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Non-small-cell lung cancer (NSCLC) has a high incidence and mortality worldwide. Moreover, it needs more accurate means for
predicting prognosis and treatments. Pyroptosis is a novel form of cell death about inflammation which was highly related to the
occurrence and development of tumors. Despite having some studies about pyroptosis-related genes (PRGs) and cancer, the
correlation has not been explored enough between PRGs and immune in NSCLC. In this study, we constructed a PRG model
by WGCNA to access the prognosis value PRGs have. The testing cohort (n = 464) with four datasets from the GEO database
conducted a survival analysis to confirm the stability of the prognostic model. The risk score and age are examined as
independent prognostic factors. Based on the PRGs, we found multiple pathways enriched in immune in NSCLC. Separating
samples into three subtypes by consensus cluster analysis, Cluster 3 was identified as immune-inflamed phenotype with an
optimistic prognostic outcome. A three-gene PRG signature (BNIP3, CASP9, and CAPN1) was identified, and BNIP3 was
identified as the core gene. Knockdown of BNIP3 significantly inhibited the growth of H358 cells and induced pyroptosis. In
conclusion, the model construction based on PRGs provides novel insights into the prediction of NSCLC prognosis, and
BNIP3 can serve as a diagnostic biomarker for NSCLC.

1. Introduction

Lung cancer is a malignant disease with high mortality and
is still the main reason for cancer death worldwide [1].
And non-small-cell lung cancer (NSCLC) accounts for
approximately 85% of gross lung cancer [2] which is the
most common and serious subtype of malignant tumor in
lung tissue. In histology, NSCLC mainly includes lung ade-
nocarcinoma (65%) and lung squamous cell carcinoma
(30%) [2]. Despite there being clinical advances that have
been gained in molecular diagnosis, chemotherapy, and bio-
logically targeted therapy being beneficial for overall survival
in 5 years to NSCLC patients, the prognosis is still gloomy
[3–5]. Standard lobectomy and sublobar resection are the
common treatments for non-small-cell lung cancer patients
in the early stage with about 60% 5-year survival rate [6],
whereas the survival rate in 5 years of the NSCLC patients
with clinical tumor-node-metastasis (TNM) stage IIIB or

IV are only 7% and 2%, respectively [7]. Due to the het-
erogeneity of tumors and the complicated etiology mecha-
nism of cancer, limited survival advances eagerly suggested
more biologically prognostic targets have to be applied to
risk stratification and treatment optimization for early-
stage patients on clinic. Many studies have proved that
mRNA can be a kind of signature to predict the prognosis
of cancer precisely [8–10]. Through microarray gene expres-
sion profile analyses and screening, establishing prognostic
gene signature may remedy the patient stratification of the
present staging system and provide more personalized
treatment.

Pyroptosis belonging to programmed cell death is related
to inflammation [11], which is mediated by gasdermin
(GSDM) under different stimuli [12] that plasma membrane
would rupture rapidly and releases proinflammatory content
from cells. The typical way to induce pyroptosis is to activate
the inflammasomes [13] and mainly executed by the
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gasdermin family [14]. In addition, gasdermin E (GSDME)
cleaved by caspase-3 can also induce pyroptosis [15, 16].
Generally, inflammatory vesicles, gasdermin proteins, and
inflammatory cytokines are the key elements of pyroptosis
that are related to the occurrence, development, invasion,
and metastasis of tumors [17]. Nevertheless, the correlation
between pyroptosis and cancer prognosis is not specific
because of the dual effects of pyroptosis in tumor develop-
ment. On the one hand, pyroptosis can suppress tumorigen-
esis and development through releasing inflammatory
factors; on the other hand, pyroptosis creates a microenvi-
ronment for tumors with nutrition and accelerates the
growth of tumors in various cancers [18–21]. In recent years,
the dual effects of pyroptosis in cancer get popular and
attract people to the study of the immune system [21].
And some studies indicated that pyroptosis would relate to
the regulation of the tumor immune microenvironment [22].

The immune system plays a vital role in the NSCLC
progression, and its components have been proved to be
the major determinants of tumorigenesis and progression
[23, 24]. The immune tumor microenvironment including
various immune cells and stromal cells is regarded as a
mark and a necessary part of NSCLC. And all the cells
are related to immune-related genes (IRGs) and some
immunomodulators that influence the prediction of cancer
prognosis significantly [25–27]. Some immunotherapies
have been applied to fight against tumors through the
immune system [28, 29], but the valid part depends on
the heterogeneity of the tumor microenvironment [30,
31]. The characteristic of NSCLC is a few mutations in
the immune system which may be beneficial for the
patients from immunotherapy [32]. Besides, it infers that
the immune can stimulate the mechanism to work because
of the better prognosis with the presence of inflammatory
cells in NSCLC and other solid tumors [33, 34]. In the
meanwhile, the stromal constituent in pulmonary tissue
might play a role as a barrier in tumorigenesis by limiting
the proliferation of tumor cells [35].

The classic immune subtype includes immune-inflamed,
immune-excluded, and immune-desert phenotypes, which is
related to response to anti-PD-1 and anti-PD-L1 antibodies
[36, 37]. NSCLC mainly belongs to the immune-inflamed
and immune-excluded phenotypes with a high tumor muta-
tion burden (TMB) [38]. Besides, there is also another kind
of LUAD molecular phenotype that displayed a difference
in the tumor immune landscape, which contains the termi-
nal respiratory unit, proximal proliferative, and proximal
inflammatory subtypes [39], whereas the impacts of molecu-
lar subtypes on non-small-cell lung cancer and the clinical
outcomes remain unanswered.

In this research, we acquired the mRNA expression pro-
file of lung adenocarcinoma and lung squamous cell carci-
noma with clinical information from the TCGA database.
Then, we constructed a nomogram model with three prog-
nostic pyroptosis-related genes and tested it in the validation
cohort from the GEO database. Besides, we explored the cor-
relation between risk scores and immune subtypes acquired
from consensus cluster analysis.

2. Materials and Methods

2.1. Data Acquisition and Preprocessing. The RNA-seq
matrix (count and FPKM value) in the TCGA-LUAD and
TCGA-LUSC projects and corresponding clinical data was
obtained from the Cancer Genome Atlas (TCGA) as the
training cohort. And the validation dataset including
GSE102287, GSE29013, GSE37745, and GSE50081 with its
patient data was gained from the Gene Expression Omnibus
(GEO) database. Additionally, the 146 pyroptosis-related
genes and 2013 immune-related genes are from the Gene-
Cards website and ImmPort portal, respectively. To ensure
the consistency of expression level in each dataset, we
removed the batch effect for all datasets by using the “sva”
R package.

2.2. Weighted Gene Coexpression Network Analysis
(WGCNA). As a bioinformatics method, WGCNA can con-
struct a gene coexpression network by utilizing the
“WGCNA” package [40] in R software (version 4.0.5). Two
datasets from the TCGA database were merged and con-
verted into the form of the TPM value. Constructing a sam-
ple tree to exclude the outliers in the samples of the training
cohort is beneficial for data stabilization. We chose the
power of 4 as the soft threshold when the scale-free R2 is
0.9. And then, the adjacency matrix was defined by convert-
ing the expression profile based on soft-threshold. Accord-
ing to average linkage hierarchical clustering, TOM
acquired from the adjacency matrix classified the modules
with co-expression mRNAs. Next, we computed the module
eigengene (ME) dissimilarity based on the ME expression
profile after the Pearson correlation analysis. To merge the
similar modules, we constructed ME tree after reclustering
mRNAs in all modules while defining 0.6 as the height of
the tree of merged modules.

In addition, we still need to screen out the module which
highly associated with patient overall survival in these joined
modules. Two analyses were conducted that one surveyed
the correlation between the completed expression profile
and ME expression level, and another explored the Pearson
correlation between survival time which represented the
clinical trait and mRNA expression profile (TPM value).
Then, we explored the relationship between the results from
two analyses in the module we selected to validate the signif-
icance of the module. To get the preliminary genes related to
pyroptosis, we intersected the module genes and pyroptosis-
related genes and then painted PPI with the intersecting
genes by using Cytoscape software (version 3.8.2).

2.3. Screening of Prognostic Genes and Calculating Risk
Value. The univariate Cox regression analysis was applied
to access the prognostic significance of the pyroptosis-
related genes and preserve them whose p value is lower than
0.05 by using the “survival” R package. Using LASSO analy-
sis to calculate the coefficient of significant genes in each
sample based on the “glmnet” R package. And cross-
validation could prevent overfitting from happening to
LASSO analysis. The computing formula of the LASSO
approach is score = sum ðeach gene’s expression level × λÞ,
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and the prognostic genes signature were established based
on it. According to the median risk score, the samples from
the TCGA database were divided into high- and low-risk
groups, also for the samples in the testing cohort. Afterward,
the Kaplan–Meier analysis was executed to compare the OS
in different risk groups in two datasets by using “survival”
and “survminer” R packages. And “timeROC” R package
painted ROC curve to predict the prognosis in 1, 3, and 5
years in the training dataset and 3, 6, and 9 years in the val-
idation cohort.

2.4. Prognostic Module Construction and Enrichment
Analysis. The multivariate Cox regression analysis about
clinical characteristics is aimed at finding out the indepen-
dent prognostic factors judging by p value (p value < 0.05
means significant). And we can obtain the range of hazard
ratio, 95% confidence intervals (CIs), and p value of every
clinical parameter via the “survival” R package. Then, the
nomogram was constructed with the independent prognos-
tic factors and visualized by using the “regplot” R package.
The proportional hazard assumption was executed using
Schoenfeld residual. We first divided the data into three
layers based on the survival time of patients. Then, the
Schoenfeld residual was calculated by “survival” R package.
The calibration curves of 1, 5, and 8 years were validation
and prediction of overall survival which were painted after
multivariate Cox analyses and random sampling. And the
samples fell into three groups with 230 samples randomly
in each group. Gene set enrichment analysis (GSEA) was
plotted by “ReactomePA” [41] and “clusterProfiler” [42]
packages in R software. And we applied GSEA based on
the genes in the “MEdarkgreen” module, pyroptosis, the
intersection of the module, and pyroptosis-related and test-
ing cohort.

2.5. Identification of Immune Subtype. To identify the
immune subtype of the training cohort, the study used con-
sensus clustering analysis and a series of related analyses.
Applying the hierarchical cluster algorithm with 50 itera-
tions to estimate the cluster robustness by the “Consensu-
sClusterPlus” R package [43]. The cumulative distribution
function (CDF) curve calculated the increasing proportion
area under it for determining the best cluster number. “sur-
vival” and “survminer” R packages for survival analysis were
used to check the overall survival of clusters 1 and 2 with risk
subgroup, respectively. In addition, the study ordered the
significantly enriched pathways of each immune subgroup
through KEGG functional analysis, and the R packages of
“clusterProfiler,” “org.Hs.eg.db,” and “enrichplot” involved
this analysis and plotting.

2.6. Immune Infiltration. ESTIMATE algorithm was con-
ducted on R software to calculate the immune score, stromal
score, and ESTIMATE score of overall patients with
immune subgroups based on the counts value of the training
dataset. In the meanwhile, identifying the cell type of
each sample in the training cohort (TPM value) by
CIBERSORT analysis is aimed at assessing the proportion
of 21 immune cells in every patient according to the
abundance of immune and stromal cells. And just kept
the samples that the p value is under 0.05. Besides,
single-sample GSEA (ssGSEA) was conducted to assess
and compare the immune cell scores and abundance of
immune functions in two risk groups, respectively.
TIMER2.0 website was an online public database of
immune, and we downloaded the plot pictures of the cor-
relation between the expression level of prognostic genes
and six immune cells. The immunohistochemistry images
of three prognostic genes were obtained from the HPA
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Figure 1: The flow chart of the overall study.
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Figure 2: Continued.
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website (The Human Protein Atlas). Eventually, we calcu-
lated the Pearson coefficient between immune checkpoints
and prognostic PRGs.

2.7. The Screening of BNIP3. Rank forest (RF) algorithm was
conducted in R software (version 4.0.5) by “randomForest”
R package. And we deleted the genes whose importance
score was less than 2. Separating samples from the TCGA
database by “stringr” R package into the normal and tumor
groups, we calculated the importance (mean decrease Gini)
of each gene which was obtained after univariate Cox regres-
sion analysis. The genes were ranked in descending order by
importance. The PPI network for searching hub genes was
plotted by the “cytoHubba” application in Cytoscape soft-
ware (version 3.8.2). The nodes with high score “cytoHubba”
application calculated were red, and the nodes with low
score were yellow. The ROC curves were obtained and visu-
alized by “pROC” and “ggplot2” R packages in R software
(version 4.0.5).

2.8. Cell Culture and Transfection. A lung cancer cell H838
was purchased from American Type Culture Collection
(ATCC) and maintained in 1640 medium containing 10%
fetal bovine serum (Gibco, Gland Island, USA) and 1%

penicillin-streptomycin (Gibco, Gland Island, USA) and cul-
tured at 37°C with 5% CO2. BNIP3-siRNA from Sangon Bio-
tech (Shanghai, China) was used to silence the expression of
BNIP3. In this study, the sequence of BNIP3-siRNA is sense:
5′- GAUUACUUCUGAGCUUGCATT -3′. H358 cells were
seeded in 12-well plates at a density of 5 × 104 cells/well and
transfected 24 hours later. BNIP3-siRNA or NC-siRNA was
transfected to a final concentration of 20nM using siRNA
transfection reagent (Polyplus, France). Finally, the trans-
fected cells were detected after 48 hours.

2.9. Cell Apoptosis Assay. H358 cells were treated with trans-
fection reagents BNIP3-siRNA and NC-siRNA for 48 hours.
After 48 hours, cells were collected and then incubated for
30min at room temperature in the dark using the FITC-
labeled membrane-linked protein-V and PI (BD Biosci-
ences) in the apoptosis kit. Eventually, apoptosis was
detected using flow cytometry.

2.10. Western Blot. Proteins were extracted from cells and
cell lysates were prepared using RIPA lysate with PMSF
(Solarbio, Beijing, China), and then, protein quantification
was performed using a BCA protein assay kit (Sangon
Biotech, Shanghai, China). Proteins were then separated by
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Figure 2: Coexpression network construction and identification of module related with clinical traits in non-small-cell lung cancer
(NSCLC) patients. (a) Analysis of the scale-free fit index for different soft-thresholding powers. (b) Analysis of the correlation between
mean connectivity and various soft-thresholding powers. (c) Dendrogram of the genes after merging modules and reclustering. Every
color represents a module. (d) The relationships between modules and clinical characteristics of NSCLC; red means positive correlation,
and blue means negative correlation. (e) Analysis of gene significance for module membership in the dark green module. The red line is
a fitted curve. (f) The PPI network of pyroptosis-related genes in the “MEdarkgreen” module. The color and size of genes represent the
degree value (database annotated). The big blue dots represent genes with a high degree, the small yellow dots are the genes with a low
degree, and pink dots are the genes without a degree. The grey lines links dots represent the combined score and the thicker with higher
relevance.
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Figure 3: Continued.
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12%SDS-PAGEand transferred to nitrocellulosemembranes.
Themembranes were blocked with 5% bovine serum albumin
(BSA) for 1 h and then incubated with primary antibody
GAPDH, BNIP3, GSDMD, and caspase-8 overnight at 4°C.

The next day, after washing the membrane three times with
TBST, the membrane was incubated for 1 h at room tempera-
ture with horseradish peroxidase-labelled secondary antibody
(1 : 4000), followed by three washes with TBST. Finally, the

Dead
Alive

Su
rv

iv
al

 ti
m

e (
ye

ar
s)

0

5

10

15

Patients (increasing risk score)
0 200 400 600

(e)

CAPN1

BN1P3

CASP6

Type

Type

Low

6

5

4

3

2

1

High

CAPN1

BN1P3

CASP6

(f)

High risk
Low risk

Ri
sk

 sc
or

e

0 100 200 300 400
Patients (increasing risk score)

–0.55

–0.45

–0.35

(g)

Dead
Alive

Su
rv

iv
al

 ti
m

e (
ye

ar
s)

0 100 200 300 400
Patients (increasing risk score)

0

5

10

15

(h)

Type

Low
High

CAPN1

BN1P3

CASP6

Type

6

4

2

8

(i)

Figure 3: The prognostic genes identification and the correlation between risk score and survival condition with validation. (a) The forest
plot of prognostic genes is based on the univariate Cox regression analysis. HR: hazard ratio; HR.95L, HR.95H: hazard ratio 95% confidence
interval. (b) Distribution of LASSO coefficients of the three prognostic genes in the training cohort. (c) Selection of the best parameter
(lambda) in the lambda sequence. (d) The distribution of risk groups based on risk score in samples in the training cohort. (e) The
survival status of NSCLC patients in the training cohort in different risk groups. (f) The expression level of prognostic genes in the high-
and low-risk groups in the training cohort. (g–i) Validation for aforementioned analyses about risk score based on GEO dataset.
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results of western blot were detected by BeyoECL Moon
(Beyotime Biotechnology, Shanghai, China).

2.11. Immunohistochemistry (IHC). Tumor tissues were fixed
with 4% paraformaldehyde, embedded in paraffin, and pre-
pared into 5 μm thick sections. The sections were subse-
quently dewaxed with xylene and dehydrated in a gradient
concentration of alcohol solution. For immunohistochemi-
cal experiments, antigen retrieval was performed with
0.01M sodium citrate (pH: 6.0), and endogenous peroxidase
was blocked by adding 0.3% hydrogen peroxide (H2O2) and
incubating in 10% goat serum albumin for 30min. Sections
were then incubated with primary antibody (BNIP3) at 4°C

overnight. The next day, after incubation with HRP-
conjugated anti-rabbit secondary antibody for 1 h, samples
were incubated with 3,3′-diaminobenzidine (DAB), sections
were counterstained with Mayer hematoxylin, dehydrated,
cleared with xylene, and finally blocked with neutral resin
and then observed on a multifunctional microtome
(BIOTEK).

2.12. Statistical Analysis. All bioinformatics statistical analy-
ses in the study were conducted using R software (version
4.0.5). The survival analysis was performed with a Kaplan-
Meier assay and a log-rank test. To test the nomogram, we
conducted proportional hazard assumption by calculating
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Figure 4: Survival analysis for training cohort and testing cohort. (a) Kaplan-Meier survival analysis of samples in different risk groups in
the training cohort. (b) ROC curve for 1, 3, and 5 years of survival time prediction. (c, d) The testing of survival analysis in validation dataset
from GEO database. (e) ROC curve for comparing the prognostic model with other published models.
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the Schoenfeld residual. The Mann–Whitney test was used
for the validation of ssGSEA comparing. All experiments
were repeated at least three times and the data were
expressed as mean ± SEM. ANOVA or t-test was used to
determine the statistical significance of the control and
experimental groups. In the investigation, data were consid-
ered statistically significant when p < 0:05.

3. Results

3.1. Construction of Weighted Coexpression Network and
Identification of Trait-Module. The flow chart of the overall
design in this study was shown in Figure 1. In this study,
mRNA expression profiles with 1145 cases and 1026 pieces
of patient clinical information from the TCGA-LUAD and
TCGA-LUSC projects were assembled as the training
cohort, and 4 datasets from the GEO database containing
464 samples were selected as our validation cohort after
removing batch effect. Conducting WGCNA to construct a
weighted coexpression network, the genes which have simi-
lar expression tendencies would be divided into one module.
Every module was named with corresponding colors. When
the scale-free topology fit index R2 = 0:9, the power of soft-
thresholding value reached 4. Therefore, we calculated the
adjacency matrix and constructed the co-expression network
based on the power value of soft-thresholding (Figures 2(a)
and 2(b)). To decrease the part of a subdivision in the net-
work, we computed the module eigengenes (MEs) and the
number of modules decreased from 59 to 39 (Figure 2(c)).
The relation of modules with clinical traits was presented
in the form of p value in the heat map (Figure 2(d)). Due
to the positive correlation between module and survival
time, we selected the “MEdarkgreen”module as our research
object. To certify the reliability of the “MEdarkgreen” mod-
ule, we analyzed the Pearson correlation between gene sig-
nificance of the selected module and module membership
(Figure 2(e)). Afterward, the genes in the “MEdarkgreen”
module were intersected with pyroptosis-related genes and
35 pyroptosis-related genes in the module were obtained.
Eventually, the interaction of these genes was analyzed by
the STRING website (https://www.string-db.org/) and visu-
alized the protein-protein interaction (PPI) network with
Cytoscape software (version 3.8.2) (Figure 2(f)).

3.2. Prognostic Gene Identification and Nomogram Model
Establishment. Applying univariate Cox regression analysis
to 35 pyroptosis-related genes to find out the prognosis-
related genes (Table S1), there were three genes including
CAPN1, BNIP3, and CASP6 significantly related with
prognosis (p value < 0.05) after analysis (Figure 3(a)). To
further confirm the relation of three genes with overall
survival (OS) in NSCLC patients, the LASSO regression
model was constructed and cross-validation prevented the
overfitting from LASSO analysis (Figures 3(b) and 3(c)).
The risk coefficient of each sample was calculated after
LASSO regression analysis, and the sample would divide
into the high- and low-risk groups according to the
median of the risk score (Figure 3(d)). The next step was
to explore the correlation between risk score and survival

status. As shown in Figure 3(e), the higher risk score is
accompanied by more dead patients. Besides, we also
checked the expression level of three prognostic genes in
two risk groups, and only CAPN1 was expressed obviously
in the high-risk group (Figure 3(f)). The detailed survival
condition in two risk groups was presented in Figure 4(a),
in which we can observe the relationship among survival
time, survival status, and risk groups through survival
analysis. The two groups had a significant difference in
survival condition (p value < 0.05), and patients in the low-
risk group got a better prognosis. The ROC curves with 1, 3,
and 5 years were painted to validate the accuracy of predicting
prognosis, and the more area under the curve (AUC) means
the higher reliability for prediction (Figure 4(b)). For
improving the accuracy of the aforementioned analyses
about survival conditions, we used the testing cohort which
had merged four datasets from the GEO database to
validate. The results were consistent with the training
cohort except ROC was poor on reliability (Figures 3(g)–
3(i), 4(c), and 4(d); Table S2). Afterwards, we compared
our prognostic model with some published models by
painting ROC curve (Figure 4(e)). The AUC value of our
prognostic model was the highest in all of the compared
models in 3 years (AUC = 0:721).

To construct the nomogram model, we firstly processed
independence prognosis analysis by using the method of
multivariate Cox regression analysis to screen the clinical
parameters, age and risk score were the two clinical charac-
teristics whose p value was under 0.05 (Table 1). Then, the
nomogram model was built based on two independent prog-
nostic factors to predict the survival rate in 1, 5, and 8 years
(Figure 5(a)). The proportional hazard assumption was con-
ducted to test the nomogram by calculating the Schoenfeld
residual (Figure 5(b)). The p values of the two independent
prognostic parameters are higher than 0.05, which means
the proportional hazard assumption is effective and the
establishment of nomogram is a success. The calibration
curves of 1, 5, and 8 years presented the correlation between
the rate of nomogram-predicted OS and observed OS and

Table 1: The multivariate Cox regression analysis of clinical
parameters in the training cohort for independence prognosis
analysis.

Hazard ratio
Variable HR HR.95L HR.95H p value

Age 1.071 1.029 1.114 <0.001
Gender 0.986 0.541 1.795 0.963

Stage II 2.234 0.682 7.318 0.184

Stage III 2.167 0.304 15.443 0.440

T2 0.958 0.489 1.876 0.900

T3 0.528 0.117 2.375 0.405

T4 1.369 0.232 8.090 0.729

N1 0.629 0.190 2.083 0.448

N2 1.188 0.193 7.315 0.853

riskScore 2.552 1.376 4.734 0.003

Abbreviations: HR: hazard ratio; HR.95L, HR.95H: hazard ratio 95%
confidence interval.
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confirmed the reliability of prediction power in the nomo-
gram model (Figures 5(c)–5(e)).

3.3. Gene Set Enrichment Analysis. Processing gene set
enrichment analysis to four datasets mentioned in the mate-
rials and methods part to search the pathways and screen by
calculating the p value (p value < 0.05). As observed, the
pathways of the “Immune system” and “Innate immune sys-
tem” appeared multiple times in three datasets (Figures 6(a)–
6(c)). We found that “Immunoregulatory interactions
between a lymphoid and a nonlymphoid cell” and “PD-1 sig-
naling” pathways are significantly enriched in the validation
cohort (Figure 6(d)). Therefore, we deduced that pyroptosis
may have a correlation with immune and explored more
about immune by analyzing the pyroptosis-related expres-
sion profile.

3.4. Survival Analysis and KEGG Pathway Enrichment
Analysis with Immune Subgroups. Firstly, the list of the
immune-related genes was obtained from the ImmPort web-
site and intersected with the expression profile of the train-
ing cohort. And consensus clustering analysis identified the
immune-subtype based on the immune-related expression
matrix. As shown in Figure 7(a), the area under CDF curves
no longer increased rapidly after k = 3. And the same result
can be deduced by analyzing the relative change in area
under the CDF curve (Figure 7(b)). Based on the matrix of
clustering heat map, we decided to divide the patients into
three subgroups (Figure 7(c)). To search the subgroups cor-
relation with overall survival, we conducted survival analysis
to the complete expression profile grouped by consensus
analysis and the difference between the three subgroups
was significant (p value = 0.032) (Figure 7(d)). For deep
exploring the influence of risk score in clustering subgroups,
we applied survival analysis to the three subgroups, respec-
tively (Figures 7(e) and 7(f)). As observed in the figures,
the prognosis in the low-risk group was better than in the

high-risk group in cluster 1 obviously (p = 0:0053), but insig-
nificantly in cluster 2 (p value = 0.3). Besides, KEGG path-
way enrichment analysis was used for the three subgroups,
and some enriched pathways were left (p value < 0.05)
(Figures 7(g)–7(i)). In cluster 1, the pathway is mainly
enriched in “Cytokine-cytokine receptor interaction,” “Viral
protein interaction with cytokine and cytokine receptor,”
“Chemokine signaling pathway,” and so on, also in cluster
2 but a little different in cluster 3. The pathways including
“Renin secretion,” “Cytokine-cytokine receptor interaction,”
and “Renin-angiotensin system” were enriched in cluster 3.

3.5. Immune Infiltration. Using ESTIMATE algorithm to
calculate the scores of immune, stromal, and estimate and
visualized on heat map image with immune cluster
(Figure 8(a)). And both the immune score and stromal score
in cluster 2 were the lowest, and it explained that both the
immune and stromal cells are low-content in the samples
of cluster 2. Thus, we deduced that cluster 2 was regarded
as the immune-desert phenotype. The immune score was
assessed highly in clusters 1 and 3. Nevertheless, the estimate
score in cluster 1 was low which means that the immune and
stromal scores are not enriched. The estimate score in cluster
3 was more stable and higher than in cluster 1. Therefore, we
supposed that cluster 3 is the immune-inflamed phenotype.
Afterward, the CIBERSORT analysis was conducted to
check the proportion of immune cells in 21 types in each
case and screen the samples whose p value was higher than
0.05 (Figure 8(d)). To deeply discuss the relation of immune
status with risk scores, the ssGSEA analysis was performed
on training (Figures 8(b) and 8(c)) and testing cohort
(Figures 8(e) and 8(f)). As observed in the training cohort,
the enrichment scores of macrophages and Treg were
significantly different in the high- and low-risk groups
(p value < 0.01) and the score of immune function
including CCR and Para inflammation had an obvious differ-
ence (p value < 0.001). The enrichment scores of pDCs, Treg,
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Figure 5: Construction of nomogram module and calibration. (a) Nomogram construction with independent prognostic factors
(∗p value < 0.05; ∗∗p value < 0.01). (b) The Schoenfeld residuals of two clinical factors (age and risk scores) for proportional hazard
assumption to test the nomogram. (c–e) The calibration curve for the nomogram model with 1, 5, and 8 years, respectively. OS: overall
survival.
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Figure 6: Continued.
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cytolytic activity, and inflammation-promoting in the valida-
tion dataset were significantly different (p value < 0.05). In
addition, we downloaded some images about immune cells
and immunohistochemistry from the TIMER2.0 website and
the HPA database (The Human Protein Atlas), respectively.
As shown in Figure S1, we can observe the correlation
between six immune cells and three prognostic genes in lung
adenocarcinoma and lung squamous carcinoma, but most of
them had a slightly negative correlation. Figure S2 showed
the images of immunohistochemistry of three prognostic
genes in normal tissues, lung adenocarcinoma tissues, and

lung squamous carcinoma tissues, respectively. And there
were obvious differences between normal tissues and tumor
tissues. Eventually, we explored the relevance between PRGs
and immune checkpoints. The condition of the expression
level of 35 PRGs (before univariate Cox analysis) in immune
subtypes was presented in Figure S3A. The BNIP3 was
expressed significantly in clusters 1 and 3 but had a low
expression in cluster 2. The CAPN1 was expressed highly in
cluster 1 but expressed low in cluster 3. And the CASP6 was
expressed highly in cluster 3. The expression level of TIGIT
and LAG3 in the immune checkpoints in the two risk

0.2

0.0

–0.2

Immune system

Innate immune system

0.7459

0.7459

p.adjustpvalue

0.6117

0.7459

–1.0
5 10 15

Rank in ordered dataset
20 25

–0.5
0.0
0.5
1.0

Ru
nn

in
g 

en
ri

ch
m

en
t s

co
re

R
an

ke
d 

lis
t m

et
ri

c

(c)

0.6
Antigen activates B cell receptor (BCR) leading to generation of second messengers

Immunoregulatory interactions between a lymphoid and a non-lymphoid cell

0.4584

0.2064

p.adjustpvalue

0.0079

0.0019

0.4

0.2

0.0

0.50

0.25

0.00

–0.25

2000 800060004000

Rank in ordered dataset

Ru
nn

in
g 

en
ri

ch
m

en
t s

co
re

R
an

ke
d 

lis
t m

et
ri

c

(d)

Figure 6: Gene set enrichment analysis. (a) Gene set enrichment analysis (GSEA) for “MEdarkgreen” module genes. (b) GSEA for all
pyroptosis-related genes based on training cohort. (c) GSEA for pyroptosis-related genes in the “MEdarkgreen” module. (d) GSEA for
genes after intersecting the “MEdarkgreen” module and validation cohort.
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groups is different significant, and both of them were
expressed higher in the high-risk group (Figure S3F).
Therefore, we checked the Pearson correlation coefficients
between the two immune checkpoints and prognostic PRGs
(Figure S3B-E, G, H). The BNIP3 had an obvious negative
correlation with the two immune checkpoints, respectively.
The CAPN1 only negatively correlated with TIGIT, whereas
the CASP6 did not present any relation with the two
immune checkpoints.

3.6. BNIP3 Is Highly Expressed in Lung Adenocarcinoma,
and Knockdown of BNIP3 Induces Lung Cancer Cell
Pyroptosis. Eventually, we screened the genes further based
on the prognostic model. The three prognostic signatures’
expression levels were up-regulated in the tumor group
(Figure S4A). The random forest (RF) algorithm was
conducted to calculate the importance of each gene after
the univariate Cox regression analysis (Figure S4C). The
importance of genes means the contribution degree of
genes to the prognostic model. And BNIP3 contributes
most in the three prognostic genes (mean decrease Gini =
9:78), CAPN1 contributes least in the three prognostic
genes (mean decrease Gini = 2:29). Subsequently, the PPI
network was constructed to search the hub genes
(Figure S4B). However, only BNIP3 and CASP6 were
selected in the prognostic genes to build the hub genes
network. Hence, we removed CAPN1 and continued to

explore the details of BNIP3 and CASP6. Plotting ROC
curves based on the expression level of BNIP3 and CASP6,
respectively (Figure S4D, E), the AUC value of BNIP3
(AUC = 0:853) was higher than the value of CASP6
(AUC = 0:848). In summary, BNIP3 became our final
target signature to explore.

To further explore the role of BNIP3 in lung cancer cells,
five pairs of human lung cancer tissues and their paraneo-
plastic tissues were incubated with BNIP3 as primary anti-
body, and the results of immunohistochemistry showed
that BNIP3 was highly expressed in lung adenocarcinoma
compared with normal tissues (Figure 9(a)). We also took
4 pairs of human lung cancer tissues and their paraneoplas-
tic tissues and extracted the proteins for western blot exper-
iments, and the results showed that BNIP3 were upregulated
in lung cancer tissue proteins (Figure 9(b)). After treating
H358 cells with transfection reagent for 48h, we examined
the cell death using an apoptosis kit in order to detect the
effect of knocking down BNIP3 on H358 cells, and the
results showed that the cell death rate was significantly
increased in the knockdown BNIP3 group (Figure 9(c)).
Knocking down BNIP3 with transfection reagent, then we
extracted proteins and detected GSDMD and caspase-8 by
western blot, and the results showed that knocking down
BNIP3 increased GSDMD and caspase-8, indicating that
knocking down BNIP3 could induce pyroptosis in lung can-
cer cells H358 (Figure 9(d)).
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4. Discussion

Pyroptosis induction can thoroughly remove neoplastic cells
in multiple cancers [44]. However, due to the activation of
pyroptosis, some inflammatory mediators will be released
which might promote the occurrence and progression of
cancer [45, 46]. The respiratory system is sensitive to pyrop-
tosis induction [47]. The piperlongumine analogue L50377
induced pyroptosis by stimulating reactive oxygen species
(ROS) to mediate the suppression of NF-κB in NSCLC
[48]. Additionally, the downregulation of lncRNA-XIST
would activate pyroptosis mediated by the miR-335/SOD2/
ROS signal pathway to suppress the development of NSCLC
[49]. Many studies suggested that ROS is related to pyropto-
sis [50, 51]. Nevertheless, the mechanism of how pyroptosis
influences NSCLC and what kind of regulations the predic-
tors do via the pathways are not clear until now. Therefore,
we constructed a prognostic model based on three
pyroptosis-related genes by using bioinformatics methods
which were validated in the testing cohort to prove its avail-
ability and benefit to early diagnosing for NSCLC patients.

In this investigation, we determined three pyroptosis-
related genes including CAPN1, BNIP3, and CASP6 as prog-
nostic signatures of NSCLC based on the expression profile
with 146 pyroptosis-related genes from the TCGA database,
which are overexpressed in the tumor tissues. Calpain 1
(CAPN1) is a type of cysteine activated by calcium with
proinflammation [52], which is widely expressed in vivo

and has been proved as a promoter of cancer progression
that is significantly related to poor prognosis [53–55]. The
Calpain family where CAPN1 belongs can influence the
malignancy phenotype of lung cancer cells by degrading
proteins according to some reports [56–59] and also is
involved in various cellular processes containing cell signal
transduction and apoptosis, etc. [52]. And several studies
have verified the importance of the Calpain family in tumor
migration and invasion [60]. Meanwhile, CAPN1 may be a
biomarker of tumor or a potential target used to diagnose
and treat lung adenocarcinoma [61]. The CAPN1
rs17583C>T was related to a better prognosis, which pro-
vided certification of the functional relationship between
genetic mutation and the better clinical outcomes [62].
BNIP3, a member of the Bcl-2 protein family with mito-
chondrial BH3 [63], affects different ways of cell death in
hypoxic conditions [64] and also various metabolic path-
ways [65, 66]. BNIP3 is regarded as a proapoptotic protein,
whose dysregulated expression is related to mitophagy,
autophagy, and pyroptosis [67–69]. Tumor cells are sensitive
to cisplatin and gemcitabine when BNIP3 upregulates [70].
Interestingly, the expression level of BNIP3 will elevate in
early-stage adenocarcinoma but decrease in metastasis pro-
gression. And the deletion of BNIP3 can increase angiogen-
esis which promotes tumorigenesis and the metastasis of
breast cancer [71]. Also, BNIP3 was inferred as an indepen-
dent prognostic factor that related to autophagy in early-
stage NSCLC but not clear in advanced lung cancer [63].
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Figure 8: Immune infiltration analysis. (a) ESTIMATE analysis of training cohort with risk and immune subgroups. C1: cluster 1; C2:
cluster 2; C3: cluster 3. (b, c) The enrichment situation of immune cells in training cohort (b) and testing cohort (c) by ssGSEA (ns: not
significant; ∗p value < 0.05; ∗∗p value < 0.01; and ∗∗∗p value < 0.001). (d) CIBERSORT analysis of entire training cohort. (e, f) The
enrichment analysis result of immune functions in training cohort (e) and validation dataset (f) after ssGSEA (ns: not significant;
∗p value < 0.05; ∗∗p value < 0.01; and ∗∗∗p value < 0.001).
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CASP6 was suggested that may be related to apoptosis [72]
which attends to the occurrence and development of cancer
by promoting the activation of the ways of programmed cell
death in tumor issues [73]. And it has been detected in some
reports about pyroptosis as a prognostic biomarker in cancer
[74, 75]. Besides, CASP6 can mediate the activation of the
innate immune system and inflammasomes [76]; also, its
mutation associated with tumors can decrease the overall
catalytic turnover [77].

The result of GSEA based on the pyroptosis-related
genes suggested that the immune may play a relevant role
in pyroptosis and non-small-cell lung cancer and the path-
ways are mainly enriched in the immune system and innate
immune system. The inflammation induced by pyroptosis
can activate antitumor immunity and synergy with check-
point blockade [78]. The inflammasome is the key mediator

of lung immunity that would be regulated to release caspase-
1 [79]. The activation of caspase-1 will trigger the pyroptosis
[80]. Caspase-1-dependent process and secrete IL-1β and
IL-18 by means of inflammatory caspases activation and
the innate immune responses induced by macrophages [81,
82]. Besides, many studies identified that CD8+ T cells and
NK cells can suppress tumors through the induction of
pyroptosis of tumor cells in the immune microenvironment,
and the tumor cells under pyroptosis would recruit immune
cells for suppressing tumors, too [18, 78]. However, inducing
pyroptosis cannot be beneficial for all immunotherapy
modalities and sometimes would be required to work with
ICIs to kill the cold tumor cells efficiently [78].

The immune molecular phenotype may help identify the
patients who would benefit from immunotherapy [83]. In
this research, we identified three immune subtypes by
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Figure 9: Knockdown of BNIP3 induces pyroptosis in lung cancer cells. (A) 656, 683, 703, 714, and 715 are patient numbers,
immunohistochemical assay to compare BNIP3 expression in normal lung tissue and lung cancer tissue. (b) The expression of normal
lung tissue protein and lung cancer tissue protein expression were detected by western blotting assay. Densitometry of the ration of
BNIP3 was shown as bar chart. All data were representative of at least three independent experiments and presented as mean ± SD,
∗∗p < 0:01 compared with the control. 723, 719, 683, and 733 are patient numbers. (c) Using flow cytometry to detect cell death of
H358 after knockdown BNIP3. (d) Pyroptosis-related proteins were detected by western blotting assay. Densitometry of the ration of
protein was shown as bar chart. All data were representative of at least three independent experiments and presented as mean ± SD,
∗p < 0:05, ∗∗p < 0:01 compared with the control.
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consensus cluster analysis. Cluster 2 was supposed to be the
immune-desert phenotype because of the low immune and
stromal scores, and cluster 3 was the immune-inflamed phe-
notype with the high immune score. BNIP3 had a low
expression in the high-risk group and cluster 2. Meanwhile,
the high-risk group and cluster 2 had poor prognoses com-
pared with the low-risk group and cluster 3, respectively.
Hence, we supposed that the low expression level of BNIP3
suggested the immune-desert phenotype and the high level
of immune cell infiltration. And the high-risk group had a
poor prognosis because of it.

In conclusion, we constructed a prognostic nomogram
model with three pyroptosis-related genes and validated it
in another dataset and also explored the correlation between
pyroptosis-related and immune microenvironment based on
immune subgroups at the same time. A three-gene PRG sig-
nature (BNIP3, CASP9, and CAPN1) was identified, and
BNIP3 was identified as the core gene. Knockdown of BNIP3
significantly induced pyroptosis. In conclusion, the model
construction based on PRGs provides novel insights into
the prediction of NSCLC prognosis, and BNIP3 can serve
as a diagnostic biomarker for NSCLC. However, there are
still some limitations in this research. The patient data was
all acquired from the public database so that we did not
use more data to strengthen the reliability of the prognostic
model. The lack of experiments in vivo also makes our study
results unable to be further verified. Therefore, we need
forward-looking studies to improve the availability of this
prognostic model.
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