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Trimethylamine-N-oxide (TMAO), an intestinal flora metabolite of choline, may aggravate atherosclerosis by inducing a chronic
inflammatory response and thereby promoting the occurrence of cerebrovascular diseases. Knowledge about the influence of
TMAO-related inflammatory response on the pathological process of acute stroke is limited. This study was designed to
explore the effects of TMAO on neuroinflammation, brain injury severity, and long-term neurologic function in mice with
acute intracerebral hemorrhage (ICH). We fed mice with either a regular chow diet or a chow diet supplemented with 1.2%
choline pre- and post-ICH. In this study, we measured serum levels of TMAO with ultrahigh-performance liquid
chromatography-tandem mass spectrometry at 24 h and 72 h post-ICH. The expression level of P38-mitogen-protein kinase
(P38-MAPK), myeloid differentiation factor 88 (MyD88), high-mobility group box1 protein (HMGB1), and interleukin-1β (IL-
1β) around hematoma was examined by western blotting at 24 h. Microglial and astrocyte activation and neutrophil infiltration
were examined at 72 h. The lesion was examined on days 3 and 28. Neurologic deficits were examined for 28 days. A long-
term choline diet significantly increased serum levels of TMAO compared with a regular diet at 24 h and 72 h after sham
operation or ICH. Choline diet-induced high serum levels of TMAO did not enhance the expression of P38-MAPK, MyD88,
HMGB1, or IL-1β at 24 h. However, it did increase the number of activated microglia and astrocytes around the hematoma at
72 h. Contrary to our expectations, it did not aggravate acute or long-term histologic damage or neurologic deficits after ICH.
In summary, choline diet-induced high serum levels of TMAO increased the cellular inflammatory response probably by
activating microglia and astrocytes. However, it did not aggravate brain injury or worsen long-term neurologic deficits.
Although TMAO might be a potential risk factor for cerebrovascular diseases, this exploratory study did not support that
TMAO is a promising target for ICH therapy.

1. Introduction

Intracerebral hemorrhage (ICH) is a devastating stroke with
a high disability and mortality rate [1–4]. However, there is
still a lack of effective treatment for patients with ICH [5–7].
Thus, it is essential to explore novel therapeutic targets for
ICH. Furthermore, because inflammatory response plays a
vital role in the progression of secondary brain injury after

ICH [8], adjustment for immune-inflammatory response
may represent a potential therapeutic target for ICH [9].

Studies have revealed that intestinal microbiota dysbiosis
may influence the local and systemic immune response after
stroke [10, 11]. The bidirectional communications between
the central nervous system (CNS) and the gastrointestinal
tract have been observed after stroke [10–13]. Evidence has
indicated that stroke leads to dysbiosis of the intestinal flora
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[14]. In turn, intestinal flora disorder also induces intestinal
immune status changes and might influence the systemic
immunity and the prognosis of stroke [11, 13]. However,
the mechanism for intestinal flora’s regulation of the
immune response is currently unknown. Thus, it is also nec-
essary to explore the efficacy of intestinal flora metabolism in
the pathophysiological process of acute stroke.
Trimethylamine-N-oxide (TMAO) is previously considered
a useless nitrogen-containing waste of intestinal flora metab-
olism [15, 16]. Recent studies showed that TMAO might be
a new risk factor independent of traditional risk factors for
ischemic stroke [15–20]. The positive association between
plasma TMAO and the first or recurrent ischemic stroke
has been suggested [21–23]. In addition, TMAO may aggra-
vate endothelial cell dysfunction and promote the occur-
rence of atherosclerosis partly by activating P38-mitogen-
protein kinase (P38 MAPK)/myeloid differentiation factor
88 (MyD88), activating and increasing the expression of
high-mobility group box1 protein (HMGB1) [24–27].
Finally, studies revealed that high plasma TMAO levels on
admission might be an independent predictor of stroke
severity in patients with acute ischemic or hemorrhagic
stroke [22, 28]. Consequently, the role of TMAO in the path-
ophysiological process of acute stroke warrants further
research.

To explore whether TMAO can aggravate brain injury
severity by promoting inflammatory response after acute
stroke, this study observed the influence of high plasma
TMAO levels on acute neuroinflammation, brain injury
severity, and long-term neurologic function in mice with
acute ICH. High serum TMAO concentrations were induced
with a long-term choline diet. TMAO concentrations in the
serum of mice were detected by ultrahigh-performance liq-
uid chromatography-tandem mass spectrometry (UHPLC-
MS/MS) at 24h and 72 h after ICH. For early outcomes of
ICH, we evaluated brain injury volume, brain swelling, brain
edema, and inflammatory response in the acute phase of
ICH. In addition, we evaluated myelin loss, brain atrophy,
and residual lesion volume on day 28 for long-term effects.
Neurologic deficits were assessed on days 1, 3, 7, 14, and
28 post-ICH.

2. Materials and Methods

2.1. Animals, ICH Model, and Treatment Regimen. The ani-
mal protocol was approved by the Animal Care and Use
Committee of Zhengzhou University and the Fifth Affiliated
Hospital of Zhengzhou University (K2019009). One hun-
dred and twenty eight middle-aged male C57BL/6 mice
weighing 25 to 35 g (10–12 months old) were purchased
from Vital River Laboratory, Beijing, China. Animals were
provided a regular chow diet (Xietong Pharmaceutical Bio-
engineering, Jiangsu, China) or a chow diet supplemented
with 1.2% choline (Xietong Pharmaceutical Bioengineering,
Jiangsu, China). Mice were kept under controlled tempera-
ture conditions (22 ± 2°C) under a 12-hour light/dark period
with ad libitum access to water. These animal studies were
reported by the ARRIVE guidelines [29].

The procedure for inducing ICH by collagenase injection
in mice has been established in our laboratory [30, 31].
Briefly, mice were anesthetized by isoflurane (3.0% for
induction, 1.0% for maintenance) and ventilated with
oxygen-enriched air (20%: 80%) via a nose cone. Then, we
injected the left caudate nucleus of mice with 0.075U colla-
genase VIIs in 0.5μl saline to induce hemorrhage at the fol-
lowing stereotactic coordinates: 0.6mm anterior and 2.0mm
lateral to the bregma and 3.2mm in depth. Collagenase was
delivered over 5 minutes, and the needle was left in place for
an additional 10 minutes to prevent any reflux. The rectal
temperature of the animals was maintained at 37:0 ± 0:5°C
with a heating pad throughout the experimental and recov-
ery periods. A postoperative neurological function score
(NDS) below four was identified as a model failure; then,
the mouse was excluded from the experiment.

Computer-generated random numbers were used to ran-
domize mice into four groups: the sham+control group,
sham+choline group, ICH+control group, and ICH+choline
group [32, 33]. Mice in the control groups were given a reg-
ular chow diet (normal diet, Xietong Pharmaceutical Bioen-
gineering, Jiangsu, China). Mice in the choline group were
given a chow diet supplemented with 1.2% choline (choline
diet, Xietong Pharmaceutical Bioengineering, Jiangsu,
China) for six weeks before the operation and continuously
given the same diet until the end of the experiment [20].
Investigators blinded to the treatment groups evaluated out-
comes in all mice and performed data analysis.

2.2. Brain Lesion Volume, Swelling, Atrophy, and White
Matter Damage. Similar to the clinical condition where a
small penetrating artery ruptures, collagenase-induced ICH
will bleed for a few hours [7, 30, 34, 35]. The hematoma vol-
ume will be stable relatively on day three after ICH [7, 30,
34]. Additionally, brain edema will be pronounced on day
three after ICH in mice [30, 34, 36]. In this study, we
detected hematoma volume and brain swelling on day three
after ICH for early brain injury. To enhance the clinical rel-
evance, we assessed neurologic function for 28 days and sub-
sequently evaluated the long-term brain injury severity by
detecting residual lesion volume, brain atrophy, and white
matter damage according to the recommendations of The
initial Stroke Therapy Academic Industry Roundtable
(STAIR) and the requirements of the ARRIVE Guidelines
for Reporting Animal Research in vivo [29, 37]. Mice were
euthanized and underwent transcardial perfusion with
0.9% normal saline followed by 4% paraformaldehyde in
0.1M phosphate buffer solution (PBS) after neurologic eval-
uation on day 3 or 28 post-ICH (for lesion volume on day 3,
n = 8 per group; for residual lesion volume on day 28, n = 12
per group). The entire brain of each mouse was collected
immediately, postfixed with 4% paraformaldehyde in PBS
at 4°C overnight, dehydrated with 20% and 30% sucrose
consecutively until they sank, embedded with the optimal
cutting temperature compound, and then cut with a cryostat
into 50μm sections at ten rostral-caudal levels that were
spaced 360μm apart. The sections were stained with Luxol
fast blue (for myelin) and Cresyl Violet (for neurons). Sig-
maScan Pro software (version 5.0.0 for Windows; Systat,
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San Jose, CA, USA) was used to quantify gray and white
matter injuries. We calculated the lesion volume in cubic
millimeters by multiplying the section thickness by the
sum of the damaged areas of each section, as determined
by the lack of specific staining [36, 38].

We quantified brain swelling (n = 8 mice/group) by cal-
culating the percentage of hemispheric enlargement on the
same sections on day three after ICH. Hemisphere enlarge-
ment (%) was expressed as ½ðipsilateral hemisphere volume
− contralateral hemisphere volumeÞ/contralateral
hemisphere volume� × 100% [39].

Brain atrophy (n = 12mice/group) was quantified on day
28 after ICH according to the formula: ½contralateral
hemisphere volume − ipsilateral hemisphere volumeÞ/
contralateral hemisphere volume� × 100% [39, 40].

White matter damage (n = 12 mice/group) was quanti-
fied on day 28 after ICH. Light microscopy was used at the
same exposure level to analyze three different sections from
each mouse. Images from the four comparable fields around
the residual lesion in each section were taken. The areas cov-
ered by the Luxol fast blue (LFB) stain were quantified with
NIH ImageJ software, averaged, and then divided by the area
of white matter to determine the degree of white matter
damage [39, 41].

2.3. Brain Water Content. Mice (n = 6 per group) were
euthanized on day three after ICH as previously described
to determine brain water content [42]. Briefly, the brain
was removed and divided into contralateral and ipsilateral
hemispheres and cerebellum. The samples were weighed
immediately to obtain the wet weight and then placed in
an electric blast drying oven at 100°C for at least 24 hours
to get the dry weight. The percentage of brain water content
was calculated as ½ðwetweight – dry weightÞ/wet weight� ×
100%.

2.4. Immunofluorescence. Mice (n = 6 mice/group) were
euthanized and underwent transcardial perfusion with nor-
mal saline followed by 4% paraformaldehyde in 0.1M PBS
after neurologic evaluation on day three post-ICH. The
entire brain of each mouse was collected immediately, post-
fixed with 4% paraformaldehyde in PBS at 4°C overnight,
and dehydrated with 20% and 30% sucrose consecutively
until they sank. Coronal brain sections of 30μm thickness
were obtained with a freezing microtome (Leica, Germany)
and were kept at −20°C. Sections were blocked in 5% bovine
serum albumin in 0.01M PBS for 60 minutes at room tem-
perature and then were incubated with rabbit anti-ionized
calcium-binding adapter molecule 1 (Iba-1, microglial
marker; 1 : 1000; #019-19741, Wako Chemicals), rabbit
anti-myeloperoxidase (MPO, neutrophil marker; 1 : 150;
ab208670, Abcam), or rabbit anti-glial fibrillary acidic pro-
tein (GFAP, astrocyte marker; 1 : 200; 16825-1-AP, Protein-
tech) at 4°C overnight. After being washed three times with
0.3% Triton X-100 in 0.01M PBS, the sections were incu-
bated with AlexaFluor 488-conjugated goat anti-rabbit IgG
(1 : 1000; 35552, Invitrogen) or AlexaFluor 594-conjugated
goat anti-rabbit IgG (2 drops of/ml; B40925, Invitrogen)
for 60 minutes at room temperature in the dark. After rins-

ing with dH2O, the sections were mounted with fluorescent
mounting media and coverslipped [43, 44]. Negative con-
trols consisted of brain sections processed the same way as
the tests apart from the omission of the primary antibody
incubation step. A fluorescence microscope (Nikon, Japan)
was used to observe Iba1-, GFAP-, and MPO-
immunoreactive positive cells under a 20x objective. ImageJ
software (ImageJ 1.4, NIH, USA) was used to quantify Iba1,
GFAP, and MPO immunoreactivity [30, 45]. In the perihe-
matomal brain region, the numbers of Iba1- and MPO-
immunoreactive cells at 12 locations per mouse were quan-
tified. They averaged as positive cells per microscopic field
(3 sections per mouse and four comparable fields per sec-
tion) in selected sections with similar lesion areas [30]. We
defined microglia and macrophages as activated if the cells
were spherical, amoeboid, or rod-like in appearance, had a
diameter of >7.5μm in at least one direction, with short
and thick processes, and exhibited intense Iba1 immunore-
activity. Resting microglia/macrophages were characterized
by small-cell bodies (<7.5μm in diameter) with long pro-
cesses and weak Iba1 immunoreactivity [30]. GFAP immu-
noreactivity was quantified with fluorescence intensity, as
previously illustrated [46, 47].

2.5. Western Blotting. Six brains from each treatment group
were used to measure protein expression at 24 h post-ICH.
Western blotting was carried out as described previously
[48–50]. Brain tissue around the hematoma was homoge-
nized in radioimmunoprecipitation assay (RIPA) lysis buffer
(50mM Tris (pH7.4), 150mM NaCl, 1% Triton X-100, 1%
sodium deoxycholate, 0.1% SDS, and general protease and
phosphatase inhibitors) and centrifuged at 14,000 g for
30min at 4°C. The protein concentration in the supernatant
was determined using bicinchoninic acid reagents (Beijing
Solarbio Science & Technology Co., Ltd.). 45mg proteins
from each sample were separated by 10% sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)
and transferred onto polyvinylidene fluoride membranes
with trans-blot apparatus (Bio-Rad, Hercules, CA). The
membrane was blocked using 5% nonfat milk and incubated
at 4°C overnight with the following primary antibodies: rab-
bit anti-P38-MAPK (1 : 1000, 9212, Cell Signaling Technol-
ogy), rabbit anti-MyD88 (1 : 1000, 4283, Cell Signaling
Technology), rabbit anti-interleukin- (IL-) 1β (1 : 1000,
12703, Cell Signaling Technology) and rabbit anti-HMGB1
(1 : 1000, ab18256, Abcam), rabbit anti-GAPDH (1 : 5000,
10494-1-AP, Proteintech), and β-actin (1 : 3000, 20536-1-
AP, Proteintech). GAPDH and β-actin protein were used
as a loading control. After three washes with 1x TBST, the
blots were incubated with horseradish peroxidase-
conjugated affinipure goat anti-rabbit antibody (1 : 5000,
AS00001-2, Proteintech) for one hour at room temperature.
The bands were probed with an ECL hypersensitive chemi-
luminescence reagent Kit (Thermo, 34095) and visualized
with the Bio-Rad imaging system. Band densities of the pro-
tein immunoblot images were analyzed by ImageJ software
(ImageJ 1.4, NIH, USA). Target protein levels were calcu-
lated as the ratio of the gray value of the target protein to
the gray value of the corresponding GAPDH or β-actin [51].
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2.6. Neurologic Function Evaluations. The neurologic deficits
were assessed using the NDS and the corner turn test on
days 1, 3, 7, 14, and 28 after ICH or sham surgery (n = 12
/group) [52–55]. The NDS included the following six parts:
body symmetry, gait, climbing, circling behavior, forelimb
symmetry, and compulsory circling. Neurologic deficits were
scored on a scale of 0 to 4 for each test, with 0 being no neu-
rologic deficit and 4 being the most severe. For the corner
turn test, the mouse was placed in an area with a 30° corner
and allowed to turn to leave the area. Turns were recorded
only if the mice were fully rotated along either wall. The test
was repeated ten times for each mouse, and the percentage
of left turns was recorded.

2.7. Quantitation of TMAO. The concentrations of TMAO
in the serum of mice were measured at 24 h and 72h post-
ICH or sham surgery. Under deep isoflurane anesthesia of
mice, blood samples were collected via retroocular puncture.
The samples were centrifuged at 1500 rpm for 15 minutes at
4°C after standing for 2 h at 4°C; the supernatants were col-
lected and stored at -80°C until analysis. After the vortex
mixing of 50μl sample and 10μl 100μg/l D9-TMAO, the
mixture was added into 440μl methanol to precipitate the
protein and centrifuged at 13000 rpm for 30 minutes at
4°C. Then, 20μl supernatant was collected and mixed with
180μl 15% methanol in 0.5ml EP to test the concentrations
of TMAO.

For brain tissues, 40mg brain homogenate in 0.1M ster-
ilized potassium phosphate buffer was mixed with 150μl of
0.1% formic acid in acetonitrile and 10μl of an internal stan-
dard. The mix was then centrifuged at 13000 rpm for 30
minutes at 4°C and then transferred the supernatant into a
vial with a disposable glass insert. Finally, 20μl supernatant
was collected and mixed with 180μl 15% methanol in 0.5ml
EP to test the concentrations of TMAO [56, 57].

UHPLC-MS/MS measured TMAO concentrations in
serum and brain tissues in positive MRM mode, and multi-
ple reaction monitoring was used to detect the following
transitions: m/z 76→ 58 for TMAO and m/z 85→ 66 for
d9-TMAO. The injection volume was 10μl, the mobile
phase consisted of 0.1% formic acid in water (A phase)
and 0.1% formic acid in acetonitrile (B phase) with the fol-
lowing gradient: 15% B phase at 3min, then a linear gradient
to 85% B phase from 3min to 5min, then maintained to
85% B phase from 5min to 7min, then linear gradient back
to 15% B phase from 7min to 9min. Peak area under the
chromatography curve was acquired and analyzed using
Multiquant software (AB SCIEX).

2.8. Statistical Analysis. Sample sizes were determined with a
power analysis based on one of our previous studies [30]. A
power of 0.9 and a significance level of 0.05 were used to cal-
culate the sample sizes. Based on mortality in one of our pre-
vious studies [30], the power analysis revealed that eight
mice per group could acquire a significant difference in cor-
rected lesion volume on day three. With our previous results
reported as means and standard deviation of the means of
the neurologic deficit score on day 28 [30], the power analy-
sis showed that ten completed mice in each group would be

sufficient to detect a significant difference in neurologic def-
icit on day 28. Sample size use for other variables is consis-
tent with the recommendations of STAIR and the
requirements of the ARRIVE Guidelines for Reporting Ani-
mal Research in vivo [29, 37]. SPSS 23.0 and GraphPad
Prism 7.0 were used for the statistical analysis of this study.
The quantitative data were expressed as mean ± standard
deviation. The Kolmogorov–Smirnov test determined
whether sample data were normally distributed. Student’s t
-test or U test was used to test the difference between the
two groups. One-way analysis of variance test followed by
the Bonferroni correction or nonparametric (Kruskal-Wallis
test) were used for the examination of difference among
multiple groups. Chi-square was used for the comparison
of mortality of two groups. Repeated analysis of variance
followed by the Bonferroni correction was used to detect
changes in rectal body temperature, body weight, and NDS
between treatment groups over time. p < 0:05 was consid-
ered to be statistically significant.

3. Results

3.1. Effects of Choline Diet on Serum Concentrations of
TMAO in Mice. The results of UHPLC-MS/MS showed that
choline diet significantly increased the serum concentrations
of TMAO in mice received a choline diet when compared
with those in mice that received a regular diet at 24 h and
72 h after sham operation (n = 6 mice/group, all p < 0:001,
Figure 1). However, the serum concentrations of TMAO in
mice with ICH tended to be lower than those of mice who
underwent a sham operation at 24h and 72 h after ICH or
sham surgery (n = 6 mice/group, Figure 1). The serum con-
centrations of TMAO in mice with a choline diet were sig-
nificantly higher than those with a regular diet at 24 h after
ICH (n = 6 mice/group, t = 4:47, p = 0:001; Figure 1).
Although a descending trend with time since ICH onset
was also observed after ICH, the serum concentrations of
TMAO were still higher in mice with a choline diet than
mice with a regular diet at 72 h after ICH (n = 6 mice/group,
t = 4:47, p = 0:001; Figure 1). We also tried to detect the con-
tent of TMAO in the brain tissues on day one after ICH or
sham surgery. However, the content values of TMAO
detected in the brain tissues were smaller than the minimum
value of the standard curve (Supplementary Figure 1).
Therefore, we did not compare their difference in brain
tissues after ICH or sham surgery.

3.2. Effects of Choline Diet on Mortality, Weight, and Rectal
Temperature. No mice died after sham surgery. In the
collagenase-induced ICH model, the mortality of mice who
received a choline diet (13.8%, 5 of 36) was not different
from that of mice who received a regular diet (8.3%, 3 of
36, χ2 = 0:563, p = 0:453). The choline diet did not affect
the rectal temperature at any time point during the research
period (n = 12mice/group, F = 0:052, p = 0:821; Supplemen-
tary Figure 2A). The decrease in the bodyweight of ICH mice
lasts for 14 days. Percent change in body weight from the
baseline did not differ between mice with a choline diet/
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regular diet on days 1, 3, 7, 14, and 28 (n = 12 mice/group,
F = 0:057, p = 0:815; Supplementary Figure 2B).

3.3. Effects of Choline Diet-Induced High Serum Levels of
TMAO on Brain Lesion Volume, Brain Swelling, and Water
Content in Mice with ICH. Brain lesson volume is closely
related to the prognosis of ICH. Therefore, we observed
whether the choline diet affected brain lesson volume on

day three after ICH. We identified brain lesions lacking color
on sections stained with LFB/Cresyl Violet. There was no
significant difference in brain lesion volume between mice
with a choline diet/regular diet on day three after ICH
(n = 8 mice/group, t = 0:537, p = 0:514; Figure 2).

Brain swelling can cause brain injury and mortality in
patients with ICH. Therefore, we calculated the degree of
brain swelling from hemispheric enlargement on day three
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Figure 1: Choline diet remarkably increased the serum levels of TMAO in mice. (a) Representative results for the concentrations of TMAO
in the serum of mice in each group detected by UPLC-MS/MS at 24 h and 72 h after sham operation or ICH. (b) Dot plots show the
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after ICH. We found no significant difference in brain swell-
ing between mice with a choline diet/regular diet on day
three after ICH (n = 8 mice/group, U = 16:0, p = 0:09;
Figure 2).

We also evaluated brain water content in the ipsilateral
and contralateral striatum and cerebellum with the dry-wet
weight method on day three after ICH. We found that brain
water content in the ipsilateral striatum, but not the contra-
lateral striatum and cerebellum, of mice with ICH was sig-
nificantly higher than that of mice underwent sham

surgery regardless of regular diet or the choline diet (Krus-
kal-Wallis test value for the ipsilateral striatum was 17.414,
p = 0:01; Kruskal-Wallis test values for the contralateral stri-
atum and cerebellum were 6.810 and 2.741, respectively, p
values for the contralateral striatum and cerebellum were
0.078 and 0.433; Figure 2). In addition, we also found that
there was no significant difference in water content of the
ipsilateral and contralateral striatum and cerebellum
between mice with a choline diet/regular diet on day three
(all p > 0:05, Figure 2).
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Figure 2: High serum levels of TMAO did not affect short-term brain injury after acute ICH. (a) Representative images of LFB/Cresyl
Violet-stained brain sections on day 3 after sham operation or ICH, scale bar = 1mm. A lack of staining indicates the lesion area; (A–D)
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3.4. The Effects of Choline Diet-Induced High Serum Levels of
TMAO on the Expression of Inflammatory Factors around
Hematoma in Mice with ICH.We detected the effects of cho-
line diet on the relative expression of P38 MAPK, MyD88,
HMGB1, and IL-1β around the hematoma with western blot
analysis at 24 h after ICH or sham surgery. We found that
there were significant differences in the expression of P38
MAPK (F = 7:429, p = 0:002), MyD88 (F = 6:973, p = 0:002
), HMGB1 (F = 11:753, p < 0:001), and IL-1β
(F = 6:821, p = 0:002) around hematoma among the four
groups (n = 6 mice/group, Figure 3 and Supplementary
Figure 3). ICH elevated the expression of P38 MAPK,
MyD88, HMGB1, and IL-1β around the hematoma when
compared with sham surgery at 24 h after ICH or sham
surgery (all p < 0:05, Figure 3 and Supplementary
Figure 3). Although the expression of P38 MAPK,
HMGB1, and IL-1β around the hematoma increased
slightly in mice that received a choline diet when
compared with those of mice that received a regular diet at
24 h after ICH, the difference was not statistically
significant (all p > 0:05, Figure 3 and Supplementary
Figure 3). Choline diet also did not affect the expression of
MyD88 when compared with mice that received a regular
diet at 24 h after ICH (p = 1:0, Figure 3 and Supplementary
Figure 3).

3.5. Effects of Choline Diet-Induced High Serum Levels of
TMAO on the Activation of Microglia and Astrocytes and
the Infiltration of Neutrophils in Mice with ICH. Immunoflu-
orescence staining of Iba-1 and GFAP was used to detect the
effects of choline diet on the activation of microglia and
astrocytes on day three after ICH. The activated microglia,
defined as a combination of morphologic criteria and a cell
body diameter cutoff of 7.5μm, were observed in the perihe-
matomal region on day three [30]. The number of activated
microglia around hematoma was significantly higher in mice
that received a choline diet than in mice that received a reg-
ular diet on day three (n = 6 mice/group, t = 2:66, p = 0:024;
Figure 4). We also observed the activation of astrocytes in
the perihematomal area on day three. We found that the
immunoreactivity of GFAP was more intense, and the pro-
cesses of astrocytes were longer and thicker in the peri-
ICH area than that in the contralateral side. Fluorescence
intensity was used to quantify the activation of GFAP [58,
59]. The results revealed that the fluorescence intensity of
GFAP was higher in mice that received a choline diet than
that in mice that received a regular diet on day three (n = 6
mice/group, t = 2:93, p = 0:015; Figure 4). Immunofluores-
cence labeling of MPO was used to assess the infiltration of
neutrophils after ICH. MPO-immunoreactive neutrophils
were detected in the hemorrhagic striatum on day three after
ICH. Choline diet increased serum TMAO levels but did not
affect neutrophil infiltration compared with the regular diet
on day three after ICH (n = 6 mice/group, t = 1:19, p = 0:26
; Figure 4).

3.6. The Effects of Choline Diet-Induced High Serum Levels of
TMAO on Long-Term Brain Injury in Mice ICH. We used
LFB staining to label normal myelin on day 28 after ICH.

We found that the white matter damage (loss of LFB-
stained myelin) did not change significantly in mice that
received a choline diet than in mice that received a regular
diet on day 28 (n = 12 mice/group, t = 0:50, p = 0:63;
Figure 5). Additionally, choline diet did not influence lesion
volume (n = 12 mice/group, t = 0:44, p = 0:66; Figure 5) and
brain atrophy (n = 12 mice/group, t = 0:51, p = 0:62;
Figure 5) compared to regular diet on day 28, which indi-
cates that choline diet increased serum TMAO levels but
did not affect long-term brain injury.

3.7. The Effects of Choline Diet-Induced High Serum Levels of
TMAO on Long-Term Neurologic Function in Mice with
ICH. In this study, the corner turn test and the 24-point
NDS were used to evaluate whether choline diet-induced
higher serum TMAO levels significantly influenced neurolo-
gic function in mice with ICH on days 1, 3, 7, 14, and 28.

The corner turn test revealed that mice turned left after
ICH. However, the choline diet did not influence the corner
turn test compared with the regular diet on days 1, 3, 7, 14,
and 28 (n = 12 mice/group, F = 2:783, p = 0:109; Figure 6).

NDS assessment revealed that the neurologic deficits
(body symmetry, gait, climbing experiment, voluntary rota-
tion, forelimb symmetry, and forced rotation) were evident
on day one and gradually recovered from days 3 to 28 after
ICH. We also found that the choline diet did not influence
the total NDS and individual NDS (body symmetry, gait,
climbing, circling behavior, forelimb symmetry, and com-
pulsory circling) at any test time point from days 1 to 28
after ICH (F values for total NDS, body symmetry, gait,
climbing, circling behavior, forelimb symmetry, and com-
pulsory circling were 3.458, 2.271, 1.878, 0.214, 1.347,
1.843, and 3.337, respectively; p values for total NDS, body
symmetry, gait, climbing, circling behavior, forelimb sym-
metry, and compulsory circling were 0.076, 0.146, 0.184,
0.648, 0.258, 0.188, and 0.081, respectively; Figure 6).

4. Discussion

In this study, we found that the choline diet significantly
increased the serum concentrations of TMAO compared
with the regular diet at 24 h and 72 h after sham operation
in mice. Possibly due to the influence of the ICH surgery
on food intake and the short half-life of TMAO [25, 57],
we found that the serum concentrations of TMAO tended
to decrease in ICH mice receiving a choline diet when com-
pared with that in sham-operated mice received a choline
diet at 24 h and 72h after ICH surgery or sham operation.
However, the serum concentrations of TMAO were still
higher in mice who received a choline diet than in mice
who received a regular diet at 24 h and 72 h. We also found
that the choline diet increased the activation of microglia
and astrocytes around the hematoma. Still, it did not affect
the expression of P38 MAPK, MyD88, HMGB1, and IL-1β
around the hematoma in the acute phase of ICH. It also
did not influence lesion volume, brain swelling, and brain
water content in the acute stage of ICH. Moreover, we
showed that the choline diet did not affect residual lesion
volume, brain atrophy, brain white matter damage, and
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neurologic function on day 28. To our knowledge, this is the
first study about the efficacy of long-term choline diet-
induced high serum levels of TMAO on neuroinflammation,
brain injury severity, and long-term neurologic function in a
clinically relevant ICH model.

Knowledge gained about the origin and metabolic pro-
cess of TMAO will be helpful for further exploration of
TMAO’s function. Studies have revealed choline, phosphati-
dylcholine, betaine, L-carnitine, and γ-butyryl betaine as
precursors of TMAO [15, 16, 60, 61]. The synthesis of
TMAO can be divided into the following two processes:
firstly, nutrients, such as choline, phosphatidylcholine, beta-
ine, and L-carnitine, are metabolized into trimethylamine by
the intestinal flora; and then, after trimethylamine is trans-
ferred to the liver through the enterohepatic circulation, it
is metabolized into TMAO by flavin monooxygenase
(FMO), especially FMO3 [15, 16]. Previous research
revealed that dietary supplementation with choline success-
fully increased the serum concentrations of TMAO in mice
[15]. Consistently, our study also found that long-term die-
tary supplementation of mice with choline elevated the
serum concentrations of TMAO at 24 h and 72h after sham
operation/ICH.

Age, gender, diet, intestinal flora, FMO3 activity, and
renal excretion capacity are essential factors that influence
the concentrations of TMAO in the serum [15, 16, 62–64].
Additionally, changes in the intestinal flora also have a pro-

found impact on the serum levels of TMAO [65]. For exam-
ple, research revealed that increased abundance of
Anaerococcus hydrogenalis, Clostridium asparagiforme, Clos-
tridium hathewayi, and Edwardsiella tarda significantly ele-
vated the concentrations of TMAO in the host serum. On
the contrary, an increased abundance of Bacteroidetes, Pre-
votella, and fecal bacteria reduced the concentrations of
TMAO in the host serum [20]. Moreover, evidence revealed
that opportunistic pathogenic bacteria, such as Proteobac-
teria and Enterobacter, increased. In contrast, the abundance
of commensal or beneficial microbes, such as Bacteroides
and Prevotella, decreased in patients with acute ischemic
stroke or transient ischemic attack [65]. However, reports
on changes in the intestinal flora of animals with acute
ICH are rare. The impact of changes in intestinal flora on
serum concentrations of TMAO warrants further research
in animals with acute ICH.

The previous results about changes in the serum levels of
TMAO are not consistent after acute ischemic stroke. One
study found that the serum levels of TMAO were elevated
in the acute phase of ischemic stroke [28]. However, most
studies revealed that serum TMAO levels decreased with
time since ischemic stroke onset in humans [65–68]. Our
findings also showed that the serum levels of TMAO
decreased in mice that received a choline diet after acute
ICH than in mice that received a choline diet after sham sur-
gery. Unfortunately, we did not document changes in food

P38 MAPK

GAPDH

HMGB1

Choline

Sham ICH

– + – + kDa
– 40

– 25

– 35

(a)

IL-1𝛽

𝛽-Actin

𝛽-Actin

MyD88

Choline

Sham ICH

– + – + kDa
– 35

– 40

– 40

– 15

(b)

O
D

 v
al

ue
 (o

bj
ec

tli
ve

 to
 st

rip
/G

A
PD

H
)

1.5

⁎

HMGB1P38 MAPK

#

0.0

⁎

#

Sham+Control
Sham+Choline

ICH+Control
ICH+Choline

1.0

0.5

(c)

Sham+Control
Sham+Control

ICH+Control
ICH+Choline

MyD88 IL-1𝛽

1.5

1.0

0.5

0.0
O

D
 V

al
ue

 (O
bj

ec
tiv

e t
o 

St
rip

/G
A

PD
H

)

#
⁎

#
⁎

(d)

Figure 3: High serum levels of TMAO did not affect molecular inflammatory response in the hemorrhagic brain. (a, b) Representative
western blot showing relative protein expression of P38 MAPK, MyD88, HMGB1, and IL-1β in brain lysates from the sham and ICH
mice fed with a regular or choline diet 24 h after ICH. β-Actin and GAPDH were used as a loading control (n = 6 mice/group). (c, d)
Dot plots show the quantitative analysis of P38 MAPK, MyD88, HMGB1, and IL-1β expressions in each group at 24 h after acute ICH
(n = 6 mice/group; ∗p < 0:05 versus the sham+control group, #p < 0:05 versus the sham+control group).
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intake among the four groups after ICH or sham surgery in
this study. Additionally, studies have revealed that TMAO
injection-induced high serum levels of TMAO returned to
the near baseline levels at about five hours in mice fed a reg-
ular chow diet, which suggests that the half-life of TMAO is
very short in vivo [25, 57]. Therefore, it is necessary to study
whether ICH surgery-associated reduction in food intake led
to a decrease in serum concentrations of TMAO after acute
ICH. Although the current understanding of TMAO’s role
in the CNS is limited, evidence indicates that TMAO, a small
organic molecule, could penetrate the blood-brain barrier
(BBB) [69]. Additional evidence also revealed that the con-
centrations of TMAO in the cerebrospinal fluid were higher
in patients with neurodegenerative diseases such as Alzhei-
mer’s disease than in healthy controls [70, 71], which further
supports the possibility that TMAO penetrates the BBB. To
investigate whether TMAO can directly participate in the

acute pathophysiological process of ICH, we measured
TMAO’s content in the brain homogenate extracts after
acute ICH. Surprisingly, we found that the TMAO content
in the brain tissues was undetectable (lower than the mini-
mum value of the standard curve) in ICH mice regardless
of a regular diet or a choline diet was given. The detection
results of TMAO in brain tissues in this study may warrant
further verification in further animal studies.

As a new risk factor independent of the traditional risk
factors of ischemic cardiovascular and cerebrovascular dis-
eases, TMAO can promote the occurrence and development
of atherosclerosis by disturbing the reverse transport of cho-
lesterol, and the synthesis of bile acids, and upregulating vas-
cular endothelial cell inflammation [15, 16, 25, 72, 73]. The
dysfunction of vascular endothelial cells is essential for the
occurrence and development of atherosclerosis [74]. Studies
have revealed that TMAO promoted vascular endothelial
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Figure 5: High serum levels of TMAO did not affect long-term brain injury after ICH. (a, b) Representative images of LFB/Cresyl Violet- or
LFB-stained brain sections on day 28 after ICH; (a) scale bar = 1mm; (b) scale bar = 50μm. (c) Quantitative analysis of white matter injury
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cell inflammation and advanced atherosclerosis by increas-
ing the expression of the nuclear-factor kappa B (NF-κB),
nucleotide-binding oligomerization domain-like receptor
family pyrin domain containing 3, IL-1β, and IL-18 [25,
72]. An additional study found that TMAO significantly
reduced the expression of cell-cell junction proteins ZO-2,
Occludin, and VE-cadherin through the HMGB1/TLR4
pathway, increasing endothelial cell permeability, and thus
led to the dysfunction of endothelial cells [24]. Moreover,
chronic or acute stimulation with TMAO resulted in the
phosphorylation of P38 MAPK, an extracellular signal-
related kinase, and the NF-κB signaling cascade. It also
increased the expression of inflammatory factors, such as
IL-6, TNF-α, and intercellular cell adhesion molecule-1,
and led to the dysfunction of vascular endothelial cells

[25]. However, no study has researched the influence of
TMAO on inflammatory response after acute stroke, includ-
ing ischemic and hemorrhagic stroke.

The mass effect of hematoma causes the primary dam-
age, whereas the inflammatory response induced by the dis-
integration products of hematoma contributes to the
progression of secondary injury after ICH [30, 75]. Studies
have revealed that the activation of microglia and astrocytes
and the infiltration of neutrophils were essential for second-
ary brain injury after ICH [76–79]. HMGB1, defined as a
cytokine rapidly released from the nucleus to the cytoplasm,
promoted inflammatory response by activating microglia
around the hematoma and aggravated brain injury after
ICH in rats [80, 81]. The harmful role of P38 MAPK and
its upstream signal MyD88 has also been confirmed in ICH’s
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secondary brain injury process [82, 83]. As discussed previ-
ously, exposure to TMAO promoted chronic inflammatory
response by increasing the expression of HMGB1, P38
MAPK, and IL-1β in endothelial cells [24–26, 72, 84]. To
test the efficacy of TMAO on inflammatory response after
acute ICH, we investigated choline diet-induced high serum
levels of TMAO on the expression of HMGB1, MyD88, P38
MAPK, and IL-1β in the hemorrhagic brain of mice with
acute ICH. Furthermore, we also explored the efficacy of
choline diet-induced high serum levels of TMAO on the
activation of microglia and astrocytes and the infiltration
of neutrophils in the hemorrhagic brain in this study. Here,
we showed that choline diet-induced high serum levels of
TMAO significantly increased the activation of microglia
and astrocytes but did not influence the infiltration of neu-
trophils around the hematoma in the acute stage of ICH.
We also found that choline diet-induced high serum levels
of TMAO did not affect the expression of HMGB1,
MyD88, P38 MAPK, and IL-1β in the hemorrhagic brain
after acute ICH in mice. This study illustrated that the cho-
line diet-induced high serum levels of TMAO only partly
promoted the inflammatory response in the hemorrhagic
brain by activating microglia and astrocytes in the acute
phase of ICH in mice.

As shown previously, TMAO promoted atherosclerosis
partly by inducing an inflammatory response [24–26, 72].
TMAO also contributed to platelet hyperreactivity and
enhanced thrombosis potential by augmenting Ca2+ release
from intracellular stores [20]. Evidence has indicated that
gut microbes increase platelet hyperreactivity and thrombo-
sis potential through the generation of TMAO after acute
ischemic stroke, which suggests that TMAO may participate
in the pathophysiological process of acute ischemic stroke
[20]. Some other studies showed that higher plasma TMAO
levels on admission were an independent predictor of infarct
volume and stroke severity in patients with acute ischemic
stroke [22, 28, 85, 86]. Moreover, two clinical studies indi-
cated that increased TMAO levels on admission predicted
early neurological deterioration and unfavorable clinical
outcomes on day 90 after acute ischemic stroke [86, 87].
However, contrary to the results of the previous studies on
patients with ischemic stroke, we found that the difference
in lesion volume and NDS was not significant between mice
who received a choline diet/regular diet after acute ICH. It
indicates that the choline diet increased the serum levels of
TMAO but had no effect on brain injury severity or long-
term neurologic function after ICH in mice. We speculate
that the difference in the pathophysiological characteristics
between ischemic and hemorrhagic stroke and the activity
of platelets probably influenced by TMAO may explain
why the results of this study are contrary to previous studies
of ischemic stroke. Besides, TMAO has been viewed as a
promoter of atherosclerosis; the severity of atherosclerosis
should also be included as an essential factor when the effi-
cacy of TMAO on stroke severity was evaluated in patients
with ischemic stroke. As for hemorrhagic stroke, one clinical
study showed that the increased TMAO level was indepen-
dently correlated with 3-month function outcomes after
ICH in patients [88]. Whether a choline diet for six weeks

used in this study can mimic the dietary habit of patients
with ICH before their symptom onset is currently unknown;
the dynamic changes of serum TMAO levels and the predic-
tive value of TMAO on the outcomes of patients with ICH
warrant further study.

Additionally, the mass effect of hematoma may also have
a profound influence on cerebral perfusion and cerebral
blood flow by compressing perihematomal tissues or elevat-
ing intracranial pressure [89]. When the cerebral blood flow
regulation is impaired, it causes a decrease in cerebral perfu-
sion and cerebral blood flow [89]. However, no evidence has
indicated whether choline diet-induced high serum levels of
TMAO directly impact cerebral blood flow after acute
stroke. As previously illustrated, TMAO can promote and
aggravate atherosclerosis by disturbing cholesterol transport
and promoting a chronic inflammatory response [15, 16, 25,
72, 73]. The severity of atherosclerosis may influence cere-
bral perfusion and cerebral blood flow in the perihematomal
tissues or the whole brain after acute ICH. This exploratory
study did not observe a positive relationship between choline
diet or TMAO and brain injury or functional deficits after
ICH. Further exploration should investigate the effects of
choline diet-induced high serum levels of TMAO on cerebral
perfusion and cerebral blood flow after ICH.

This exploratory study has limitations. One limitation of
the current study is that we did not detect changes in the
intestinal flora after acute ICH. Additional studies on the
profile of intestinal flora further support the observed alter-
ations in serum levels of TMAO. Moreover, broad-spectrum
antibiotics and choline analogs such as 3,3-dimethyl-1-buta-
nol reduced the serum levels of TMAO by regulating intesti-
nal flora [90, 91]. Thus, the changes in serum concentrations
of TMAO illustrated in this study can also be supported by
research on the effects of broad-spectrum antibiotics or cho-
line analogs on the profile of intestinal flora and the produc-
tion of TMAO in ICH mice. As for the biological function of
TMAO, previous studies have illustrated that TMAO-related
chronic inflammatory response and abnormal lipid metabo-
lism may promote the occurrence of atherosclerosis by
inducing the dysfunction of vascular endothelial cells
[24–26, 72]. However, we only observed that choline diet-
induced high serum levels of TMAO partly aggravated the
cellular inflammatory response in the hemorrhagic brain.
We also observed that choline diet-induced high serum
levels of TMAO did not influence brain injury severity or
long-term neurologic function in mice with acute ICH. It
seems that the 6-week choline diet-induced increase in the
serum levels of TMAO is unlikely to exacerbate the pathol-
ogy of acute ICH. One study showed that a 6-month choline
diet predicted worse long-term outcomes [92]. Therefore, we
suppose that the short-term diet regiment might be one of
the reasons for the insignificant effect on ICH outcomes. It
will be necessary to identify the lowest concentrations of
TMAO in the serum or brain tissues that can aggravate brain
injury with an intraperitoneal injection or intravenous tail
injection of different concentrations of TMAO. FMO, and
FMO3 in particular, is the primary metabolic enzyme of
TMAO in the liver [93]. If the positive effects on ICH out-
comes are present with high serum levels of TMAO, we plan
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to explore whether TMAO inhibition is protective in
FMO3-/- mice with acute ICH. Finally, it is worth investigat-
ing the impact of choline diet-induced high serum levels of
TMAO on the late inflammatory response, brain repair,
and long-term neurologic function recovery after ICH.

5. Conclusions

Although TMAO may promote atherosclerosis by inducing
a chronic inflammatory response [24–26, 72], the impact
of choline diet-induced high serum levels of TMAO on the
acute ICH injury is inapparent. The causal relationship
between the increased serum levels of TMAO induced by
unhealthy eating habits and brain injury severity or progno-
sis of stroke warrants further research [28, 87, 88]. More-
over, large-scale clinical studies are warranted to verify
whether there is a bias in recent studies about the positive
association between TMAO and brain injury severity or
prognosis of stroke in patients. Additional evidence on the
causality between TMAO and stroke may help us further
understand the pathophysiology of stroke in the future.
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Additional Points

Highlights. (i) This study mimicked the impact of a high
choline diet on patients with acute ICH. (ii) Choline diet
remarkably increased TMAO serum levels in mice with
acute ICH. (iii) Choline diet partly promoted neuroinflam-
mation, probably via TMAO after ICH in mice. (iv) Choline
diet did not aggravate brain injury and the outcome of ICH
in mice. (v) This exploratory study did not support that
TMAO can be targeted for ICH therapy.
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