
Research Article
Identification and Validation of Two Heterogeneous Molecular
Subtypes and a Prognosis Predictive Model for Hepatocellular
Carcinoma Based on Pyroptosis

Minshan Lai,1,2 Qiang Liu ,3 Wenbo Chen,1,2 Xuxin Qi,1 Jianfeng Yang,3 Li Jiang,1

Meng Yuan,4 Zhichun Liu,4 Qiaojun He,1,4,5 Ji Cao ,1,4,5 and Bo Yang 1,4

1Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of
Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
2Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
3Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine,
Hangzhou 310006, China
4Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310058, China
5Cancer Center of Zhejiang University, Hangzhou 310058, China

Correspondence should be addressed to Ji Cao; caoji88@zju.edu.cn and Bo Yang; yang924@zju.edu.cn

Received 1 December 2021; Revised 27 June 2022; Accepted 9 August 2022; Published 28 August 2022

Academic Editor: Jayeeta Ghose

Copyright © 2022 Minshan Lai et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Hepatocellular carcinoma (HCC) is a worldwide malignant cancer with high incidence and mortality. Considering the high
heterogeneity of HCC, clarifying molecular characteristics associated with HCC development could help improve patients’
outcomes. Pyroptosis is a novel form of cell death and is noted to be implicated in HCC pathogenesis whereas its molecular
feature in HCC is unclear. Thus, we intended to clarify the molecular characteristic as well as the clinical significance of
pyroptosis for HCC. A systematic bioinformatics analysis was conducted among 40 pyroptosis-related genes based on The
Cancer Genome Atlas, the International Cancer Genome Consortium, and the Gene Expression Omnibus databases. A total of
12 HCC-associated pyroptosis-related genes (HPRGs) were identified to be overexpressed in HCC tissues and significantly
connected to patients’ poor survival. Through consensus clustering based on the HPRGs’ expression, we found patients could
be stratified into two distinctive pyroptosis subtypes, PyLow and PyHigh. The PyHigh group owned a notable lower survival
rate and a higher high-grade proportion compared with the PyLow subtype. Besides, patients’ sensitivities to chemotherapeutic
drugs also presented distinctive differences between the two subtypes. Indicated by pathway enrichment analysis and immune
characteristic difference analysis, the distinctions between the pyroptosis subtypes may be related to tumor immunity. Further,
a five-gene risk model composed of BAK1, CHMP4A, CHMP4B, DHX9, and GSDME was established. Subsequent analyses
demonstrated that the model could credibly classify patients as low or high risk and was an independent prognostic indicator
for HCC. Abnormal expressions of the five genes were validated by biological experiments and new bioinformatics analysis. In
conclusion, this study recognized and verified two heterogeneous pyroptosis subtypes and a predictable prognosis model for
HCC. Our work may help facilitate the clinical management and treatment of HCC and understand the functions of
pyroptosis in oncology.

1. Introduction

Liver cancer is a worldwide malignant cancer with high inci-
dence and mortality, representing the fourth contributing

cause of cancer deaths [1]. Hepatocellular carcinoma
(HCC), accounting for 75%-85% of liver cancer cases, is
the dominant type of liver cancer [2]. Although the progress
of early diagnosis and comprehensive treatment has been
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achieved in recent years, HCC patients’ prognosis remains
poor [3]. One of the major reasons accounting for challenges
in clinical management and treatment is the high molecular
heterogeneity of HCC [4–6]. Therefore, clarifying molecular
characteristics associated with HCC development may help
improve patients’ clinical outcomes.

Pyroptosis is a new type of proinflammatory pro-
grammed cell death, featured by cell swelling, lysis, and
release of cellular proinflammatory contents [7]. Pyroptosis
is mainly induced by two inflammasome pathways,
caspase-1 dependent or caspase-1 independent (depending
on caspase-4/5 in human or caspase-11 in mouse) [8].
Recently, pyroptosis was noted to play an essential role in
tumor pathogenesis and exhibit potential clinical signifi-
cance for many cancers [9]. For instance, pyroptosis-based
signature models were established to possibly serve as prog-
nostic indicators for gastric cancer [10], colorectal cancer
[11], and ovarian cancer [12]. In colorectal cancer [13], gas-
tric cancer [14], and bladder cancer [15], patients could be
stratified into two or three heterogeneous pyroptosis molec-
ular subtypes. In HCC, pyroptosis was reportedly engaged in
tumor pathogenesis [16], but its molecular characterization
remains largely explored.

Herein, we aimed to systematically investigate the
molecular classification potential as well as prognostic and
therapeutic values of pyroptosis for HCC patients. A com-
prehensive bioinformatics analysis was conducted based on
The Cancer Genome Atlas (TCGA) and the International
Cancer Genome Consortium (ICGC) databases utilized as
training and validation cohorts, respectively. A sum of 40
pyroptosis-related genes (PRGs) gathered from the Molecu-
lar Signatures Database (MSigDB) were analyzed [17]. Based
upon the expression data of PRGs and the survival profiles
of HCC patients, we identified two distinctive pyroptosis
subtypes and constructed a prognosis predictive model.

2. Materials and Methods

2.1. Data Downloading. mRNA expression and clinical pro-
files of HCC cases were extracted from TCGA database
through the UCSC Xena (including 50 adjacent and 374
HCC specimens) (http://xena.ucsc.edu/) and the ICGC data-
base (including 260 HCC samples) (https://dcc.icgc.org/).
After removing samples replicated, expression data lost,
overall survival (OS) data lost, or survival time less than 30
days, only 343 HCC samples in TCGA and 228 HCC sam-
ples in ICGC were employed. Before analyzing, gene expres-
sion was converted to transcripts per million (TPM) [18].
Genes related to pyroptosis were extracted from MSigDB
(https://www.gsea-msigdb.org/gsea/msigdb/) [17]. There
were 18 and 27 genes in GOBP_PYROPTOSIS and REAC-
TOME_PYROPTOSIS, respectively. After removing dupli-
cated genes from the two gene sets, a sum of 40 genes were
left and defined as PRGs.

2.2. Identifying HCC-Associated PRGs. The Wilcoxon test
was adopted to measure the expression difference of PRGs
between normal and HCC samples. The log-rank test was
conducted to estimate the prognostic effects of PRGs

employing the “survival” package [19]. Kaplan-Meier (KM)
curves were plotted by the “survminer” package [20]. Only
PRGs with P values in the above analyses less than 0.05 were
defined as HCC-associated PRGs (HRPGs).

2.3. Consensus Clustering. On the basis of the HPRGs’
expression, HCC patients were classified into k (2 to 9) clus-
ters utilizing the “ConsensusClusterPlus” package [21]. The
optimal clustering number of samples was determined
according to the slow growth rate of cumulative distribution
function (CDF) value. Using the HPRGs as a gene list, the
integrated pyroptosis score for each patient was computed
by the single sample gene set enrichment analysis (ssGSEA)
algorithm in the “GSVA” package [22]. Differences of inte-
grated pyroptosis score and HRPG expression between the
subtypes were analyzed by the Wilcoxon test. To inspect
pyroptosis pattern difference between the subtypes, t-
distributed stochastic neighbor embedding (t-SNE) was per-
formed using the “Rtsne” package [23]. t-SNE is a data
dimensionality reduction algorithm that can separate or
condense samples into various disparate groups based upon
the provided signatures or hallmarks [24].

2.4. Clinical Values of the Molecular Classification. Survival
rate differences between the pyroptosis subtypes were esti-
mated by the log-rank test. The chi-square test was applied
to determine the associations between the pyroptosis sub-
types and clinical characteristics. In this part, patients who
lost information of age, gender, grade, or stage were
removed. Finally, 317 and 209 samples were, respectively,
left in TCGA and ICGC cohort. Drug sensitivity of chemo-
therapeutic drugs for HCC patients was assessed based on
the Genomics of Drug Sensitivity in Cancer (GDSC) data-
base (https://www.cancerrxgene.org/) using the half-
maximal inhibitory concentration (IC50) predicted by the
“pRRophetic” algorithm as an indicator [25]. The Wilcoxon
test was adopted to assess drug sensitivity differences
between the risk groups. P < 0:05 was considered
meaningful.

2.5. Pathway Enrichment Analysis. Expression differences
between the subtypes were evaluated with log2 (meanPy-
High–meanPyLow) (logFC) and P values calculated by the
Wilcoxon test. P values were adjusted by the false discovery
rate (FDR) method [26]. Genes with jlogFCj > 1:5 and
FDR < 0:001 were considered as differently expressed genes
(DEGs). Kyoto Encylopedia of Genes and Genomes (KEGG)
was carried out to explore pathways enriched among DEGs
employing the “clusterProfiler” package [27]. P < 0:05 was
considered meaningful.

2.6. Immune Characteristic Analysis. Tumor microenviron-
ment (TME) components including StromalScore, Immune-
Score, and ESTIMATEScore were obtained by the
ESTIMATE algorithm [28]. A list of 28 tumor-infiltrating
lymphocytes (TILs) was downloaded from the TISIDB data-
base (http://cis.hku.hk/TISIDB/index.php) [29]. Cytokine-
related genes’ (CRGs) list was gathered from the ImmPort
database (https://www.immport.org/home) [30]. Patients’
TIL abundance was estimated by the ssGSEA algorithm.
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Figure 1: Continued.
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Differences of TME components, TIL abundance, and CRG
expression level between the subtypes were evaluated by the
Wilcoxon test. P < 0:05 was regarded meaningful.

2.7. Predictive Risk Model Construction. The predictive risk
model based on the HPRG expression was constructed by
the least absolute shrinkage and selection operator (LASSO)
penalized regression analysis employing the “glmnet” pack-
age [31, 32]. The risk score of each sample was computed
based upon the model genes’ TPM expression value and
coefficient obtained by LASSO regression analysis. KM curve
tested by log-rank test and ROC curve were drawn to evalu-
ate the model’s prognostic value for patients. Other HCC
datasets with survival information, GSE14520 (n = 221),
GSE76427 (n = 95), and GSE10143 (n = 80), were also
downloaded from the Gene Expression Omnibus (GEO)
database (http://www.ncbi.nlm.nih.gov/geo/) to test the
model genes’ performance. Univariate and multivariate
Cox proportional hazards regression analyses of the risk
score and conventional clinical features were carried out to
test whether the risk score was an independent prognostic
factor for HCC patients. Only variables with P < 0:05 in
the univariate Cox analysis in both the databases were
included in the multivariate Cox analysis.

2.8. Expression Differences’ Validation. Expression differ-
ences of the model genes were validated through expression
difference analysis based on GEO database, quantitative real-
time PCR (qRT-PCR) analysis, and immunohistochemistry
analysis. In expression difference analysis, mRNA expression
profiles were extracted from three GEO datasets (GSE25097,
GSE36376, and GSE45436, http://www.ncbi.nlm.nih.gov/

geo/) and then tested by the Wilcoxon test. The number of
HCC samples and normal samples is 268 and 243 in
GSE25097, 240 and 193 in GSE36376, and 95 and 39 in
GSE45436. In qRT-PCR analysis, total RNA was extracted
using RNAiso Plus (TaKaRa) and reverse transcribed into
cDNA with TransScript One-Step gDNA Removal and
cDNA Synthesis SuperMix (TransGen Biotech) followed by
qPCR detection using the SYBR Green qPCR Master Mix
(Bio-Rad). Primers are listed in Table S1. Genes’
expression levels were calculated by the 2 − ΔΔCt method
and then analyzed by the Welch’s t-test. Protein expression
differences were investigated by comparing their staining
level differences based on the immunohistochemistry
analysis results from the Human Protein Atlas database
(HPA, https://www.proteinatlas.org/) [33, 34].

2.9. Statistical Analysis. All analyses were carried out in the
R 4.0.4 software except qRT-PCR data which was analyzed
in the GraphPad Prism 8.0.1 software. All packages and
parameters applied in the ICGC cohort were the same as
those in TCGA cohort.

3. Results

3.1. Identification of HCC-Associated PRGs. The intention of
this study is shown in Figure 1(a). We aimed to explore the
clinical significance including the molecular classification
potential as well as the prognostic and therapeutic signifi-
cances of pyroptosis for HCC patients. Firstly, differential
expression analysis and log-rank test were conducted in
TCGA cohort to identify PRGs involved in HCC pathogene-
sis. Results revealed that 31/40 PRGs expressed aberrantly in
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Figure 1: Identifying HPRGs. (a) The intention of this study. (b) Boxplot showing the expression alterations of the 40 PRGs between
adjacent and HCC specimens in TCGA cohort. Wilcoxon test: ns: P > 0:05, ∗: P < 0:05, ∗∗: P < 0:01, ∗∗∗: P < 0:001, and ∗∗∗∗: P <
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HCC samples (Wilcoxon test, P < 0:05, Figure 1(b) and
Table S2), most of which were overexpressed in HCC
tissues except AIM2, ELANE, and IL1B. According to KM
curves, upregulation of 12/31 diagnostic PRGs, including
APIP, BAK1, BAX, CASP3, CASP4, CHMP2B, CHMP3,
CHMP4A, CHMP4B, GSDME, DHX9, and IL1A, exhibited
a significant connection with a bad prognosis of patients
(log-rank test, P < 0:05, Figures 1(c)–1(n) and Table S2).
These 12 PRGs might be potential prognostic factors for
HCC samples and were defined as HPRGs.

3.2. Identification of Pyroptosis Subtypes for HCC Patients.
Consensus clustering was performed in TCGA cohort based
on the 12 HPRG expression level. According to the consen-
sus CDF curve, HCC patients could be stratified into two
pyroptosis subtypes for which k = 2 there was the flattest
middle segment of the CDF curve (Figure 2(a)). The consen-
sus matrix also confirmed that when k = 2 the consensus of
intragroup was high and that of intergroup was low
(Figures 2(b) and 2(c)). Since the expression level of each
HRPG was notably higher in subtype 1 (Wilcoxon test, P

P < 0.001
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Figure 3: Clinical significances of the pyroptosis classification. (a, b) KM curves indicating the OS difference between the two subtypes in
TCGA and ICGC cohorts. (c, d) Estimated IC50 value differences of chemotherapeutic drugs between the two subtypes in TCGA and ICGC
databases. Wilcoxon test: ns: P > 0:05, ∗∗: P < 0:01, ∗∗∗: P < 0:001, and ∗∗∗∗: P < 0:0001.
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< 0:0001, Figure 2(d)), we defined subtype 1 and subtype 2
as the PyHigh subtype and the PyLow subtype, respectively.
Utilizing the 12 HPRGs as gene list, we enumerated an inte-
grated pyroptosis score for each patient according to the
ssGSEA algorithm. Differential analyses showed that the
PyHigh group possessed remarkably a higher integrated
pyroptosis score than the PyLow one (Wilcoxon test, P <
0:0001, Figure 2(e)), which is in line with the trend of HPRG
expression discrepancies. Besides, the t-SNE analysis also
demonstrated a distinctively different expression pattern of
the 12 HPRGs between the two subtypes (Figure 2(f)).

To validate the classification effect in TCGA cohort, we
also conducted consensus clustering in the ICGC cohort.
Consequently, HCC patients were still clustered into two
subtypes, subtype 1′ and subtype 2′ (Figures 2(g)–2(i)).
According to the differentials of HPRG expression level as

well as integrated pyroptosis score between the two subtypes,
subtype 1′ was the PyLow group, and subtype2 ′ corre-
sponded to the PyHigh subtype (Figures 2(j) and 2(k)). In
t-SNE analysis, the two subtypes also presented a distinctive
distribution (Figure 2(l)). Collectively, the above results
demonstrated that HCC patients could be stratified into
two heterogeneous pyroptosis status subtypes.

3.3. Prognostic and Therapeutic Values of the Pyroptosis
Classification for HCC. The prognostic significance of the
pyroptosis classification for HCC was further inspected. In
TCGA cohort, the PyHigh subtype patients owned a signifi-
cantly lower OS rate than the PyLow subtype ones (log-rank
test, P < 0:001, Figure 3(a)). Similarly, the PyHigh subtype
patients in the ICGC cohort were also in connection with a
poorer prognosis (log-rank test, P = 0:023, Figure 3(b)).What

Table 1: Associations between the clinicopathological characteristics and the pyroptosis subtypes.

Characteristic
TCGA (N = 317) ICGC (N = 209)

PyLow (n = 205) PyHigh (n = 112) P PyLow (n = 150) PyHigh (n = 59) P

Age

≤65 128 (62.4%) 79 (70.5%)
0.185

54 (36.0%) 23 (39.0%)
0.808>65 77 (37.6%) 33 (29.5%) 96 (64.0%) 36 (61.0%)

Gender

Female 60 (29.3%) 41 (36.6%)
0.225

42 (28.0%) 11 (18.6%)
0.221

Male 145 (70.7%) 71 (63.4%) 108 (72.0%) 48 (81.4%)

Grade

G1+G2 139 (67.8%) 56 (50%)
0.003

117 (78.0%) 33 (55.9%)
0.003

G3+G4 66 (32.2%) 56 (50%) 33 (22.0%) 26 (44.1%)

Stage

I+II 154 (75.1%) 80 (71.4%) 0.561 100 (66.7%) 33 (55.9%) 0.196

III+IV 51 (24.9%) 32 (28.6%) 50 (33.3%) 26 (44.1%)
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9Oxidative Medicine and Cellular Longevity



is more, differences in disease-free survival (DFS),
progression-free survival (PFI), and disease-specific survival
(DSS) between the subtypes were examined in TCGA cohort
(these survival data were not available in the ICGC cohort).
Similar to the KM analysis result of OS, the DSS rate in the
PyHigh subtype was significantly shorter than that in the
PyLow subtype (log-rank test, P = 0:033, Figure S1(a)).

However, there was no significant differences on PFS or
DFS (log-rank test, P = 0:072 and P = 0:096, respectively,
Figures S1(b) and S1(c)). Further, associations between the
clinicopathological features and the subtypes were
investigated. As shown in Table 1, the proportion of high
grade (G3+G4) was notably higher in the PyHigh subtype
than in the PyLow subtype in both datasets (chi-square test,
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Figure 5: Immune characteristic difference between the subtypes. (a–c) Immune characteristic difference analyses in TCGA cohort.
Wilcoxon test: ns: P > 0:05, ∗: P < 0:05, ∗∗: P < 0:01, ∗∗∗: P < 0:001, and ∗∗∗∗: P < 0:0001. (a) TME component differences. (b) 28 TIL
abundance differences. (c) CRG expression differences. (d–f) Immune characteristic difference analyses in the ICGC cohort. Wilcoxon
test: ns: P > 0:05, ∗: P < 0:05, ∗∗: P < 0:01, ∗∗∗: P < 0:001, and ∗∗∗∗: P < 0:0001. (d) TME component differences. (e) 28 TIL
abundance differences. (f) CRG expression differences.
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P = 0:003 and P = 0:003, Table 1). However, we were unable to
detect significant association with other clinicopathological
variables (chi-square test, P > 0:05, Table 1).

Drug sensitivity differences of 6 common chemothera-
peutic drugs (Axitinib, Doxorubicin, Erlotinib, Pazopanib,
Sorafenib, and Sunitinib) for HCC patients were tested
between the two subtypes [35]. Applying the pRRophetic
algorithm [25], we estimated the IC50 of the drugs based
upon the GDSC database. Results indicated that Doxorubi-
cin was more sensitive to the PyHigh subtype patients while
Axitinib, Erlotinib, and Pazopanib presented more sensitiv-
ity to the PyLow subtype patients (Wilcoxon test, P < 0:05,
Figure 3(e)). Analysis results in the ICGC cohort exhibited
similar results to TCGA cohort.

3.4. Functional Analysis of Differentially Expressed Genes
between the Pyroptosis Subtypes. DEGs between the two sub-
types were identified based on differential expression analy-
sis. Then, enriched pathways among these DEGs were
determined through the KEGG analysis. In differential
expression analysis, 1119 genes were expressed aberrantly
in TCGA cohort, among which 1063 genes were overex-

pressed in the PyHigh subtype (Table S3). In the ICGC
cohort, 1659 and 72 genes were noted, respectively, up-
and downregulated in the PyHigh subtype (Table S4).
Pathway analysis in TCGA cohort indicated that several
immune-relevant pathways, such as cytokine-cytokine
receptor interaction, viral protein interaction with cytokine
and cytokine receptor, and IL-17 signaling pathway, were
significantly enriched among the DEGs (P < 0:05,
Figure 4(a)). Interestingly, the pathways enriched in TCGA
cohort were also remarkably enriched in the ICGC
database (P < 0:05, Figure 4(b)). These results indicated
that the potential mechanisms of the pyroptosis subtype
affecting patients’ survival and drug sensitivity may be
related to immunity. Thus, we further explored the
differences in immune characteristics between the
pyroptosis subtypes.

3.5. Immune Characteristic Differences between the
Pyroptosis Subtypes. Immune characteristic differences
between the pyroptosis subtypes were compared on three
levels: TME components, TIL abundance, and CRG expres-
sion level. In TME component analyses, the PyHigh subtype

Table 2: Univariate Cox regression analyses of the risk score and clinicopathological features.

Characteristic
TCGA ICGC

HR (95% CI) P HR (95% CI) P

Age

≤65 1
0.584

1
0.228>65 1.115 (0.755–1.648) 1.551 (0.760–3.167)

Gender

Female 1
0.199

1
0.049

Male 0.776 (0.526–1.143) 0.502 (0.253–0.998)

Grade

G1+G2 1
0.611

1
0.003

G3+G4 1.105 (0.751–1.627) 2.702 (1.402–5.208)

Stage

I+II 1
0.001

1
0.004

III+IV 1.944 (1.312–2.881) 2.623 (1.357–5.072)

Risk score

Low 1
0.008

1
0.020

High 1.684 (1.146–2.473) 2.259 (1.136–4.496)

HR: hazard ratio.

Table 3: Multivariate Cox regression analyses of the risk score and clinicopathological features.

Characteristic
TCGA ICGC

HR (95% CI) P HR (95% CI) P

Stage

I+II 1
0.001

1
0.007

III+IV 1.97 (1.328–2.922) 2.483 (1.282–4.809)

Risk score

Low 1
0.007

1
0.033

High 1.705 (1.16–2.507) 2.121 (1.061–4.242)

HR: hazard ratio.
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Figure 7: Continued.
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harbored notably higher ImmuneScore and ESTIMATE-
Score than the PyLow subtype in both TCGA and ICGC
databases (Wilcoxon test, P < 0:05, Figures 5(a) and 5(d)).
The abundance of several TILs, including activated CD4 T
cell, central memory CD4 T cell, natural killer T cell, regula-
tory T cell, myeloid derived suppressor cell, activated den-
dritic cell, plasmacytoid dendritic cell, and mast cell, was
significantly richer in the PyHigh subtype in both the two
cohorts (Wilcoxon test, P < 0:05, Figures 5(b) and 5(e)).
Since cytokine-related pathways were notably enriched in
KEGG analysis, we also investigated expression differences
of CRGs between the subtypes. Results suggested that there
were 31 cytokines and 18 cytokine receptors simultaneously
expressed aberrantly in the two cohorts, and all of them were
overexpressed in the PyHigh subtype (Wilcoxon test, j
logFCj > 1:5, FDR < 0:001, Figures 5(c) and 5(f)). In sum-
mary, TME components, TIL abundance, and CRG expres-
sion level were markedly richer in the PyHigh group than
in the PyLow group.

3.6. Construction of Pyroptosis Signature Predictive Model.
To evaluate the joint effect of the 12 HRPGs on patients’
survival, we established a multigene prognostic model by
conducting the LASSO penalized regression analysis in
TCGA cohort. Consequently, a 5-gene signature was iden-
tified according to the optimal value of λ (Figures 6(a) and
6(b)). Each patient’s risk value was computed following
the formula risk score = ð0:0041 × BAK1ExpÞ + ð0:0227 ×
CHMP4AExpÞ + ð0:0006 × CHMP4BExpÞ + ð0:0044 × DHX
9ExpÞ + ð0:0406 × GSDMEExpÞ. Based upon the median risk
value, samples were separated into low- or high-risk
groups. Survival analysis indicated that the high-risk group
was markedly correlated to the lower OS rate of patients
(log-rank test, P = 0:002, Figure 6(c)). Further, we imputed

patients’ risk values in the ICGC database utilizing the
same formula in TCGA cohort and divided them into
two risk groups. Similarly, patients’ prognosis in the
high-risk group was noticeably poorer than in the low-
risk group (log-rank test, P = 0:026, Figure 6(d)). Besides,
area under the ROC curves (AUCs) in the two cohorts
were both more than 0.6 (0.646 in TCGA, and 0.637 in
ICGC, Figures 6(e) and 6(f)) [36]. The model’s perfor-
mances on predicting patients’ DSS, PFS, and DFS in
TCGA cohort were also estimated. KM curves demon-
strated that the high-risk group was also significantly associ-
ated with the lower DSS and PFS rate of patients (log-rank
test, P = 0:007 and P = 0:033, respectively, Figures S2(a) and
S2(b)), but the DFS rate showed no significant difference
(log-rank test, P = 0:238, Figure S2(c)). AUCs of DSS, PFS,
and DFS were 0.665, 0.564, and 0.547, respectively,
(Figures S2(d)–S2(f)). Based on a microarray dataset,
GSE76427, patients’ OS difference between the low-risk and
high-risk groups was not significant (log-rank test, P > 0:05,
Figure S3(a)) and the AUC value was less than 0.6
(Figure S3(b)). To test the model’s generalization ability to
other tumors, we analyzed another digestive tract cancer,
pancreatic cancer (PAAD) from TCGA database, for the
reason that the pancreas and liver have been reported to
probably share differentiation patterns [37]. Results
demonstrated that patients’ OS rate in the high-risk group
was significantly lower than that in the low-risk group (log-
rank test, P = 0:024, Figure S3(c)) and the AUC reached
0.647 (Figure S3(d)). We also conducted survival analysis for
the individual model genes (GSDME, BAK1, and DHX9)
which cooccurred in the HCC datasets with survival
information, GSE14520, GSE76427, and GSE10143. Results
showed that high expression of GSDME and DHX9 in
GSE14520 was significantly associated with patients’ poorer
OS (log-rank test, P = 0:016 and P = 0:017, respectively,
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Figure 7: Validating the model genes’ expression differences at mRNA level. Genes’ expression alterations between adjacent and HCC
tissues in the (a) GSE25097, (b) GSE36376, and (c) GSE45436 datasets. Wilcoxon test: ∗P < 0:05, ∗∗∗P < 0:001, and ∗∗∗∗P < 0:0001. (d–h)
Genes’ relative expression differences between normal liver cell line (LO2) and four HCC cell lines (Bel-7402, SNU-182, Li-7, and
HepG2) based on the qRT-PCR experiment. Welch’s t-test: ns: P > 0:05, ∗: P < 0:05, ∗∗: P < 0:01, ∗∗∗: P < 0:001, and ∗∗∗∗: P < 0:0001.
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Figures S4(a) and S4(b)) consistent with the results in TCGA,
while the others showed no significant difference (log-rank
test, P > 0:05, Figures S4(c)–S4(i)).

To test the genetic selection consistency, we also per-
formed elastic net regression analysis among the 12 HPRGs
as suggested by a published article [38]. As a result, a total of
six genes were selected out (Table S5). Interestingly, the five
genes selected by the LASSO algorithm were all included and
ranked in top five in terms of coefficients. What is more, to
test whether the predictive ability of the model was
independent of confounding factors, we carried out
univariate and multivariate Cox regression analyses among
the risk score and clinicopathological features. Results
demonstrated that the risk score was significantly associated
with patients’ OS in both the cohorts (univariate analysis: P
= 0:008 and P = 0:020 in TCGA and the ICGC cohort,
respectively, Table 2; multivariate analysis: P = 0:007 and P
= 0:033 in TCGA and the ICGC cohort, respectively,
Table 3). Further, when dividing patients into two groups,
early stage and advanced stage, the risk model still
performed well (in TCGA, 0.619 and 0.682 for stage I+II
and stage III+IV patients, respectively; in ICGC, 0.670 and
0.627 for stage I+II and stage III+IV patients, respectively,
Figures S3(c) and S3(d)). These indicated that the risk score
is an independent prognostic indicator for HCC patients.

3.7. Validating the Model Genes’ Expression Differences. To
verify the five model genes’ abnormal expressions, we pre-
formed several different analyses. In mRNA expression dif-
ference analysis based on GEO databases, all the model
genes were significantly overexpressed in HCC tissues in
GSE25097, GSE36376, and GSE45436 datasets (Wilcoxon
test, P < 0:05, Figures 7(a)–7(c)). In the qRT-PCR experi-
ment, mRNA expression levels of BAK1, CHMP4B, and
DHX9 were significantly higher in all experimental HCC cell
lines than in normal one while GSDME and CHMP4A were
only higher in three and one HCC cell lines, respectively,
(Welch’s t-test, P < 0:05, Figures 7(d)–7(h)). Besides, genes’
expression differences at the protein level were also detected
by immunohistochemistry results from the HPA database.
Consistently, BAK1, CHMP4B, DHX9, and GSDME were
upregulated in HCC tissues while CHMP4A showed no sig-
nificant staining level difference (Figures 8(a) and 8(j)).

4. Discussion

Tumor-promoting inflammation is one of the ten well-
known characteristics of cancer [39]. As a new type of
proinflammatory cell death, pyroptosis has gained rising
prominence in cancer research recently [9]. In HCC,
pyroptosis was also noted to be engaged in tumor patho-
genesis [16]. In this study, we systematically clarify the
classification potential as well as prognostic and therapeu-
tic values of pyroptosis for HCC patients via a compre-
hensive bioinformatics analysis based on TCGA and
ICGC databases. We found that HCC patients could be
stratified into two heterogeneous pyroptosis clusters, the
PyHigh subtype and the PyLow subtype. Compared with
the PyLow group, the PyHigh subtype presented significantly

higher pyroptosis expression pattern, poorer prognosis, dif-
ferent drug sensitivities, and richer immune abundance.
Besides, we constructed a novel multigene predictive model
for HCC patients and validated the model genes’ expression
differences through several different analyses. Recently, some
similar studies about different PRG research in HCC subtype
identification [40–46] and predictive model construction
[40–49] have been published. However, in all the previous
subtype identification studies, the cluster analyses were con-
ducted only in one cohort while we also tested in a validation
cohort. Besides, further feature analyses between the sub-
types in those studies were limited, leaving other features
such as drug sensitivity unclear. Moreover, the association
between the pyroptosis pattern and other features of the sub-
types were not elucidated. In the predictive model construc-
tion studies, most of them did not perform expression
validation for the model genes [41–48]. In a word, we have
conducted in-depth analyses for the molecular subtypes
and validated the mode genes’ expression by various analyses
which makes our results more reliable and practical in HCC
clinical application as well as its future research.

Usually, pyroptosis is reckoned to be induced by
caspase-1-dependent or caspase-1-independent ways with
GSDMD as the effector. In recent years, a novel avenue,
namely, the caspase-3-GSDME axis, has been identified.
In the pathway, activation of caspase-3 could induce
GSDME cleavage and thus result in pore formation and
ultimately trigger pyroptosis [9]. According to our results,
both CASP3 and GSDME exhibited as potential poor
prognosis indicators for HCC patients, while GSDMD
showed no significant effect on patients’ OS. Moreover,
GSDME contributed the most to predicting patients’ risk
with a coefficient of 0.0406 in the HPRG combined model.
Interestingly, the association of caspase-3-GSDME axis
pyroptosis with liver disease has also been noted in previ-
ous studies. GSDME, but not GSDMD, was found to be
essential for miltirone-triggered pyroptosis in inhibiting
HCC cell lines’ viability [50]. The treatment effect of
As2O3 on HCC cells was reported closely related to
caspase-3-dependent GSDME pyroptosis [51]. In another
study, GSDME-derived caspase-3 inhibitors were found
to capably protect mice from acute hepatic failure [52].
Based on the above, we supposed that pyroptosis playing
an effect on HCC might be tightly correlated with the
caspase-3-GSDME pathway.

Pyroptosis is a double-edged sword for tumors [53]. It
can on the one hand stimulate tumor proliferation
through harboring a suitable microenvironment for tumor
cell growth and on the other hand suppress tumor devel-
opment via triggering pyroptotic cell death [54]. In our
study, high pyroptosis expression pattern mainly acted as
a bad indicator for HCC patients’ prognosis. For example,
high expression of HPRGs was all notably in connection
with the poor OS of HCC patients. The coefficient of each
HRPG in the risk model is positive, implying their harm-
ful effect on patients’ prognosis. Consensus clustering is a
common unsupervised clustering method widely applied in
molecular stratification for cancer based on gene expres-
sion data [55]. In the field of pyroptosis, it has also been
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utilized in molecular classification for colorectal cancer
[13], gastric cancer [14], and bladder cancer [15].
Applying the method in HCC, we found that patients
could be stratified into two distinctive pyroptosis subtypes
based on HPRGs’ expression. Moreover, the PyHigh sub-
type patients exhibited a lower OS rate and a higher
high-grade proportion than the PyLow group ones.

In terms of mechanism, pyroptosis affecting HCC
patients’ prognosis and progress are inseparable from tumor
immunity. In our study, several results from multiangle have
implicated it. First, several immune-relevant biological func-
tions, such as viral protein interaction with cytokine and
cytokine receptor, were remarkably enriched. Second, TME
components, TIL inflation level, and CRG expression con-
formably harbored more abundant in the PyHigh group in
both the databases. It is well acknowledged that hepatitis B
and C viruses are the two crucial risk causes for HCC [56].
They can affect HCC development in many ways, such as
inflammation induction [57]. As an important component
of the immune system and released in response to infection,
inflammation, and carcinogen-induced injury, cytokine was
found critically in promoting HCC carcinogenesis and pro-
gression [58]. Cytokine activity was a key signal of severity
and development of hepatitis B or C virus infections [59].
Differential infiltration levels of TILs between the subtypes
mainly exhibited in dendritic cell and T cell. Coincidentally,
dendritic cell is one of the major documented places where
pyroptosis occurs [60]. Besides, GSDME-mediated pyropto-
sis was reportedly essential in triggering cytokine storm dur-
ing chimeric antigen receptor T cell therapy [61]. In
addition, according to previous researches, the pyroptosis
subtypes of other cancers also harbored distinguished TME
landscapes [13–15].

In the drug sensitivity test, 4 common chemotherapy
drugs, Axitinib, Doxorubicin, Erlotinib, and Pazopanib,
presented noticeably different sensitivities to the two sub-
types. A previous study found that Erlotinib could elicit
GSDME-modulated pyroptotic tumor cell death in lung can-
cer [62]. Overexpression of GSDME in cervical cancer cell
could result in Doxorubicin-induced apoptosis shifting into
pyroptosis in a CASP3-dependent manner [63]. In lung can-
cer cells, Doxorubicin was also reported to capably induce
robust pyroptosis and GSDME cleavage [63]. Moreover,
the sensitivity of Doxorubicin to melanoma cells was
increased after silencing eEF-2K resulting in Doxorubicin-
induced autophagy switching to GSDME-dependent pyrop-
totic cell death [64].

Nevertheless, there are some limitations of our research.
For example, only the most applied mRNA expression data
for tumor classificationwas included inHCCsubtyping.Other
omics data, such as gene mutation, which is also important to
tumor heterogeneity, should be considered in the future. Sec-
ondly, some model genes’ expression showed no significant
association with patients’ survival in some GEO datasets.
Actually, since gene’s expression was affected by various con-
founding factors, usually several genes combined together
rather than single gene alone were utilized to conduct predic-
tive model [65]. The risk model performed poorly in the
GSE76427 dataset but did well in the TCGA-PAAD cohort.

We suspect the methodology difference that TCGA and the
ICGC utilize the RNA-sequencing method while the GEO
datasets apply the microarray approach may account for the
inconsistent results.

5. Conclusions

In summary, we have recognized and verified two heteroge-
neous pyroptosis subtypes and a multigene prognostic
model for HCC patients. Mechanically, pyroptosis playing
an effect on HCC development is closely related to tumor
immunity. These results may help guide HCC clinical man-
agement and deepen the understanding of pyroptosis.

Data Availability

The databases utilized in the current research can be down-
loaded at https://portal.gdc.cancer.gov/ and http://xena.ucsc
.edu/ (the TCGA-LIHC and TCGA-PAAD cohorts), https://
dcc.icgc.org/ (the ICGC LIRI-JP cohort), and http://www.ncbi
.nlm.nih.gov/geo/ (the GSE14520, GSE76427, GSE10143,
GSE25097, GSE36376, and GSE45436 datasets).

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The research was supported by the Key R&D Program of
Zhejiang Province (2020C03010 to B.Y), the National
Natural Science Foundation of China (No. 81872885 to
J.C), the Zhejiang University K.P. Chao’s High Technology
Development Foundation, and the Key Projects of Hang-
zhou Agricultural and Social Development Program (No.
20200416A36 to Qiaojun He).

Supplementary Materials

Figure S1: (a–c) KM curves indicating the differences of DSS,
PFS, and DFS between the two pyroptosis subtypes in TCGA
cohort. Figure S2: (a–c) KM curves showing the prognosis
discrepancies of DSS, PFS, and DFS between the low- and
high-risk groups in TCGA cohort. (d–f) ROC curves of the
risk model in predicting patients’ DSS, PFS, and DFS in
TCGA cohort. Figure S3: (a–d) KM curves and ROC curves
of the risk model in the GSE76427 dataset (a, b) and the
TCGA-PAAD cohort (c, d). (e, f) ROC curves of the risk
model for different stages of patients in TCGA cohort (e)
and the ICGC cohort (f). Figure S4: KM curves of GSDME,
BAK1, and DHX9 in the GSE14520 (a–c), GSE76427 (d–f),
and GSE10143 (g–i) datasets. Table S1: primer sequences
applied in the qRT–PCR experiment. Table S2: differential
expression analysis and log-rank test results of the 40 PRGs
in TCGA cohort. Table S3: differentially expressed genes
(DEGs) between the two subtypes in TCGA cohort. Table
S4: Differentially expressed genes (DEGs) between the two
subtypes in the ICGC cohort. Table S5: coefficients of the
six genes selected by the elastic net algorithm in TCGA
cohort. (Supplementary Materials)

17Oxidative Medicine and Cellular Longevity

https://portal.gdc.cancer.gov/
http://xena.ucsc.edu/
http://xena.ucsc.edu/
https://dcc.icgc.org/
https://dcc.icgc.org/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://downloads.hindawi.com/journals/omcl/2022/8346816.f1.zip


References

[1] H. B. El Serag, “Epidemiology of Hepatocellular Carci-
noma,” in The liver: Biology and pathobiology, pp. 758–
772, 2020.

[2] F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre,
and A. Jemal, “Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 can-
cers in 185 countries,” CA: a Cancer Journal for Clinicians,
vol. 68, no. 6, pp. 394–424, 2018.

[3] L. Kulik and H. B. El-Serag, “Epidemiology and management
of hepatocellular carcinoma,” Gastroenterology, vol. 156,
no. 2, pp. 477–491.e1, 2019.

[4] L. Cabral, C. Tiribelli, and C. H. C. Sukowati, “Sorafenib
resistance in hepatocellular carcinoma: the relevance of
genetic heterogeneity,” Cancers (Basel), vol. 12, no. 6,
p. 1576, 2020.

[5] A. J. Craig, J. von Felden, T. Garcia-Lezana, S. Sarcognato, and
A. Villanueva, “Tumour evolution in hepatocellular
carcinoma,” Gastroenterology & Hepatology, vol. 17, no. 3,
pp. 139–152, 2020.

[6] S. Zhu and Y. Hoshida, “Molecular heterogeneity in hepatocel-
lular carcinoma,” Hepatic Oncology, vol. 5, no. 1, p. HEP10,
2018.

[7] P. Broz and V. M. Dixit, “Inflammasomes: mechanism of
assembly, regulation and signalling,” Nature Reviews
Immunology, vol. 16, no. 7, pp. 407–420, 2016.

[8] S. M. Man, R. Karki, and T. D. Kanneganti, “Molecular mech-
anisms and functions of pyroptosis, inflammatory caspases
and inflammasomes in infectious diseases,” Immunological
Reviews, vol. 277, no. 1, pp. 61–75, 2017.

[9] Y. Fang, S. Tian, Y. Pan et al., “Pyroptosis: a new frontier in
cancer,” Biomedicine & Pharmacotherapy, vol. 121, article
109595, 2020.

[10] W. Shao, Z. Yang, Y. Fu et al., “The pyroptosis-related signa-
ture predicts prognosis and indicates immune microenviron-
ment infiltration in gastric cancer,” Frontiers in Cell and
Developmental Biology, vol. 9, 2021.

[11] C. Zheng and Z. Tan, “A novel identified pyroptosis-related
prognostic signature of colorectal cancer,” Mathematical
Biosciences and Engineering, vol. 18, no. 6, pp. 8783–8796,
2021.

[12] Y. Ye, Q. Dai, and H. Qi, “A novel defined pyroptosis-related
gene signature for predicting the prognosis of ovarian
cancer,” Cell Death Discovery, vol. 7, no. 1, p. 71, 2021.

[13] W. Song, J. Ren, R. Xiang, C. Kong, and T. Fu, “Identifica-
tion of pyroptosis-related subtypes, the development of a
prognosis model, and characterization of tumor microenvi-
ronment infiltration in colorectal cancer,” Oncoimmunology,
vol. 10, no. 1, p. 1987636, 2021.

[14] R. Xiang, Y. Ge, W. Song, J. Ren, C. Kong, and T. Fu, “Pyrop-
tosis patterns characterized by distinct tumor microenviron-
ment infiltration landscapes in gastric cancer,” Genes, vol. 12,
no. 10, p. 1535, 2021.

[15] X. Chen, H. Chen, H. Yao et al., “Turning up the heat on non-
immunoreactive tumors: pyroptosis influences the tumor
immune microenvironment in bladder cancer,” Oncogene,
vol. 40, no. 45, pp. 6381–6393, 2021.

[16] Q. Chu, Y. Jiang, W. Zhang et al., “Pyroptosis is involved in
the pathogenesis of human hepatocellular carcinoma,” Onco-
target, vol. 7, no. 51, pp. 84658–84665, 2016.

[17] A. Liberzon, A. Subramanian, R. Pinchback,
H. Thorvaldsdottir, P. Tamayo, and J. P. Mesirov, “Molecular
signatures database (MSigDB) 3.0,” Bioinformatics, vol. 27,
no. 12, pp. 1739-1740, 2011.

[18] G. P. Wagner, K. Kin, and V. J. Lynch, “Measurement of
mRNA abundance using RNA-seq data: RPKM measure is
inconsistent among samples,” Theory in Biosciences, vol. 131,
no. 4, pp. 281–285, 2012.

[19] T. Therneau, A Package for Survival Analysis in R, R Package
Version 3.2-10, Springer, New York, NY, USA, 2021.

[20] A. Kassambara, M. Kosinski, P. Biecek, and S. Fabian, Survmi-
ner: drawing survival curves using ‘ggplot2’, R package version
0.4.9, 2021.

[21] M. D. Wilkerson and D. N. Hayes, “ConsensusClusterPlus: a
class discovery tool with confidence assessments and item
tracking,” Bioinformatics, vol. 26, no. 12, pp. 1572-1573, 2010.

[22] S. Hänzelmann, R. Castelo, and J. Guinney, “GSVA: gene set
variation analysis for microarray and RNA-seq data,” BMC
Bioinformatics, vol. 14, no. 1, p. 7, 2013.

[23] J. H. Krijthe, Rtsne: T-distributed stochastic neighbor
embedding using a Barnes-Hut implementation, R package ver-
sion 0.15, 2015.

[24] M. C. Cieslak, A. M. Castelfranco, V. Roncalli, P. H. Lenz,
and D. K. Hartline, “t-distributed stochastic neighbor
embedding (t-SNE): a tool for eco- physiological transcrip-
tomic analysis,” Marine Genomics, vol. 51, article 100723,
2020.

[25] P. Geeleher, N. Cox, and R. S. Huang, “pRRophetic: an R
package for prediction of clinical chemotherapeutic response
from tumor gene expression levels,” PLoS One, vol. 9, no. 9,
article e107468, 2014.

[26] Y. Benjamini and Y. Hochberg, “Controlling the false discov-
ery rate: a practical and powerful approach to multiple
testing,” Journal of the Royal Statistical Society: Series B (Meth-
odological), vol. 57, no. 1, pp. 289–300, 1995.

[27] G. Yu, L. G. Wang, Y. Han, and Q. Y. He, “clusterProfiler: an R
package for comparing biological themes among gene
clusters,” OMICS: A Journal of Integrative Biology, vol. 16,
no. 5, pp. 284–287, 2012.

[28] K. Yoshihara, H. Kim, and R. G. Verhaak, Estimate: Esti-
mate of Stromal and Immune Cells in Malignant Tumor Tis-
sues from Expression Data, R package version 1.0.13/r21,
2016.

[29] B. Ru, C. N. Wong, Y. Tong et al., “TISIDB: an integrated
repository portal for tumor-immune system interactions,” Bio-
informatics, vol. 35, no. 20, pp. 4200–4202, 2019.

[30] S. Bhattacharya, P. Dunn, C. G. Thomas et al., “ImmPort,
toward repurposing of open access immunological assay data
for translational and clinical research,” Scientific Data, vol. 5,
no. 1, article 180015, 2018.

[31] J. Friedman, T. Hastie, and R. Tibshirani, “Regularization
paths for generalized linear models via coordinate descent,”
Journal of Statistical Software, vol. 33, no. 1, pp. 1–22, 2010.

[32] N. Simon, J. Friedman, T. Hastie, and R. Tibshirani, “Regular-
ization paths for Cox’s proportional hazards model via coordi-
nate descent,” Journal of Statistical Software, vol. 39, no. 5,
pp. 1–13, 2011.

[33] M. Uhlén, L. Fagerberg, B. M. Hallström et al., “Proteomics
Tissue-based map of the human proteome,” Science, vol. 347,
no. 6220, p. 1260419, 2015.

18 Oxidative Medicine and Cellular Longevity



[34] M. Uhlen, C. Zhang, S. Lee et al., “A pathology atlas of the
human cancer transcriptome,” Science, vol. 357, no. 6352,
2017.

[35] M. Le Grazie, M. R. Biagini, M. Tarocchi, S. Polvani, and
A. Galli, “Chemotherapy for hepatocellular carcinoma: the
present and the future,” World Journal of Hepatology, vol. 9,
no. 21, pp. 907–920, 2017.

[36] S. Yang and G. Berdine, “The receiver operating characteristic
(ROC) curve,” The Southwest Respiratory and Critical Care
Chronicles, vol. 5, no. 19, pp. 34–36, 2017.

[37] C. N. Shen, J. M. W. Slack, and D. Tosh, “Molecular basis of
transdifferentiation of pancreas to liver,” Nature Cell Biology,
vol. 2, no. 12, pp. 879–887, 2000.

[38] L. Li and Z.-P. Liu, “Detecting prognostic biomarkers of
breast cancer by regularized Cox proportional hazards
models,” Journal of Translational Medicine, vol. 19, no. 1,
p. 514, 2021.

[39] D. Hanahan and R. A. Weinberg, “Hallmarks of cancer:
the next generation,” Cell, vol. 144, no. 5, pp. 646–674,
2011.

[40] X.-W. Fu and C.-Q. Song, “Identification and validation of
pyroptosis-related gene signature to predict prognosis and
reveal immune infiltration in hepatocellular carcinoma,” Fron-
tiers in Cell and Developmental Biology, vol. 9, 2021.

[41] S. Zhang, X. Li, X. Zhang, S. Zhang, C. Tang, and W. Kuang,
“The pyroptosis-related gene signature predicts the prognosis
of hepatocellular carcinoma,” Frontiers in Molecular Biosci-
ences, vol. 8, 2022.

[42] J. Chen, Q. Tao, Z. Lang et al., “Signature construction and
molecular subtype identification based on pyroptosis-related
genes for better prediction of prognosis in hepatocellular car-
cinoma,” Oxidative Medicine and Cellular Longevity,
vol. 2022, Article ID 4494713, 20 pages, 2022.

[43] J. Ding, X. He, W. Luo et al., “Development and validation
of a pyroptosis-related signature for predicting prognosis in
hepatocellular carcinoma,” Frontiers in Genetics, vol. 13,
2022.

[44] M. Deng, S. Sun, R. Zhao et al., “The pyroptosis-related gene
signature predicts prognosis and indicates immune activity
in hepatocellular carcinoma,” Molecular Medicine, vol. 28,
no. 1, p. 16, 2022.

[45] J. Wang, Z. Huang, H. Lu, R. Zhang, Q. Feng, and A. He, “A
pyroptosis-related gene signature to predict patients’
prognosis and immune landscape in liver hepatocellular carci-
noma,” Computational and Mathematical Methods in Medi-
cine, vol. 2022, Article ID 1258480, 17 pages, 2022.

[46] J. Huo, J. Cai, G. Guan, H. Liu, and L. Wu, “A ferroptosis and
pyroptosis molecular subtype-related signature applicable for
prognosis and immunemicroenvironment estimation in hepa-
tocellular carcinoma,” Frontiers in Cell and Development Biol-
ogy, vol. 9, article 761839, 2021.

[47] Q. Wu, S. Jiang, T. Cheng, M. Xu, and B. Lu, “A novel
pyroptosis-related prognostic model for hepatocellular carci-
noma,” Frontiers in Cell and Developmental Biology, vol. 9,
2021.

[48] Z. Chen, Y. Zou, Y. Zhang et al., “A pyroptosis-based prog-
nostic model for immune microenvironment estimation of
hepatocellular carcinoma,” Disease Markers, vol. 2022, Arti-
cle ID 8109771, 17 pages, 2022.

[49] H. Li, T. Li, and X. Zhang, “Identification and validation of a
novel tumor microenvironment-related prognostic signature

of patients with hepatocellular carcinoma,” Frontiers in Molec-
ular Biosciences, vol. 9, 2022.

[50] X. Zhang, P. Zhang, L. An et al., “Miltirone induces cell death
in hepatocellular carcinoma cell through GSDME- dependent
pyroptosis,” Acta Pharmaceutica Sinica B, vol. 10, no. 8,
pp. 1397–1413, 2020.

[51] J. Hu, Y. Dong, L. Ding et al., “Local delivery of arsenic trioxide
nanoparticles for hepatocellular carcinoma treatment,” Signal
Transduction and Targeted Therapy, vol. 4, no. 1, p. 28, 2019.

[52] W. F. Xu, Q. Zhang, C. J. Ding et al., “Gasdermin E-derived
caspase-3 inhibitors effectively protect mice from acute hepatic
failure,” Acta Pharmacologica Sinica, vol. 42, no. 1, pp. 68–76,
2021.

[53] P. Yu, X. Zhang, N. Liu, L. Tang, C. Peng, and X. Chen,
“Pyroptosis: mechanisms and diseases,” Signal Transduction
and Targeted Therapy, vol. 6, no. 1, p. 128, 2021.

[54] X. Xia, X.Wang, Z. Cheng et al., “The role of pyroptosis in can-
cer: procancer or pro-“host”?,” Cell Death & Disease, vol. 10,
no. 9, p. 650, 2019.

[55] A. R. Brannon, A. Reddy, M. Seiler et al., “Molecular stratifica-
tion of clear cell renal cell carcinoma by consensus clustering
reveals distinct subtypes and survival patterns,” Genes & Can-
cer, vol. 1, no. 2, pp. 152–163, 2010.

[56] G. Castello, S. Scala, G. Palmieri, S. A. Curley, and F. Izzo,
“HCV-related hepatocellular carcinoma: from chronic inflam-
mation to cancer,” Clinical Immunology, vol. 134, no. 3,
pp. 237–250, 2010.

[57] P. P. Michielsen, S. M. Francque, and J. L. van Dongen, “Viral
hepatitis and hepatocellular carcinoma,”World Journal of Sur-
gical Oncology, vol. 3, no. 1, p. 27, 2005.

[58] A. Budhu and X. W. Wang, “The role of cytokines in hepato-
cellular carcinoma,” Journal of Leukocyte Biology, vol. 80,
no. 6, pp. 1197–1213, 2006.

[59] F. Z. Akcam, A. Tigli, O. Kaya, M. Ciris, and H. Vural, “Cyto-
kine levels and histopathology in chronic hepatitis B and
chronic hepatitis C,” Journal of Interferon & Cytokine
Research, vol. 32, no. 12, pp. 570–574, 2012.

[60] W. L. Vande and M. Lamkanfi, “Pyroptosis,” Current Biology,
vol. 26, no. 13, pp. R568–R572, 2016.

[61] Y. Liu, Y. Fang, X. Chen et al., “Gasdermin E–mediated target
cell pyroptosis by CAR T cells triggers cytokine release syn-
drome,” Science Immunology, vol. 5, no. 43, 2020.

[62] H. Lu, S. Zhang, J. Wu et al., “Molecular targeted therapies
elicit concurrent apoptotic and GSDME-dependent pyroptotic
tumor cell death,” Clinical Cancer Research, vol. 24, no. 23,
pp. 6066–6077, 2018.

[63] Y. Wang, W. Gao, X. Shi et al., “Chemotherapy drugs induce
pyroptosis through caspase-3 cleavage of a gasdermin,”
Nature, vol. 547, no. 7661, pp. 99–103, 2017.

[64] P. Yu, H. Y. Wang, M. Tian et al., “Eukaryotic elongation
factor-2 kinase regulates the cross-talk between autophagy
and pyroptosis in doxorubicin-treated human melanoma cells
in vitro,” Acta Pharmacologica Sinica, vol. 40, no. 9, pp. 1237–
1244, 2019.

[65] P. Ahluwalia, R. Kolhe, and G. K. Gahlay, “The clinical rele-
vance of gene expression based prognostic signatures in colo-
rectal cancer,” Biochimica et Biophysica Acta (BBA) - Reviews
on Cancer, vol. 1875, no. 2, article 188513, 2021.

19Oxidative Medicine and Cellular Longevity


	Identification and Validation of Two Heterogeneous Molecular Subtypes and a Prognosis Predictive Model for Hepatocellular Carcinoma Based on Pyroptosis
	1. Introduction
	2. Materials and Methods
	2.1. Data Downloading
	2.2. Identifying HCC-Associated PRGs
	2.3. Consensus Clustering
	2.4. Clinical Values of the Molecular Classification
	2.5. Pathway Enrichment Analysis
	2.6. Immune Characteristic Analysis
	2.7. Predictive Risk Model Construction
	2.8. Expression Differences’ Validation
	2.9. Statistical Analysis

	3. Results
	3.1. Identification of HCC-Associated PRGs
	3.2. Identification of Pyroptosis Subtypes for HCC Patients
	3.3. Prognostic and Therapeutic Values of the Pyroptosis Classification for HCC
	3.4. Functional Analysis of Differentially Expressed Genes between the Pyroptosis Subtypes
	3.5. Immune Characteristic Differences between the Pyroptosis Subtypes
	3.6. Construction of Pyroptosis Signature Predictive Model
	3.7. Validating the Model Genes’ Expression Differences

	4. Discussion
	5. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments
	Supplementary Materials

