKAP4 axis plays a role in VSMCs of AAA
cases and that CDR1as upregulation may curb the expression
of miR-7. What is more, CDR1as upregulation enhances the
CKAP4 level, promotes VSMC proliferation, and suppresses
VSMC apoptosis, thereby resulting in VSMC remodeling
along with AAA progression. Such novel mechanism offers
insights into AAA treatment approaches (Figure 5).

4.3.4. Hsa_circ_000595. Through screening circRNAs in tis-
sue specimens from AAA patients, Zheng et al. observed
increased expression of hsa-circ-000595 in diseased speci-
mens [95]. A similar pattern was found in hypoxic aortic
SMCs, and the knockdown of hsa-circ-000595 reduced
SMC apoptosis. Besides, they also found that miR-19a might
serve as a potential downstream target of hsa-circ-000595.
Hsa-circ-000595 on the chromosome 14 can modulate the
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FIGURE 6: Potential ncRNA in a variety of cells in AAA tissue. Examples of several ncRNAs that may lead to the formation of AAA in
macrophages, smooth muscle cells, and endothelial cells include circRNAs, miRNAs, and mRNAs.

miR-19a activity and acts on AAAs through suppressing cell
apoptosis [95].

5. Potential circRNAs in AAAs

At present, the pathogenic mechanism of AAAs is mainly
explored through studying aortic tissue from AAA patients
undergoing open surgery. Several subtypes of vascular cells
(including SMCs, ECs, and adventitial cells) are involved in
AAA genesis [20] (Figure 6).

Disordered ECs may induce adventitia and media
inflammation [96]. The chronic inflammatory reaction
induced by T cells [97] triggers MMP- and macrophage-
mediated proteolytic remodeling, finally weakening the
ECM structure. Such process is related to elastic fiber loss,
collagen fiber structural alterations, and new vessel formation
(angiogenesis). Generally speaking, inflammation is a vital
contributor to aneurysm occurrence and development. Infil-
trating leukocytes and macrophages are the main proteinase
sources. The transformation of VSMCs from the contractile/-
differentiated phenotype to the synthetic/dedifferentiated
phenotype correlates with AAA occurrence [98]. VSMCs
constitute the principal part of the aortic wall. They prolifer-
ate and dedifferentiate to trigger different signaling cascades,
which in turn stimulate proliferation, dedifferentiation, apo-
ptosis, and migration of VSMCs.

However, these physiological characteristics facilitate the
formation of vulnerable atherosclerotic plaques in the aneu-
rysmal wall, which illustrates that AS is a vital risk factor
for AAAs [99]. Age, smoking, and the genetic background
are common and the most potent factors leading to these
two disorders [100]. Therefore, these processes are at least

partly regulated by circRNAs. We aim to speculate the poten-
tial relationship of circRNAs with ECs and SMCs in AAAs.

5.1. circRNAs and ECs in AAAs. Numerous pathophysiolog-
ical stimuli can result in EC disorders in AAAs, including
hypoxia [101], advanced glycation end products (AGEs)
[102], reactive oxygen species (ROS) [103], oxidized low-
density lipoproteins (ox-LDLs) [104], and proinflammatory
cytokines [105] (Table 2).

A study has revealed the potential role of hypoxia-
mediated new vessel formation in the pathogenic mechanism
of AAAs [106]. Dang et al. examined the expression patterns
of circRNAs in hypoxia-stressed human umbilical vein endo-
thelial cells (HUVECs) and detected the notable upregulation
of hsa_circ_0010729. They also found that hsa_circ_0010729
deletion inhibited cell migration and proliferation, but pro-
moted cell apoptosis through targeting the miR-186/HIF-1a
axis [107]. Recent evidence suggests that the hypoxia-
induced circAFF1 can lead to disordered vascular ECs
through triggering SAV1/YAP1. From the mechanical per-
spective, the circAFF1/miR-516b/SAV1/YAP1 axis partially
contributes to vascular endothelium dysfunction, and it
may be used as an indicator of hypoxia injury-induced vascu-
lar diseases [108]. Furthermore, significantly upregulated
CZNF609 was observed by Liu et al. in HUVECs exposed to
hypoxia and HG environments. As claimed by some
researchers, the silencing of cZNF609 prevents EC apoptosis
but stimulates tube formation and migration of ECs, demon-
strating that cZNF609 can promote the apoptosis of stress-
challenged ECs. Mechanically, cZNF609 acts as a ceRNA,
which upregulates the expression of myocyte enhancer factor
2A (MEF2A) through separating and suppressing miR-615-
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TaBLE 2: CircRNAs causing EC disorder in AAAs.
circRNA Cell type Inducing factor Expression Pathway Function Ref
. miR-370-3p/TGFBR2/ Inhibited viability, migration,
circ_0003204 HAEC ox-LDL Up phosph-SMAD3 proliferation, and tube formation 121
circ_0124644 HUVECs ox-LDL Up miR-149-5p/PAPP-A Inhibited apoptosis 123
Promoted inflammatory response
circ_0003645 HUVECs ox-LDL Up NEF-«B and promoted the production 124
of adhesion molecules
hsa_circ_ Promoted apoptosis, inhibited
0003575 HUVECs ox-LDL Down o proliferation and angiogenesis 116
Inhibited the proliferation,
circ_0003204 HUVECs ox-LDL Down — migration, and invasion, 122
promoted apoptosis
circHIPK3 HUVECs+HAECs HG Down  miR-124S/phK1 and STAT3 Inhibited apoptosis 116
iR-218/ dabout1 i i
Circ-0054633 HUVECs HG Up m roundabou Promoted proliferation and =, ;
miR-218/heme oxygenase-1 ~ migration, inhibited apoptosis
hsa_circ_ mi-197/TLR4/ Promoted inflammation
0068087 HUVECs HG Up NEF-xB/NLRP3 and dysfunction 14
Promoted apoptosis,
circBPTF HUVEC HG Up miR-384/LIN28B the release of proinflammatory 113
cytokines and oxidative stress
hsa_circ_ . . Promoted proliferation and
0010729 HUVECs Hypoxic Up miR-186/HIE-1a migration; inhibited apoptosis 107
HUV-EC-C Inhibited the proliferation,
circAFF1 . Hypoxic Up miR-516b/SAV1/YAP1 tube formation, and migration 108
and HBEC-5i .
of vascular endothelial cells
circ-ZNF609 HUVECs HypoxictHG ~ Up miR-615-5p/MEF2A Promoted apoptosis, inhibited g

migration and tube formation

5p [109]. According to the above research results, circRNAs
regulate EC phenotypes in the hypoxic environment.

High glucose (HG) affects the formation and develop-
ment of AAAs [110, 111] through enhancing ROS generation
[112] and AGE synthesis. In HG-stimulated EC models, cir-
cRNAs regulate the phenotypes of ECs. circBPTF is under
tight regulation within the HG-challenged HUVECs, and
circBPTF deletion prevents the HG-mediated OS and inflam-
matory injuries through regulating the miR-384/LIN28B axis
[113]. In addition, the expression of hsa_circ_0068087 also
increases within the HG-challenged HUVECs, and hsa_
circ_0068087 deletion attenuates the inflammation and
angiogenic disorder in HG-challenged HUVECs through
pathways like pyrin domain-containing protein 3 (NLRP3)
inflammasome, LRR, and toll-like receptor 4 (TLR4)/NE-
kB/NOD as the miR-197 sponge [114]. Previous evidence
demonstrates that the expression of hsa_circ_0054633
increases in HG-challenged HUVECs. Downregulating the
hsa_circ_0054633 expression blocks HUVEC proliferation,
angiogenesis, and migration, but boosts HUVEC apoptosis
via the heme oxygenase-1 (HO-1) and miRNA-218/round-
about-1 (ROBO1) axes [115]. In addition, the HG-induced cir-
cHIPK3 downregulation enables miR-124 to accumulate in
human aortic endothelial cells (HAECs) and HUVECs. From
the mechanical perspective, circHIPK3 silencing enhances the
HG-mediated apoptosis via the miR-124/sphingosine kinase
1 (SphK1)/signal transducer and activator of transcription 3
(STATS3) axis [116].

OxLDLs affect the O2e- concentration in several ways.
Increasing the O2e- concentration causes the NOS to depho-
sphorize to produce O2e- [117, 118], inhibits dismutase
activities, and curbs O2e- reduction to H,0,. OxLDLs pro-
mote inflammatory cell infiltration into the aortic wall
through enhancing the activities of MMP2 [119], chemo-
kines, and adhesion particles [120]. Research has found
circ_0003204 is mostly located in the cytoplasm of HAECs,
and its expression increases in ox-LDL-challenged HAECs.
Overexpressed circ_0003204 restrains the proliferation, tube
formation, and migration of ox-LDL-challenged HAECs.
Mechanically, circ_0003204 acts as the miR-370 sponge,
which increases the protein levels of transforming growth
factor (TGF) BR2 and the corresponding downstream
phosph-SMAD3 [121]. A recent study focusing on circ_
0003204 underlines the vital role of hsa_circ_0003204 in
HUVEC proliferation and new vessel formation. Besides,
hsa_circ_0003204 deletion evidently downregulates the
expression of E-cadherin and upregulates the expression of
vimentin and N-cadherin in oxLDL-challenged HUVECs
[122]. Wang et al. have noticed that circ_0124644 alleviates
the endothelial injuries in ox-LDL-challenged HUVECs
through the miR-149-5p/PAPP-A axis [123]. It is also shown
that circ_0003645 deletion mitigates the apoptosis and
inflammation in oxLDL-challenged ECs [124].

5.2. circRNAs and SMCs in AAAs. VSMC phenotypic trans-
formation within AAAs is ascribed to pathophysiological
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TaBLE 3: CircRNAs causing VSMC disorder in AAAs.
. Inducing . .
circRNA Cell type Expression Pathway Function Ref
factor
Promoted VSMC viability and
. VSMCs ox-LDL Up miR-370-3p/HMGB1 migration, and proliferating cell 125
are_ nuclear antigen
0010283 p d VSMC proliferati
HVSMCs ox-IDL  Up miR-133a-3p/PAPPA romoted protiferation, ¢
migration and invasion
miR-370/FOXO1/Cyclin ~ Promoted proliferation and migration
, VSMCs ox-LDL Up D1 ability of VSMCs 127
circCHER iR-214-3p/Wnt3/ Promoted cell growth, migrati
VSMCs ox-LDL Up miR-214- p/. nt romote ce growt ,.mlgratlon, 128
B-catenin and inflammation
, VSMCs ox-LDL  Up miR-424-5p/IGF2 Promoted proliferation, migration,
circ_ and invasion
0029589 i i i i
VSMCs oxIDL  Up miR-214-3p and STIM] P romoted proliferation, migration, 5,
and invasion
circNRG-1 MASMCs Ang IT Down miR-193b-5p/NRG-1 Promoted apoptosis 131
circWDR77 VSMCs HG Up miR-124/FGF-2 Promoted migration and proliferation
circ_ HUVEC- . .
0077930 Exos>VSMCs HG — miR-622-Kras Induce cellular senescence in VSMCs 132
circ HUVEC Down miR-107/JAK/STAT Promoted the proliferation and
- LPS invasion 133
0044073
HUVSMCs Up
circ-Sirtl VSMCs TNF-« Down miR-132/212/SIRT1 Inhibited inflammation 134
circDHCR24 HA-VSMC PDGE-BB  Up miR-149-5p/MMP9 Promoted proliferation, migration, ) ;5
and phenotypic switch
Circ-SATB2  Proliferative VSMCs ~ N/A Up miR-939/STM1 Promoted migration, proliferation; ;¢
inhibited apoptosis
Circ-RUSC2  Proliferative VSMCs ~ N/A Up miR-661/SYK Promoted migration, proliferation; .7
inhibited apoptosis
circACTA2 HASMCs N/A Up NRG-1/circACTA2/ Promoted contraction

miR-548f-5p

incentives as diverse as ox-LDLs, Ang II, proinflammatory
factors, and hyperglycemia (Table 3).

The circ_0010283 level in ox LDL-challenged VSMCs is
remarkably higher than that in control VSMCs. The circ_
0010283 target is miR-370-3p, which targets HMGBI. As a
result, circ_0010283 modulates the level of HMGBI1 through
miR-370-3p [125]. The high serum expression of circ_
0010283 in AS cases and human VSMCs treated with ox-
LDLs is confirmed by Feng et al, who report that circ_
0010283 modulates the PAPPA level through regulating
miR-133a-3p [126]. Similarly, the abnormal expression of
circCHEFR is also detected in ox-LDL-treated VSMCs. In
addition, the circCHFR/miR-370/FOXO1/Cyclin D1 axis is
found to play a key role in SMCs, which increases our knowl-
edge of circRNAs in SMCs [127]. As revealed by a study,
circCHFR is upregulated in serum of atherosclerosis patients
and ox-LDL-stimulated VSMCs. circCHFR controls cell
growth, migration, and inflammation via regulating the
expression of Wnt3 as a ceRNA of miR-214 in ox-LDL-
treated VSMCs [128]. In the study of Yu et al.,, increased
circ_0029589 levels and decreased miR-424-5p levels in ox-
LDL-challenged VSMCs demonstrate that circ_0029589 reg-
ulates VSMC proliferation and migration possibly via miR-
424-5p/IGF2 [129]. Correspondingly, circ_0029589 deletion

suppresses the proliferation, invasion, and migration of ox-
LDL-challenged VSMCs through modulating STIM1 and
miR-214-3p [130].

Ang II has been suggested to enhance VSMC prolifera-
tion in the process of vascular remodeling and play a vital
part in AAA formation. According to circRNA microarray
analysis, mmu-circRNA-42742 is conspicuously downregu-
lated in Ang II-treated mouse aortic smooth muscle cells
(MASMC:s). The parental gene of mmu-circRNA-42742 is
NRG-1, which modulates vascular remodeling via the ErbB
signal transduction pathway. Besides, the circNRG-1/miR-
193b-5p/NRG-1 axis can be potentially used as the Ang II
target for inhibiting VSMC apoptosis and facilitating vascu-
lar remodeling [131].

The analysis of circRNA expression in the HG-induced
VSMCs shows that circWDR77 is upregulated. The pre-
dicted results are miR-124 and fibroblast growth factor 2
(FGF-2), whose interaction is verified by the RNA pull-
down experiment and luciferase reporter gene assay. More
importantly, Wang et al. found that exosomes from HG-
induced HUVECs caused VSMC senescence via the cir-
cRNA-0077930/miR622/Kras ceRNA axis, while exosomes
with circRNA-0077930 depletion had no implications for
VSMC senescence [132].
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Furthermore, Zheng et al. noticed the upregulation of
hsa_circ_000595 in the hypoxia-induced human aortic
smooth muscle cells (HASMCs). They concluded that hsa_
circ_000595 silencing acted as the miR-19a sponge to sup-
press cell apoptosis [95].

AAAs are a type of chronic inflammatory disorders, so the
in vitro AS model can be constructed by inflammatory stimu-
lation. circRN'A-0044073 is upregulated in the LPS-treated
human umbilical vein smooth muscle cells (HUVSMCs) but
downregulated in LPS-treated HUVECs. Further exploration
indicates that circRNA-0044073 overexpression evidently
promotes HUVSMC and HUVEC proliferation and inva-
sion through the miR-107/Janus kinase (JAK)/STAT signal
transduction pathway [133]. As demonstrated by Kong
et al., the circ-Sirtl expression level is distinctly downreg-
ulated in TNF-a-treated VSMCs, and circ-Sirtl overexpres-
sion impedes the NF-xB p65 nuclear translocation and
lowers the levels of adhesion molecules and proinflammatory
cytokines (particularly VCAM-1, MCP-1, and ICAM-1)
[134]. Moreover, they have also discovered that circ-Sirtl
prevents the transcription and acetylation of NF-«B p65
induced by TNF-«a through reversing the inhibition effect of
miR-132/212 on SIRT1. The study results of Kong et al. sug-
gest that circ-Sirtl may mitigate the NF-xB p65-induced
inflammation via direct and indirect approaches. After treat-
ing the human aortic vascular smooth muscle cells (HA-
VSMCs) with PDGF-BB, Peng et al. found that circDHCR24
deletion served as the miR-149-5p sponge and diminished
the cell proliferation [135].

Additionally, the levels of circ_ RUSC2 and circ_SATB2
decrease within the proliferating VSMCs. It is disclosed by
Mao et al. that circ-SATB2 promotes STIM1, which can be
explained by the role of miR-939 in proliferative VSMCs.
Mechanically, circ-SATB2 overexpression inhibits the
expression of contractile VSMC marker SM22a, while
miR-939 promotes its expression, indicating an association
between circ-SATB2 and VSMC phenotypic differentiation
[136]. circ_RUSC2 is reported to enhance the prolifera-
tion, migration, and phenotypic regulation of VSMCs,
but suppress their apoptosis through the miR-661/spleen-
associated tyrosine kinase (SYK) signal transduction path-
way [137].

5.3. circRNAs and Macrophages in AAAs. CircRNAs are
proven to be essential for the modulation of macrophages.
Studies have shown that in LPS-induced macrophages
Raw264.7, circ_1639 promotes the proinflammatory
response in Raw264.7 cells. The study of Lu et al. demon-
strates that circ_1639 expression is tremendously upregu-
lated in LPS-treated Raw264.7 cells. The level of p-P65
increases in circ_1639 mock-transfected cells, but declines
in cells transfected with circ_1639 inhibitor plasmid. There-
fore, circ_1639 regulates inflammatory response through
the NF-«B signaling pathway. When Raw264.7 cells are trans-
fected with the circ_1639 mimic, the level of miR-122 gene is
significantly reduced, while the expression of its target gene
TNFRSF13C increases. Hence, it can be concluded that in
Raw264.7 cells, circ_1639 affects the inflammatory response
through the miR-122/TNFRSF13C regulatory axis [138].
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In Raw264.7 macrophages stimulated by the calcitonin
gene-related peptide (CGRP), increased expression of
mmu_circRNA_007893 and decreased expression of miR-
485-5p are detected. The coimmunoprecipitation reaction
further confirms the interaction among mmu_circRNA_
007893, miR-485-5p, and IL-6. In Raw264.7 cells, the
mmu_circRNA_007893/miR-485-5p/IL-6 regulatory path-
way regulates the inflammatory response by controlling the
expression of the cytokine IL-6 and ultimately affects the cell
function [139].

The above results indicate that the function of macro-
phages can be affected by the expression level of the circRNA
regulatory axis, such as the proinflammatory cytokines (e.g.,
TNF-a and IL-6) and anti-inflammatory cytokines. There is
a lot of evidence that circRNAs play a vital role in macro-
phages, and it will assist with further research on the diseases
caused by macrophages and circRNAs.

5.4. circRNAs in Aortic Dissection Tissue and
Intracranial Aneurysms

5.4.1. circRNAs in Aortic Dissection Tissue. In a previous
study, a targeted circRNA array was applied to exploring dif-
ferentially expressed circRNAs in tissue specimens from tho-
racic aortic dissection (TAA) patients undergoing surgery
[140]. As observed from the qRT-PCR assays, the expression
levels of hsa_circRNA_102771, hsa_circRNA_002271, hsa_
circRNA_101238, hsa_circRNA_104349, hsa_circRNA_
104634, COL6A3, and COL1A1 increase, while the expres-
sion of hsa_circRNA_005525, hsa_circRNA_102683, hsa_
circRNA_103458, and FLNA is downregulated. Meanwhile,
circRNA_101238 is found to not only be deregulated with
the disease but also potentially affect miR-320a expression
and MMP?9 levels. Moreover, the expression of both hsa_cir-
cRNA_104634 interacting with hsa-miR-145-3p and hsa_
circRNA_104349 interacting with hsa-miR-26a-3p is upreg-
ulated, which promotes the apoptosis or phenotypic transfor-
mation of SMCs [141]. According to another study, hsa_
circRNA_104033 and hsa_circRNA_102683 can suppress
hsa-miR-195-3p and hsa-miR-29b-1-5p levels, respectively,
thereby aggravating aortic wall apoptosis and ECM degrada-
tion and promoting collagen remodeling [142]. Thus, those
differentially expressed circRNAs discovered possibly con-
tribute to TAD occurrence through several biological pro-
cesses [140].

Through carrying out RNA-Seq on the affected ascend-
ing aortic samples from patients with acute Stanford type A
aortic dissection (AAAD), Tian et al. have identified 506
evidently differentially expressed circRNAs [143]. Besides,
the levels of ten circRNAs with the most significant differ-
ential expression are either increased or decreased by 2-5
folds. Specifically, circUBA2, circARHGAP26, circIQGAPI,
circCHSY1, circMED13, circMBNLI, circMYH10, and cir-
cRAB7A are upregulated, while circFAM120B and cir-
cCEP70 are downregulated. Moreover, the analysis results
of the circRNA-miRNA-mRNA network disclose the regula-
tory effect of circMARKS3 on the expression of Fgr, which is a
kind of tyrosine-protein kinase. The findings of Tian et al.
demonstrate the clinical significance of the circMARK3-
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miR-1273-Fgr interaction and that the combined use of cir-
cRNAs and additional biomarkers can improve the diagnos-
tic accuracy.

5.4.2. circRNAs in Peripheral Blood of Intracranial
Aneurysms. One recent effort identifies the hsa circ_
0021001 in peripheral blood of patients with intracranial
aneurysms, but its potential contribution to aneurysmal
expansion is not expounded [144]. Hsa_circ_0021001 has
an area under the receiver operating characteristic ROC
curve (AUC) of 0.87, demonstrating its effectiveness in TA
diagnosis.

In a study, the circRNA sequencing on IA patients recog-
nizes two novel circRNAs in the peripheral blood samples
from IA cases, and their expression in peripheral blood of
normal subjects are also analyzed. The results suggest that
hsa_circ_0008433 and hsa_circ_0072309 are new and critical
circRNAs associated with IAs. This study may provide novel
prognostic biomarkers and therapeutic targets for IAs [145].

5.4.3. Hsa_circRNA_0020397 in Intracranial Aneurysm
Tissue. Wang et al. acquired arterial wall tissue samples from
the aneurysm site in 12 cases and discovered that circRNA _
0020397 was downregulated in IAs. The decreased cir-
cRNA_0020397 expression possibly suppressed the prolifer-
ation of VSMCs through upregulating miR-138 levels and
downregulating KDR levels [146].

6. Summary and Perspectives

AAAs are one of the major causes leading to cardiovascular
death among the senile male population, and their etiology
is complex, including apoptosis of SMCs and inflammatory
reaction. It is of urgent need to develop new pharmacological
approaches or gene therapy strategies for delaying aneurysm
development or lowering the risk of acute rupture. Over the
last few decades, ncRNAs are increasingly identified as criti-
cal regulators for AAA occurrence and development. Hence,
it is necessary to identify abnormally expressed ncRNAs and
validate them in relevant human AAA tissue and animal
models, so as to better explore the pathophysiological mech-
anisms related to AAA genesis and development.

Different from traditional linear RNAs, circRNAs are a
novel class of RNAs with a closed loop structure that can be
detected in the eukaryotic genome. Besides, they show higher
stability and greater resistance to RNase degradation, so they
are widely used as biomarkers. However, there is no evidence
that peripheral blood circRNAs are effective biomarkers for
the diagnosis of AAAs, and further investigation is required
to confirm the relationship between circulating circRNAs
and AAAs.

It is reported that circRNAs function as the molecular
“sponge,” capable of regulating transcription and posttran-
scriptional gene expression by binding to and blocking
microRNA regulatory factors. The regulatory pathway of cir-
cRNAs is circRNA-miRNA-mRNA. A circRNA specifically
binds to an miRNA and inhibits its expression, thereby regu-
lating the expression level of the template RNA.
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In this paper, the relationship between circRNAs and
AAAs is briefly described. It is proved that several circRNAs
affect the formation of AAAs by regulating the proliferation
and apoptosis of VSMCs. Meanwhile, the changes of aneu-
rysmal wall cells (e.g., immune cells and ECs) in the AAA
development process can be well analyzed based on the cir-
cRNAs extracted from these cells. When the differential
expression of these circRNAs is verified, the molecular mech-
anisms of circRNAs in regulating AAA occurrence are inves-
tigated both in vitro and in vivo. Meanwhile, the mechanism
of action is further elaborated.

Because of the above-mentioned characteristics, cir-
cRNAs have been listed as a biomarker and therapeutic target
for AAAs. The expression and regulation of circRNAs will
directly affect the development of AAAs.
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