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Background. Increasing evidence exists of a link between DNA methylation and tumor immunotherapy. However, the impact of
DNA methylation on the characteristics of the lung adenocarcinoma microenvironment and its effect on immunotherapy remain
unclear. Method. This study collected TCGA-LUAD related data sets (LUAD) to explore the characteristics and regulation of 20
DNA methylation-related genes. We further identified two DNA methylation subtypes by analysing the expression profiles of
these 20 DNA methylation-related genes. Subsequently, the differences in immune cell infiltration (ICI) and the expression of
immune-related signaling factors among different DNA methylation subtypes were explored, and the differentially expressed
genes (DEGs) among different LUAD DNA methylation subtypes were identified. Using univariate Cox to screen differentially
expressed genes meaningful for survival, a DNA methylation score (DMS) was constructed based on the weight of the first and
second dimensions after dimensionality reduction by principal component analysis (PCA). Our study found that DMS can
better evaluate the prognosis of lung adenocarcinoma. Results. Based on DMS, LUAD samples were divided into two groups
with high and low scores. The differences in clinical characteristics, tumor mutation load, and tumor immune cell infiltration
between different DMS groups of LUAD were deeply explored, and the prediction ability of DMS for the benefit of
immunotherapy was evaluated. Conclusions. DMS is a valuable tool for predicting survival, clinicopathological features, and
immunotherapeutic efficacy, which may help to promote personalized LUAD immunotherapy in the future.

1. Introduction

The incidence rate of lung cancer is second in the world [1].
Importantly, the mortality of lung cancer accounts for approx-
imately 25% of all cancer mortality and is the main cause of
cancer-related death [2]. Lung adenocarcinoma (LUAD),
which accounts for more than 40% of lung cancer diagnoses,
is the most common histological subtype of lung cancer [3].
Despite new advances in treatment options, such as molecular
targeted drugs and immune checkpoint inhibitors, the average
5-year relative survival rate of lung cancer patients is only 17%
[4]. Therefore, it is urgent to find biomarkers related to the
prognosis of LUAD.

As one of the most abundant and well-studied epigenetic
modifications, DNA methylation plays an important role in
normal development and cell biology [5, 6]. DNA methyla-
tion consists of the addition of a methyl at position 5 of cyto-
sine to form 5-methylcytosine (5mC), and it is the main
form of DNA modification in many eukaryotes [7]. DNA
methylation patterns often change in cancer, including
DNA hypomethylation of reverse transcription elements,
centromeres, and oncogenes and DNA hypermethylation
associated with inhibiting key gene regulatory elements [8].
Moreover, 5mC modification is abolished in many cancers,
including acute myeloid leukemia (AML), glioma, and mel-
anoma [9–11]. As DNA methylation-related genes are
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closely related to the occurrence and development of cancer,
we aimed to establish a prediction model based on DNA
methylation-related differentially expressed genes to provide
accurate clinical guidance for patients with LUAD. Although
some studies have focused on the development of prognostic
models according to gene characteristics, few studies have
delved into DNA methylation-related genes.

With advancements in high-throughput sequencing
technology, the generation of large-scale omics data has
become possible [12–14]. The characteristics of these DNA
methylation-related genes can explain the etiology of cancer
and have diagnostic and prognostic value. However, no
prognostic features associated with DNA methylation have
been established in LUAD.

In this study, DNA methylation-related genes were con-
sidered to be closely related to the progression of LUAD. By
analysing the relationship between DNA methylation-
related gene expression and LUAD, we established a DNA
methylation score (DMS) that can better evaluate the prog-
nosis of LUAD. This, together with the good predictive abil-
ity of the DMS, is a major improvement compared to
previous studies. In the future diagnosis and treatment of
LUAD, gene diagnosis and treatment will become an effec-
tive means. By detecting the expression of DNA
methylation-related genes in LUAD, the model gene was
transformed into a DNA methylation score, which can be
used to predict the prognosis of patients.

2. Materials and Method

2.1. Data Acquisition and Preprocessing. First, using the
TCGA database (https://portal.gdc.cancer.gLUAD/), the
expression profile data of LUAD and clinical follow-up
information data were downloaded. The RNA SEQ data of
TCGA-LUAD were processed using the following steps: (1)
samples without clinical follow-up information were
removed; (2) the samples with unknown survival time, less
than 30 days, and no survival state were removed; (3) the

probe was converted to gene symbols; (4) one probe corre-
sponded to multiple genes, and the probe was removed;
and (5) the expression of multiple gene symbols was taken
as the median value. The analysis flow chart is shown in
Figure 1.

2.2. Consistent Clustering of Tumor DNA Methylation-
Related Gene Expression Profiles. Using the consuscluster-
plus package in R, the PAM method based on Euclid and
ward connecting rod was used for unsupervised clustering
and repeated 1000 times to ensure the stability of
classification.

2.3. Differentially Expressed Genes among Tumor DNA
Methylation Subtypes. According to the expression of DNA
methylation-related genes and the results of consistent clus-
tering, tumor samples were divided into DNA methylation-1
and DNA methylation-2 groups. Using the limma package
(R software), the differential gene expression between DNA
methylation subtypes of TCGA-LUAD tumor samples was
analysed. The screening threshold of gene differential
expression was adjusted (P < 0:05 and jlog 2 ðfold changeÞj
> 1), and lncRNAs in differentially expressed genes were
extracted by using the annotation file (∗.GTF) of the genome
in assembly.

2.4. Dimensionality Reduction of Gene Characteristics and
Construction of DNA Methylation-Related Score (DMS)
Model. First, to reduce noise or redundant genes, the size
of the DNA methylation subtype-related differentially
expressed genes (DEGs) set was reduced by using a single
factor Cox algorithm. After reduction, principal component
analysis (PCA) was further used to reduce the dimension of
variables to reduce the number of genes in the risk model.
Finally, the weight values of the first dimension and the sec-
ond dimension after PCA dimensionality reduction were
used to construct the tumor DNA methylation score
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Figure 1: Flow chart.
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(DMS) model. The calculation formula was as follows:

DMS =〠PC1 ið Þ+〠PC2 ið Þ: ð1Þ

2.5. Gene Set Enrichment Analysis (GSEA). First, determine
the purpose of the analysis; that is, select one or more func-
tional gene sets in MSigDB for analysis (gene matrix trans-
position file format ∗.GMT), and then sort based on the
correlation degree between gene expression data and pheno-
type (which can also be understood as the change in expres-
sion). Finally, we judged whether the genes in each gene set
were enriched in the upper or lower part of the gene list after
phenotypic correlation ranking to judge the influence of the
synergistic change of genes in this gene set on the pheno-
typic change.

2.6. Statistical Analysis and Hypothesis Testing. All statistical
comparisons involved in this study and the hypothesis test of
the significance of differences between groups were based on
the statistical analysis method in R3.6.

3. Results

3.1. Molecular Characteristics of DNA Methylation-Related
Genes in Lung Adenocarcinoma. After pretreatment, 489
tumor samples were included in our TCGA-LUAD data
set. After a systematic review of published articles about
DNA methylation and the TCGA-LUAD data set, the muta-
tions of 20 DNA methylation-related genes (writers:
DNMT1, DNMT3A, and DNMT3B; erasers: TET1, TET2,
and TET3; and readers: MBD1, MBD2, MBD3, MBD4,
ZBTB33, ZBTB38, ZBTB4, UHRF1, UHRF2, MECP2, TDG,
NTHL1, and SMUG1) were counted. First, we analysed the
mutations of 20 DNA methylation-related genes in LUAD
(Figure 2(a)) and found that the overall mutation rate of
19 DNA methylation-related genes varied to varying degrees
in the genome. DNMT3A (12%) had the highest mutation
frequency among writer genes; TET1 (16%) had a higher
mutation frequency than other eraser genes; and MBD1
(6%) had a high mutation frequency of reader genes. On
the other hand, MBD3, MBD4, TDG, and SMUG1 exhibited
extremely low mutation rates in LUAD patients (1%).

Then, the copy number variation of 20 DNA
methylation-related genes was analysed (Figure 2(b)). There
was a certain frequency of copy number variation in the
TCGA-LUAD data set: MECP2, DNMT3A, DNMT3B,
MBD4, SMUG1, ZBTB33, and ZBTB38 showed a relatively
high frequency of amplification, among which the copy
number variation of the MECP2 gene was more prominent
(>10%). MBD1, MBD2, MBD3, UHRF1, and ZBTB4 were
mainly copy number deletions. Overall, the 20
methylation-related genes were dominated by gain copy
number variation.

At the transcriptome level, the expression differences of
20 DNA methylation-related genes in normal tissues and
tumor tissues were compared (Figure 2(c)). Most genes
had significant expression differences, including DNMT1,
DNMT3A, DNMT3B, TET1, TET2, TET3, MBD1, MBD4,
ZBTB33, UHRF1, UHRF2, UNG, TDG, NTHL1, and

SMUG1, which were significantly overexpressed in tumor
tissues, while ZBTB4 was significantly downregulated in
tumor tissues. The level of protein regulation was based on
the STRING database (https://www.string-db.org/). A net-
work diagram of protein-level interactions was drawn
(Figure 2(d)). It was found that there are certain interactions
between genes.

In conclusion, the above results revealed that crosstalk
among these DNA methylation regulators might play crucial
roles in LUAD.

3.2. Correlation between DNA Methylation-Related Genes
and Immune Cell Infiltration (ICI) in Lung
Adenocarcinoma. To explore the relationship between the
expression of DNA methylation-related genes and the tumor
immune microenvironment, cibersort was used to evaluate
the infiltration status of 22 immune cells in the TCGA-
LUAD data set (B.cells.naive, B.cells.memory, Plasma.cells,
T.cells. CD8, T.cells.CD4.naive, T.cells.CD4.memory.resting,
T.cells.CD4.memory.activated, T.cells.follicular.helper,
T.cells.regulatory. Tregs, T. cells.gamma.delta, NK. cells.rest-
ing, NK. cells.activated, monocytes, macrophages. M0, mac-
rophages. M1, Macrophages. M2, Dendritic.cells.resting,
Dendritic.cells.activated, Mast.cells.resting, Mast.cells.acti-
vated, Eosinophils, Neutrophils) (Table S1). First, by
analysing the coexpression of DNA methylation-related
genes in the TCGA-LUAD data set (Figure 3(a)), a
significant positive correlation between most genes was
found.

DNA methylation has been reported to play significant
roles in the immune system and tumor microenvironment.
Therefore, we also investigated the relationship between
DNA methylation regulators and tumor immunology.

Then, the correlation analysis between the expression
profiles of 20 DNA methylation genes and the infiltration
of 22 kinds of immune cells (Figure 3(b)) showed great dif-
ferences between different genes and the infiltration of
immune cells. Among these genes, the TDG gene showed a
significant correlation with the infiltration of most immune
cells, and theMBD2 gene had a strong correlation with T cell
infiltration. Considering the relatively higher correlation
between TDG and immune cells, we thoroughly analysed
the role of TDG in immunotherapy. Gene set enrichment
analysis (GSEA) was carried out based on the high and low
expression states of the TDG gene. As shown in
Figure 3(c), the main enrichment pathways of samples in
the high expression state were CELL CYCLE, SPLICEO-
SOME, and DNA REPLICATION, which are tumor
progression-related pathways, and the main enrichment
pathways of samples in the low expression state were
ASTHMA, CELL ADHESION MOLECULES CAMS, and
INTESTINAL IMMUNE NETWORK FOR IgA PRODUC-
TION, which are tumor immune pathway-related pathways.
Previous studies have found that EGFR mutations are asso-
ciated with the diagnosis and treatment of LUAD, so this
mutated gene was selected for grouping.

Furthermore, the effects of EGFR gene mutation status
and tumor mutation load (TMB) on TDG gene expression
in the TCGA-LUAD data set were observed. As shown in
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Figures 3(d) and 3(e), TDG gene expression was significantly
higher after EGFRmutation. Similarly, TDG gene expression
was higher in the TMB high evaluation group than in the
TMB low evaluation group.

For theMBD2 gene, the samples in the TCGA-LUAD data
set were divided into the high expression and low expression
groups by using the optimal density gradient method. The
results showed that there was a significant difference in the
survival curve between the two groups. The overall survival
time (OS) of theMBD2 low expression group was better than
that of the high expression group (Figure 3(f)), suggesting that
DNA methylation-related genes are closely related to the
tumor immune microenvironment.

3.3. Identification and Functional Enrichment Analysis of
DNA Methylation Subtypes in Lung Adenocarcinoma. The
expression profiles of 20 DNA methylation-related genes in
TCGA-LUAD sample data were clustered by consensus
clustering (consumusclusterplus). The optimal number of
clusters was determined according to the cumulative distri-
bution function (CDF), and the CDF delta area curve was
observed (Supplement Fig. 1A-B). Relatively stable cluster-
ing results were observed using a cluster of 2 (Supplement
Fig. 1C). Further analysis of the prognostic features of these
two DNA methylation subtypes revealed significant prog-
nostic differences among them, as shown in Supplement
Fig. 1D. Among the two DNA methylation subtypes, the
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Figure 2: Multiomic characteristics of 20 DNA methylation-related genes in the TCGA-LUAD data set. (a) The mutation of 20 DNA
methylation-related genes in LUAD and the overall mutation rate of DNA methylation-related genes in varying degrees in the genome.
(b) The copy number variation of DNA methylation-related genes was counted and dominated by copy number variation. (c) At the
transcriptome level, DNMT1, DNMT3A, DNMT3B, TET1, TET2, TET3, MBD1, MBD4, ZBTB33, UHRF1, UHRF2, UNG, TDG,
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(d) There were certain interactions between genes at the protein level.
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Figure 3: The relationship between DNA methylation genes and tumor immune cell infiltration in the TCGA-LUAD data set. (a) Gene
coexpression network showing that there was a significant positive correlation between most genes. (b) Correlation analysis between the
expression profiles of 20 DNA methylation genes and the infiltration of 22 kinds of immune cells. (c) Gene set enrichment analysis
(GSEA) was carried out based on the high and low expression states of the TDG gene. (d) TDG gene expression was significantly higher
after EGFR mutation. (e) The expression of the TDG gene in the TMB high evaluation group was significantly higher than that in the
TMB low evaluation group. (f) The OS of the MBD2 low expression group was better than that of the high expression group.
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prognosis of DNA methylation-2 was significantly better
than that of DNA methylation-1, with a median survival
time of 872 days. DNA methylation-1 was associated with
a poor prognosis, with a median survival time of 656 days.
These results suggest that these two DNA methylation sub-
types may have the potential for a more accurate classifica-
tion of patient prognosis.

To further explore the relationship between tumor DNA
methylation subtypes and tumor immune cells, first, the
principal component analysis (PCA) algorithm was used to
visualize the expression profile related to DNA methylation.
The samples had a good aggregation form in the space of the
first and second dimensions (Supplement Fig. 2A). There
was a significant difference in overall survival (OS) between
the two groups (Figure 4(a)). The prognosis of the second
dimension group was significantly better than that of the
first dimension group, indicating that the classification
method of DNA methylation subtypes is scientific and
reasonable.

Then, the differences in immune cell infiltration among
DNA methylation subtypes were compared (Figure 4(b)).
CD8-positive middle T cells (T cell CD8), activated CD4-
positive memory T cells (T cells CD4 memory activated),
helper follicular T cells (T cells follicular helper), resting
NK cells (NK cells), M0 macrophages, M1 macrophages,
and activated mast cells significantly infiltrated at high levels
in DNA methylation-1 subtypes. In the DNA methylation-2
subtype, the cells with significantly high levels of infiltration
include resting CD4-positive memory T cells (resting mem-
ory CD4 T cells), monocytes, M2 macrophages (M2 macro-
phages), resting dendritic cells (resting dendritic cells), and
resting mast cells (resting mast cells).

Furthermore, the genes were sequenced according to the
status of DNA methylation subtypes, and the sequenced
gene set was used for KEGG enrichment analysis
(Figure 4(c)). The pathways with high enrichment scores
in DNA methylation-1 subtypes were KEGG HOMOLO-
GOUS RECOMBINATION, KEGG CELL CYCLE, KEGG
DNA REPLICATION, and KEGG MISMATCH REPAIR.
Pathways with high enrichment scores in DNA
methylation-2 subtypes included KEGG ASTHMA, KEGG
RETINOL METABOLISM, KEGG DRUG METABOLISM
CYTOCHROME P450, and KEGG METABOLISM OF
XENOBIOTICS BY CYTOCHROME P450.

3.4. Expression of Immune-Related Factors among LUAD
DNA Methylation Subtypes. Immune-related signaling fac-
tors play an important role in the formation of the tumor
immune microenvironment. It is worth further exploring
the relationship between tumor DNA methylation subtypes
and immune signaling factors in tumors. First, we observed
the role of each gene in the classification of DNA methyla-
tion subtypes through a heatmap (Figure 5(a)). DNMT3B,
DNMT1, DNMT3A, and UHRF1 play a major role in the
classification process. Then, by analysing the expression dif-
ferences of various immune-related factors among DNA
methylation subtypes (Figure 5(b)), it was found that there
were significant differences in most categories. Among them,
CD8 T effector, Immune checkpoint, EMT1, cytolytic activ-

ity, type I IFN response, and coinhibition T cell have high
levels of activation signals in DNA methylation-1 subtypes,
while antigen processing machinery, EMT3, type II IFN
response, and MHC-II HLA have a high level of activation
signal in DNA methylation-2 subtype. Further analysis of
differential expression among subtypes of immune-related
factors (Figure 5(c)) showed that most immune signaling
factors were significantly differentially expressed.

To reveal the potential biological characteristics of different
DNAmethylation states, the differential gene expression among
DNA methylation subtypes in TCGA-LUAD tumors was ana-
lysed by the limma package of R software. The screening thresh-
old of gene differential expression was adjusted P < 0:05 and
jlog 2 ðfold changeÞj > 1, and 1396 differentially expressed
genes (Table S2) were identified, of which 659 genes were
highly expressed in the subtype of DNA methylation-1 and
737 genes were highly expressed in the subtype of DNA
methylation-2 (Supplement Fig. 2B). Subsequently, GO
functional enrichment analysis was carried out for the highly
expressed genes in different DNA methylation subtypes, and
the first 10 pathways enriched in the three functional
classifications (BP, CC, and MF) are displayed with a bubble
diagram (Figures 5(d) and 5(e)). It can be seen from the
figure that most of the enriched pathways are related to
nuclear division, chromosome recombination, synaptic tissue
ion channels, and transmembrane transport.

Using the 1396 differentially expressed genes (DEGs)
related to tumor DNA methylation subtypes, the expression
profiles of differentially expressed genes (DEGs) were clus-
tered by the consusclusterplus package in R.

Finally, the tumor samples of TCGA-LUAD were
divided into two differential gene subtypes (DEG.cluster),
the optimal number of clusters is determined according to
the CDF, and the CDF delta area curve is observed (Supple-
ment Fig. 3A-B). When the cluster is selected as 2 (Supple-
ment Figure 3C), it has relatively stable clustering results.
The prognostic signature among clusters was further
analysed. The prognosis of C1 was significantly better than
that of C2 (Supplement Fig. 3D). The results above might
indicate that a relationship exists between the DEG.cluster
and prognosis in LUAD patients.

3.5. Construction of a DNA Methylation Score (DMS) and
Identification of Differential Gene Subtypes in LUAD. Based
on the differentially expressed genes among DNA methyla-
tion subtypes, the principal component analysis (PCA) algo-
rithm was used to reduce the dimension of the expression
profile of differentially expressed genes. Finally, the weight
of each sample in the first and second dimensions is
summed as the DNA methylation score (DMS) of each sam-
ple. Then, the survminer package in R was used to calculate
the optimal density gradient threshold of the tumor DNA
methylation score (DMS) related to survival, and the score
value of 4.75 was selected as the critical point (Supplement
Fig. 4A). The tumor samples in TCGA-LUAD were divided
into two groups with high and low DMS scores, and there
were significant differences in survival between the two
groups (Supplement Fig. 4B). The group with low DMS
had a good prognosis.
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Subsequently, the molecular characteristics of different
gene subtypes were explored to understand the influence of
tumor DNA methylation subtypes on genome-wide expres-
sion profiles. The role of 1396 differentially expressed genes
in the grouping of differential gene subtypes is shown by
heatmap (Figure 6(a)), the survival of differential gene sub-

types has significant differences (Figure 6(b)), and the cluster
1 group had prolonged survival time. By observing immune-
related signaling factors, it was found that there were signif-
icant differences in the expression of most immune-related
factors among different gene subtypes. In line with the char-
acteristics of immune cell infiltration and immune
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signatures, many stimulatory immunomodulators or
immune checkpoint molecules were generally unregulated
in DNA methylation regulator cluster 1, indicating a rela-
tively hot tumor immune microenvironment (Figure 6(c)).
We further analysed the difference in DMS between the
tumor mutation load (TMB) groups, DNA methylation sub-
types, and different gene subtypes (Figures 6(d)–6(f)). There
were significant differences in DMS between these groups.
The relationship of the DNA methylation regulator pattern,
ACRG molecular subtype, gene cluster, and DMS group is

summarized in the Sankey diagram (Supplement Fig. 5A).
These results may provide new ideas for the study of tumor
DNA methylation status and the mechanism of gene muta-
tion in immune checkpoints.

3.6. Characteristics of the DNA Methylation Score (DMS) in
LUAD in the Validation Data Set. First, based on the meth-
ylation spectrum (DNA methylation-Illumina human
methylation 450) of all loci in each sample of the
TCGA-LUAD data set, the hypervariable loci were
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Figure 5: Differences in the expression of immune-related factors among tumor DNA methylation subtypes. (a) the role of each gene in the
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screened by standard variance (Supplement Fig. 6A), the
methylation spectrum was standardized by using the range
of gene size, and the standardized methylation spectrum of
72 genes was uniformly clustered. Finally, three indepen-
dent methylation subtypes (meth.cluster) with significant
survival differences were identified (Supplement Fig. 6B-

C). In the three main meth.cluster subtypes, the prognosis
of meth.cluster-3 was significantly better than that of
meth.cluster-1/2, with a median survival of 1346 days,
and meth.cluster-1/2 was associated with poor prognosis,
with a median survival time of 796 days (Supplement
Fig. 6D).
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Figure 6: Identification and characteristic analysis of differential gene subtypes. (a) The role of 1396 differentially expressed genes in the
grouping of differential gene subtypes is shown by heatmap; (b) cluster 1 group had prolonged survival time. (c) In line with the
characteristics of immune cell infiltration and immune signatures, many stimulatory immunomodulators or immune checkpoint
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To further evaluate the robustness of the DNA methyla-
tion score (DMS) based on differential gene construction to
predict the overall survival of LUAD tumors, GSE11969 and
GSE31210 in the GEO database were selected for analysis.
First, the DNA methylation score (DMS) of the GSE11969
and GSE31210 data sets was calculated by using the differen-
tially expressed genes screened in the early stage, and the
optimal density gradient threshold of tumor DMS related
to survival was calculated by using the survminer package
in R. The tumor samples in the two data sets were divided
into two groups with high and low DMS scores. There was
a significant difference in survival between the two groups
with high and low scores (Figures 7(a) and 7(b)). The heat-
map was further used to show the relationship between clin-
ical features and DMS in the two GEO data sets. It was
found that DMS has a certain correlation with other clinical
features (OS, age, sex, somke, stage, and Mut gene)
(Figures 7(c) and 7(d)). Then, the differences in DMS
between different methylation subtypes (meth.cluster) were
compared. The results showed that the meth.cluster with
good prognostic correlation cluster 3 had a trend of lower
DMS, which is in good agreement with the previous change
trend of DMS between DNA methylation subtypes and dif-
ferential gene subtypes (Supplement Fig. 5B). In the
TCGA-LUAD data set, the conversion between various sub-
types is shown in Supplement Fig. 5C.

3.7. To Evaluate the Predictive Ability of the LUAD DNA
Methylation Score (DMS) for the Benefit of Immunotherapy.
To explore the predictive ability of the tumor DNA methyl-
ation score (DMS) for the benefit of immunotherapy, this
study was based on the IPS score of TCGA-LUAD samples
in the TCIA database and the imvigor210 data set of the
immunotherapy cohort (http://researchpub.gene.com/
IMvigor210CoreBiologies) and GSE78220 data sets for rele-
vant evaluation and analysis. The Immunophenoscore (IPS)
score can determine the immunogenicity of tumors and pre-
dict the response of various types of tumors to immunother-
apy. In the high DNA methylation score (DMS) group, the
IPS scores of the four types (ips_ctla4_neg_pd1_neg, ips_
ctla4_neg_pd1_pos, ips_ctla4_pos_pd1_neg and ips_ctla4_
pos_pd1_pos) were significantly higher than those in the
low DNA methylation score (DMS) group (Figures 8(a)–
8(d)), suggesting that patients in the high DMS group are
more likely to benefit from immunotherapy. Patients receiv-
ing anti-PD-L1 immunotherapy in the imvigor210 cohort
were assigned a high or low risk score (Figures 8(e) and
8(f)). The results showed that the high DMS group was more
likely to benefit from immunotherapy. It is worth noting
that patients in the high DMS group lived significantly lon-
ger than those in the low DMS group (Figure 8(g)). In
GSE78220, the objective response rate to anti-PD-L1 treat-
ment in the high DMS group was higher than that in the
low DMS group (Figures 8(h) and 8(i)). Similarly, the
patients with high DMS had better survival in the
GSE78220 data (Figure 8(j)). Overall, these data suggest that
the DNAmethylation score of DNA methylation-related dif-
ferentially expressed genes may be related to the response to
immunotherapy.

Above all, the results of these four immunotherapy
cohorts confirmed that DMS had the ability to efficiently
predict the efficacy of immunotherapy and might achieve
better predictive value when combined with TMB.

4. Discussion

The incidence rate and mortality rate of lung adenocarci-
noma are still high. Therefore, it is urgent to identify new
prognostic indicators for a more accurate prediction of prog-
nosis in patients with lung adenocarcinoma. Although there
have been some studies examining the relationship between
DNA methylation and tumor formation, the relationship
between DNA methylation and the prognosis of patients
with lung adenocarcinoma is still very limited. In this study,
the DNA methylation score (DMS) was used to predict the
prognosis of patients with lung adenocarcinoma.

Specifically, we collected a data set related to TCGA-
LUAD, explored the characteristics of 20 DNA methylation-
related genes in the genome, transcriptome, and regulatory
network, and further identified two DNA methylation sub-
types by using the expression profiles of 20 DNA
methylation-related genes. Subsequently, we explored the dif-
ferences in the expression of immune cell infiltration (ICI) and
immune-related signaling factors among different DNAmeth-
ylation subtypes and identified the differentially expressed
genes among different DNA methylation subtypes of LUAD.
We used univariate Cox to screen differentially expressed
genes (DEGs) that aremeaningful for survival and constructed
a DNA methylation score (DMS) based on the weights of the
first and second dimensions after dimensionality reduction by
principal component analysis (PCA). It was found that DMS
can better evaluate the prognosis of lung adenocarcinoma.
Based on DMs, LUAD tumor samples were divided into two
groups with high and low scores. The differences in clinical
characteristics, tumor mutation load, and tumor immune cell
infiltration between different DMS groups of LUAD tumors
were deeply explored, and the prediction ability of DMS for
the benefit of immunotherapy was further evaluated to pro-
vide data support for accurate immunotherapy in LUAD.

DNA methylation is a form of DNA chemical modifica-
tion that can change genetic performance without changing
the DNA sequence [15]. The so-called DNA methylation
refers to the covalent bond of the cytosine 5-carbon position
of CpG dinucleotide in the genome under the action of DNA
methyltransferase [16, 17]. A large number of studies have
shown that DNA methylation can cause changes in chroma-
tin structure, DNA conformation, DNA stability, and the
interaction mode between DNA and protein to control gene
expression [18, 19]. Changes in DNA methylation in cancer
are considered to be a promising goal to develop powerful
diagnostic, prognostic, and predictive biomarkers [20].
DNA methylation at position 5 of cytosine (5mC) is an epi-
genetic modification that regulates gene expression and cell
plasticity in development and disease [21]. Studies have
shown that abnormal DNA 5mC plays an important role
in a variety of cancers, such as liver cancer, clear cell renal
cancer, and gastric cancer, and DNA 5mC is closely related
to tumor immunity [22–25].
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An increasing number of research results show that the
methylation of tumor DNA is closely related to the tumor
immune microenvironment and tumor immunotherapy
response [26–29]. DNA methylation makes cytosine easier

to deaminate, resulting in C>t conversion mutations [27].
Tumors often show an overall loss of DNA methylation
and obtain focal DNA methylation at CpG-rich sites. Many
hot tumor mutations have been found at methylated CpG
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Figure 8: Continued.
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sites [30–32]. Our current results show that patients in the
high DMS group lived significantly longer than those in
the low DMS group. The objective response rate to anti-
PD-L1 treatment in the high DMS group was higher than
that in the low DMS group. Higher DNA methylation in
the imvigor210 cohort was associated with an objective
response to anti-PD-L1 treatment.

Although our current findings suggest that DMS can be
used as an effective prognostic tool for LUAD patients, the
limitations associated with this study suggest that additional
analysis is needed before the clinical application of this
model. First, since all samples used in our study were
obtained retrospectively, prospective samples need to be

included to verify our findings. Second, the focus of our
analysis was only related to the prognostic value and clinical
significance of DMS. DMS can better evaluate the benefit of
immunotherapy in patients with LUAD, which needs to be
further studied with additional in vivo and in vitro
experiments.

In conclusion, we identified two different subtypes of
LUAD from the perspective of DNA methylation and con-
structed a separate DNA methylation spectrum scoring sys-
tem. DMS is a valuable tool for predicting survival,
clinicopathological features, and immunotherapeutic effi-
cacy, which may help to promote personalized LUAD
immunotherapy in the future.
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group, the IPS scores of the four types were significantly higher than those in the low DMS group. (e, f) The high DMS group was more
likely to benefit from immunotherapy in the imvigor210 cohort. (g) The high DMS group lived significantly longer than the low DMS
group. (h, i) In GSE78220, the objective response rate to anti-PD-L1 treatment in the high DMS group was higher than that in the low
DMS group. (j) The patients with high DMS had better survival in the GSE78220 data.
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