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Recent studies have highlighted the biological significance of exosomes and m6A modifications in immunity. Nonetheless, it
remains unclear whether the m6A modification gene in exosomes of body fluid has potential roles in the tumor
microenvironment (TME). Herein, we identified three different m6A-related exosomal gene modification patterns based on 59
m6A-related exosomal genes, which instructed distinguishing characteristics of TME in colon cancer (CC). We demonstrated
that these patterns could predict the stage of tumor inflammation, subtypes, genetic variation, and patient prognosis.
Furthermore, we developed a scoring mode—m6A-related exosomal gene score (MREGS)—by detecting the level of m6A
modification in exosomes to classify immune phenotypes. Low MREGS, characterized by prominent survival and immune
activation, was linked to a better response to anti-PDL1 immunotherapy. In contrast, the higher MREGS group displayed
remarkable stromal activation, high activity of innate immunocytes, and a lower survival rate. Hence, this work provides a
novel approach for evaluating TME cell infiltration in colon cancer and guiding more effective immunotherapy strategies.

1. Introduction

More than 160 RNA chemical modifications have been iden-
tified, which greatly influence RNA function [1]. Several
types of RNA modifications of eukaryotic mRNAs contain-
ing m1A, m6A, and m5C have been reported. Moreover, it
is well known that m6A is the most commonly found in
posttranscriptional modification of mRNA in most eukary-
otes [2]. m6A methylation is reversible, which is similar to
DNA and histone methylation in eukaryote cells, which were
regulated by methyltransferases (writers), demethylases
(erasers), and binding proteins (readers) [3]. The formation

of m6A methylation is established by “writers” such as
RBM15, ZC3H13, METTL3, METTL14, and KIAA1429,
whereas removing m6A methylation is regulated by “erasers”
FTO and ALKBH5. In addition, a group of specific RNA-
binding proteins composed of YTHDF1/2/3, YTHDC1/2,
HNRNPA2B1, LRPPRC, FMR1, CBLL1, and ELAVL1 can
recognize the m6A motif, thus affecting m6A functions [4].
Recent studies revealed the interactions between TME
immune cell infiltration and tumor m6A modification. These
studies showed that tumor m6A methylation modification
played in TME immune cell-infiltration characterization in
various solid tumors, such as gastric cancer, head and neck
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cancer, and papillary thyroid carcinoma [5–7]. However,
detailed roles and mechanisms of m6A methylation modifi-
cation in TME of CC remain unclear.

Exosome undoubtedly was one of the most pathbreak-
ing scientific achievements in cellular biology. Exosomes
were first discovered in reticulocytes relevant to transferrin
in 1983, and their size ranged from 50 to 110nm,
influencing cell management and intercellular crosstalk
[8]. Many studies showed that tremendous alterations
existed in exosomes between normal and cancer cells.
The exosome release rate and contents (microRNAs) are
pronouncedly increased in cancer cells. The same results
were observed in cancer cell lines [9]. The tumor microen-
vironment (TME) is the cellular environment in which the
tumor develops, including various cell types, extracellular
matrix (ECM), growth factors, proteolytic enzymes and
their inhibitors, and signaling molecules [10]. As emerging
components of the tumor-host interaction, tumor-derived
exosomes are involved in TME formation. The contents
of exosomes are hinged on their donor cells, and there
are various ways in which exosomes transfer messages to
target sites in the microenvironment, such as proteins,
RNA, and DNA. Tumor-derived exosomes carried and
transferred a variety of biomolecules that could mediate
intercellular communication, promote tumorigenesis and
metastasis, and regulate the microenvironment and
immune system [11, 12]. However, little is known about
the role of epigenetic modification, especially for m6A
methylation, of exosomal contents in TME.

Immunotherapy is a hotly debated topic in oncology. In
recent years, the arrival of several innovative monoclonal
antibodies used for immunotherapy has revolutionized can-
cer treatment for a wide range of solid tumors. Unfortu-
nately, CC is one of the most common malignancies and
remains the primary cause of cancer death worldwide [13,
14]. Despite many advances in systemic therapies, approxi-
mately 86% of patients with advanced stages die within five
years of diagnosis. Recently, current immunotherapies rep-
resented by specific immune checkpoint inhibitors (ICIs),
such as anti-CTLA-4 and anti-PD-1/L1, have achieved a
marked durable response in CC treatment [15, 16]. Evaluat-
ing immune infiltration based on the characteristics of TME
constitutes a critical approach to predicting the response to
existing ICIs and developing novel immunotherapeutic
strategies [17, 18].

This study systematically evaluated the m6A regulator-
based exosomal RNA modification pattern in CC and iden-
tified the association between the three patterns and TME
cell-infiltrating characteristics. Moreover, we demonstrated
that the three patterns could predict stages of tumor inflam-
mation, subtypes, genetic variation, and patient prognosis.
In addition, we developed a scoring mode—m6A-related
exosomal gene score (MREGS)—by detecting the level of
m6A modification in exosomes to classify immune pheno-
types, which could predict the prognosis, immunity state,
and immunotherapy response to anti-PDL1. Therefore, we
developed a new scoring system to quantify the m6A-based
exosomal RNA modification patterns in individual CC
patients.

2. Materials and Methods

2.1. Colon Cancer Dataset Source and Preprocessing. Public
gene-expression data and complete clinical annotation were
searched in the Gene Expression Omnibus (GEO) and the
Cancer Genome Atlas (TCGA) database. Patients without
survival information were removed from further evaluation.
Seven eligible CC cohorts (GSE17536, GSE29621,
GSE33113, GSE37892, GSE38832, GSE39582, and TCGA-
COAD) were gathered in this study for further analysis.
For microarray data from Affymetrix®, we downloaded the
raw “CEL” files and adopted a robust multiarray averaging
method with the affy and simplified packages to perform
background adjustment and quantile normalization. The
normalized matrix files were directly downloaded for micro-
array data from other platforms. For datasets in TCGA,
RNA sequencing data (FPKM value) of gene expression were
downloaded from the Genomic Data Commons (GDC,
https://portal.gdc.cancer.gov/) using R package TCGAbio-
links, which was developed explicitly for integrative analysis
with GDC data. Then, FPKM values were transformed into
transcripts per kilobase million (TPM) values. Batch effects
from nonbiological technical biases were corrected using
“ComBat” algorithm of the sva package. The somatic muta-
tion data were acquired from TCGA database. GSE39582
dataset from GEO was downloaded for copy number varia-
tion (CNV) analysis. The data were analyzed using R (ver-
sion 3.6.1) and R Bioconductor packages.

2.2. Unsupervised Clustering for 59 m6A-Related Exosome
Genes. A total of 59 m6A-related exosome genes were
screened through the exoRBase database (http://www
.exoRBase.org) and TCGA database (https://portal.gdc
.cancer.gov/). Firstly, we analyzed the differentially
expressed genes between CC and normal samples in the
two databases and overlapped these two differential gene sets
to obtain the intersecting genes (P < 0:05). Then, we per-
formed the correlation analysis between these intersecting
genes with 24 m6A regulators and obtained 59 m6A-
related exosome genes (standard: P < 0:001, correlation
coefficient ≥ 0:5). Unsupervised clustering analysis was
applied to identify distinct m6A-related exosome gene mod-
ification patterns based on the expression of 59 m6A-related
exosome genes and classify patients for further analysis. The
consensus clustering algorithm determined the number of
clusters and their stability. We used the ConsensusCluster-
Plus package to perform the above steps. Moreover, 1000
repetitions were conducted to guarantee the classification’s
stability [19].

2.3. Statistical Analysis. Correlations coefficients between
TME-infiltrating immune cells and expression of m6A-
related exosome genes were computed by Spearman and dis-
tance correlation analyses. One-way ANOVA and Kruskal-
Wallis tests were used to conduct difference comparisons
of three or more groups. Survminer R package was used to
determine the cutoff point for each dataset subgroup based
on the correlation between MREGS and patient survival.
The “surv-cutpoint” function, which repeatedly tested all
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potential cutpoints for finding the maximum rank statistic,
was applied to dichotomize MREGS, and then, patients were
divided into high and low MREGS groups based on the max-
imally selected log-rank statistics to decrease the batch effect
of calculation. The survival curves for the prognostic analysis
were generated via Kaplan-Meier method, and log-rank tests
were utilized to identify the significance of differences. We
adopted a univariate Cox regression model to calculate the
hazard ratios (HR) for m6A-related exosome genes and
m6A phenotype-related exosome genes. The independent
prognostic factors were ascertained through a multivariable
Cox regression model. Patients with detailed clinical data
were eligible for final multivariate prognostic analysis. The
Forestplot R package was employed to visualize the results
of multivariate prognostic analysis for MREGS in TCGA-
COAD cohort. The specificity and sensitivity of MREGS
were assessed through the receiver operating characteristic
(ROC) curve, and the area under the curve (AUC) was
quantified using pROC R package. The waterfall function
of Maftools package was used to present the mutation land-
scape in patients with high and low MREGS subtypes in
TCGA-COAD cohort. R package of RCircos was adopted
to plot the copy number variation landscape of 59 m6A-
related exosome genes in 23 pairs of chromosomes. All sta-
tistical P values were two sides, with P < 0:05 as statistically
significant. All data processing was done in R 3.6.1 software.

Other detailed information for the materials and
methods is provided in the supplementary materials.

3. Results

3.1. Landscape of Genetic Variation of m6A-Related Exosome
Genes in Colon Cancer. We selected the differential expres-
sion genes of exosomes from CC patients’ serum and normal
serum, named exosome-related genes. Next, those genes
associated with m6A regulators were sorted out, and we
obtained 59 m6A-related exosome genes. The relationship
between m6A regulators and exosome-related genes is
shown in Figure 1(a). It is commonly acknowledged that
somatic mutations and CNV (copy number variation) are
linked with cancers [20, 21]. Therefore, we prefer to acquire
a preliminary knowledge of the frequency of somatic varia-
tion and CNV of 59 m6A-related exosome genes in CC
patients. In 399 patients, mutations of m6A-related exosome
genes occurred in 159 patients, accounting for 39.85%. The
histogram displayed that RNF43 was ranked first on muta-
tion frequency and ZNF423 subsequently followed. How-
ever, no mutations exist in TFAM, ALKBH5, C12orf57,
GOLGA8A, GOLGA8N, GTF2F2, and NPIPA1
(Figure 1(b)). The following analyses showed the prominent
mutation cooccurrence relationship including ANKRD12
and RNF43, RBM39, and CUL2, besides THOC2 and
C2CD5 (Figure S1a). By observing distinct CNV alteration
of 59 m6A-related exosome genes, it is obvious that copy
number amplification occupied a majority of alterations,
whereas CNV deletion happened in LYSMD3, PGGT1B,
and SRFBP1 (Figure 1(c)). The analysis of somatic
mutation and CNV suggested that the chosen 59 genes,
which were delivered by exosomes, probably derived from

tumors. Subsequently, Figure 1(d) exposes the mutated site
of the m6A-related exosome genes on CC patients’
chromosomes. Then, we could tell CC patients and normal
samples apart based on different expressions of 59 m6A-
related exosome genes (Figure 1(e)). To assure whether the
expression of m6A-related exosome genes was affected by
the aforementioned genetic variations in CC patients, we
found that the changes of CNV could exert prodigious
influence on perturbations of m6A-related exosome gene
expression through studying mRNA expression of these 59
genes between normal and CC samples. In addition, the
m6A-related exosome genes with amplified CNV in CC
tissues showed a remarkably higher expression versus
normal colon tissues such as TOMM34 and RBM39
(Figures 1(c) and 1(f)). No matter in the transcriptome or
genomics, there was a significant difference between
patients and normal people in 59 m6A-related exosome
genes. The above results suggested that the expression
imbalance of the m6A-related exosome genes positively
influence the CC genesis and development.

3.2. m6A Methylation Modification Patterns Mediated by 59
m6A-Related Exosome Genes. We first enrolled six GEO
datasets (GSE17536, GSE29621, GSE33113, GSE37892,
GSE38832, and GSE39582) which contained clinical data
and overall survival (OS) data into one metacohort. The
comprehensive landscape of m6A-related exosome gene
interactions for CC patients was depicted with the m6A-
related exosome gene network (Figure 2(a)). The relation-
ship between those exosome-related genes is shown in
Figure S1a, and the HR value of the genes is shown in
Figure S1b. Then, according to the expression of 59 m6A-
related exosome genes, we could divide CC patients into
three qualitative m6A-related exosome gene modification
patterns using the R package of ConsensusClusterPlus.
Moreover, an unsupervised clustering algorithm
distinguished three patterns (442 cases in pattern 1, 263
cases in pattern 2, and 361 cases in pattern 3). Finally,
these patterns were called clusters 1-3 (Figure S2). The
tremendous survival preponderance in cluster 1 was
disclosed by prognostic analysis for three modification
subtypes (Figure 2(b)).

3.3. TME Cell Infiltration Characteristics in Distinct m6A-
Related Exosome Gene Modification Patterns. Because the
biological behavior between the three m6A modification
patterns was not completely understood, we performed
gene set variation analysis (GSVA) of hallmark gene sets
in six GEO datasets (GSE17536, GSE29621, GSE33113,
GSE37892, GSE38832, and GSE39582). Cluster 3 was
markedly enriched in mismatch repair, pyrimidine metab-
olism, and Toll-like receptor signaling pathway
(Figure 2(c)). However, we observed that innate immune
cells such as NK cells, macrophages, and MDSC were con-
spicuously enriched in TME cell infiltration of cluster 2
(Figure 2(e)). Previous studies defined tumors as three
phenotypes: immune-excluded, immune-inflamed, and
immune-desert. Furthermore, the immune-excluded phe-
notype was characteristic of plentiful immune cells around
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Figure 1: Continued.
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Figure 1: Landscape of genetic variation of m6A-related exosome gene in colon cancer. (a) m6A-related exosome gene. Exosome-related
genes mean differential expression genes of serum exosome genes between patients with colon cancer and normal people. (b) The
mutation frequency of 59 m6A-related exosome gene in 399 patients with colon cancer from TCGA-COAD cohort. Each column
represented individual patients. The upper bar plots showed TMB; the number on the right indicated the mutation frequency in each
regulator. The right bar plots showed the proportion of each variant type. The stacked bar plots below showed fraction of conversions in
each sample. (c) The CNV variation frequency of m6A-related exosome gene in the GSE39582 cohort. The height of the column
represented the alteration frequency. The deletion frequency, green dot. The amplification frequency, red dot. (d) The location of CNV
alteration of m6A-related exosome gene on 23 chromosomes using the GSE39582 cohort. (e) Principal component analysis for the
expression profiles of 59 m6A-related exosome gene to distinguish tumors from normal samples in the GSE39582 cohort. Two subgroups
without intersection were identified, indicating the tumors and normal samples were well distinguished based on the expression profiles
of m6A-related exosome gene. Tumors were marked with yellow, and normal samples marked with blue.
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the tumor cell nest, yet the tumor capsules showed power-
ful protectivity from immune cell penetration. Moreover, it
demonstrated that poor efficiency in tumor penetration of
immune cells might be caused by stromal activation [22].
Hence, we hypothesized that the antitumor function of
immune cells in cluster 2 was restricted by stromal activa-
tion. Subsequent analyses confirm that the activation of
epithelial-mesenchymal transition (EMT), transforming
growth factor-beta (TGFβ), and angiogenesis pathways,
which are relevant to stromal activation in the tumor,
were remarkably increased in cluster 2 (Figure 2(f)).
Because of the mentioned analysis, cluster 2 which fea-
tured innate immune cell infiltration and stromal activa-
tion corresponded with the immune-excluded subtype.
Cluster 3 which was featured with specific immune cell
infiltration and immune activation corresponded with the
immune-inflamed subtype. The comparison between clus-
ters 1 and 3 revealed that cluster 1 was not concentrating
on antigen processing and presentation, chemokine signal-
ing pathway, and cytokine-cytokine receptor interaction
associated with adaptive immune. Instead, cluster 1 had
immunological ignorance, corresponding to the immune-
desert phenotype (Figures 2(d)–2(f)). The mutual effect
between each tumor-infiltrating immune cell type and
each m6A-related exosome gene was then demonstrated
using Spearman’s correlation analysis (Figure S3).

3.4. m6A Methylation Modification Patterns in the GSE39582
Cohort. Next, we focused on the GSE39582 cohort to com-
prehensively understand m6A-related exosome gene modifi-
cation patterns in numerous clinical cases. Consequently,
using an unsupervised clustering algorithm, three patterns
were distinctly classified in the GSE39582 cohort
(Figures 3(a) and S4a-d). Also, among three different m6A-
related exosome gene modification patterns, the major dif-
ference was shown on the principal component analysis
(PCA) scatter diagram. (Figure 3(b)). Marisa et al. innova-
tively classified patients who were suffering from CC into
four dominant molecular subtypes including CSC (cancer
stem cell), CIN (chromosome instability), KRASm (KRAS
mutant), and dMMR (defective mismatch repair). Moreover,
they concluded that CIN is associated with upregulation of
the EMT pathways while dMMR is associated with upregu-
lation of the immune pathways and cell proliferation. How-
ever, EMT is downregulated in KRASm subtype [23].
Consistent with the previous findings, CIN subtype patients
were divided into clusters 2 and 3, while dMMR subtype
predominantly focused on cluster 1 (Figure 3(c)). Further-
more, prognostic analysis depicted that cluster 1 had a sig-
nificant survival rate advantage compared to clusters 2 and
3 (Figure S4e). Also, we found differential expression of
m6A regulators among three m6A methylation
modification patterns (Figure S4f).
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Figure 2: Biological characteristics and TME cell infiltration of m6A-related exosome gene modification patterns. (a) The interaction
between m6A-related exosome genes in colon cancer. (b) Survival analyses for the three m6A-related exosome gene modification patterns
based on 1066 patients with colon cancer from six GEO cohorts (GSE17536, GSE29621, GSE33113, GSE37892, GSE38832, and
GSE39582) including 442 cases in cluster 1, 263 cases in cluster 2, and 361 cases in cluster 3. Kaplan-Meier curves with log-rank P value
0.001 showed a significant survival difference among three m6A-related exosome gene modification patterns. (c, d) GSVA enrichment
analysis showing the activation states of biological pathways in distinct m6A-related exosome gene modification patterns. The heat map
was used to visualize these biological processes, and yellow represented activated pathways, and blue represented inhibited pathways. The
colon cancer cohorts were used as sample annotations. (c) Cluster 2 vs. cluster 3; (d) cluster 1 vs. cluster 3. (e) The abundance of each
TME-infiltrating cell in three m6A-related exosome gene modification patterns. The upper and lower ends of the boxes represented
interquartile range of values. The lines in the boxes represented median value, and black dots showed outliers. (f) Differences in CD8+ T
effector and stroma-activated pathways including EMT, TGFβ, and angiogenesis pathways among three distinct m6A-related exosome
gene modification patterns. The statistical differences among three modification patterns were tested by the one-way ANOVA test. The
asterisks represented the statistical P value (∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001).
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Figure 3: Transcriptome traits in m6A-related exosome gene modification patterns and unsupervised clustering based on 3787 signatures.
(a) Unsupervised clustering of 59 m6A-related exosome genes in the GSE39582 colon cancer cohort. The cluster, CC molecular subtypes,
gene mutation, location, and gender were used as patient annotations. Yellow represented high expression of regulators, and blue
represented low expression. (b) Principal component analysis for the transcriptome profiles of three m6A-related exosome gene
modification patterns, showing a remarkable difference on transcriptome between different modification patterns. (c) The proportion of
GSE39582 molecular subtypes in the three modification patterns. CIN subtype, green; CSC subtype, blue; KRASm subtype, red; dMMR
subtype, yellow. (d) Functional annotation for m6A-related exosome gene using GO enrichment analysis. The color depth of the bar
plots represented the number of genes enriched. (e) Unsupervised clustering of overlapping m6A-related exosome gene phenotype in
GSE39582 cohorts to classify patients into different genomic subtypes, termed as m6A-related exosome gene clusters A-C, respectively.
The cluster, CC molecular subtypes, gene mutation, location, and gender were used as patient annotations. Yellow represented high
expression of regulators, and blue represented low expression. (f) Kaplan-Meier curves indicated m6A-related exosome gene modification
genomic phenotypes were markedly related to overall survival of 557 patients in the GSE39582 cohort, of which 213 cases were in gene
cluster A, 85 cases in gene cluster B, and 259 cases in gene cluster C (P < 0:0001, log-rank test). (g) The expression of 24 m6A regulators
in three gene clusters. The upper and lower ends of the boxes represented interquartile range of values. The lines in the boxes
represented median value, and black dots showed outliers. The asterisks represented the statistical P value (∗P < 0:05; ∗∗P < 0:01; ∗∗∗P <
0:001). The one-way ANOVA test was used to test the statistical differences among three gene clusters.
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3.5. Generation of m6A-Related Exosome Gene Signatures
and Functional Annotation. To discover the unknown bio-
logical functioning of m6A-related exosome gene modifica-
tion patterns, we used the limma package to identify 3787
m6A-related exosome gene phenotype-related differential
expression genes (DEGs) (Figure S4g). In addition, GO
enrichment analysis for differential expression genes was
exhibited by the clusterProfiler package. Consequently,
3787 selected DEGs, regarded as m6A-related exosome
gene signatures, were denoted as the pivotally salient
indicator of three m6A-related exosome gene modification
patterns. These signatures performed a significant
abundance of biological processes that corresponded with
the formation of the exosome, m6A modification, and
RNA transport, which verified that tumors could deliver
m6A-methylated RNA by exosomes to target cells
(Figure 3(d)). Owing to the absence of validation for this
supervision mechanism, we applied unsupervised clustering
analysis based on the selected 3787 signatures to divide
patients into different genomic subtypes. As a result, we
obtained three newly established distinct subtypes called
m6A-related exosome gene clusters A-C (Figures S5a-d and
3(e)). This phenomenon ensured again that there were
three distinct m6A-related exosome gene modification
patterns in CC. Patients with colon cancer in gene cluster

A (213 patients) ranked first in the prognosis analysis. In
contrast, the worst survival rate was shown in gene cluster
B, with 85 patients classified. In total, 259 patients were
classified in gene cluster C, regarded as an intermediate
prognosis (Figure 3(f)). Furthermore, among three gene
clusters (A-C), it was discovered that the prodigious
difference in 24 m6A regulator expressions was consistent
with the anticipated outcome of m6A methylation
modification patterns (Figure 3(g)).

3.6. Characteristics of Clinical and Transcriptome Traits in
m6A-Related Exosome Gene Phenotypes. To figure out the
function of m6A-related exosome gene phenotypes in the
TME immunity moderation, we chose some cytokines and
chemokines from three groups, which were gathered from
published articles online. First, TGRB1, SMAD9, TWIST1,
CLDN3, TGFBR2, ACTA2, COL4A1, ZEB1, and VIM are
denoted as the transcripts of the transforming growth factor
(TGFβ)/EMT pathway. Second, PD-L1, CTLA-4, IDO1,
LAG3, HAVCR2, PD-1, PD-L2, CD80, CD86, TIGIT, and
TNFRSF9 were relevant to the transcripts of immune check-
points. Furthermore, third, TNF, IFNG, TBX2, GZMB,
CD8A, PRF1, GZMA, CXCL9, and CXCL10 were to be cor-
related with the pathways of immune activation [24, 25]. We
considered gene cluster C was a stromal-activated group
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Figure 4: Characteristics of clinical and transcriptome traits in m6A-related exosome gene phenotypes. (a) Alluvial diagram showing the
changes of clusters (1, 2, and 3), m6A-related exosome gene clusters (A, B, and C), GSE39582 molecular subtypes, and MREGS. (b)
Correlations between MREGS and the known gene signatures in the GSE39582 cohort using the Spearman analysis. Negative correlation
was marked with blue, and positive correlation with red. (c) Differences in MREGS among three gene clusters in the GSE39582 cohort.
The Kruskal-Wallis test was used to compare the statistical difference between three m6A-related exosome gene clusters. (d) Differences
in stroma-activated pathways between the high MREGS and low MREGS groups. EMT: epithelial-mesenchymal transition; Pan-F-TBRS:
panfibroblast TGFβ response signature. The upper and lower ends of the boxes represented interquartile range of values. The lines in the
boxes represented median value. The asterisks represented the statistical P value (∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001). (e) Differences in
MREGS between different GSE39582 molecular subtypes. The Kruskal-Wallis test was used to compare the statistical difference between
four GSE39582 molecular subtypes (P < 0:05). (f) Survival analyses for low (346 cases) and high (173 cases) MRGES groups in the
GSE39582 cohort using Kaplan-Meier curves (P < 0:0001, log-rank test). (g) Survival analyses for subgroup patients stratified by both
MREGS and treatment with adjuvant chemotherapy using Kaplan-Meier curves. H: high; L: low; ADJC; adjuvant chemotherapy
(P < 0:05, log-rank test).
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because of its increased mRNA expression of the TGFβ/
EMT pathway. However, transcriptional mRNAs correlating
with immunity system activity were upregulated in gene
cluster A, suggesting it probably was categorized as the
immune-inflamed group (Figures S5f-5h). The next step
was to pick out a portion of known signatures in CC
patients to describe the function of m6A-related exosome
signatures (Figure S5e). As expected, these box plots
showed that gene cluster C featured higher stroma activity
and cancer progression and metastasis, such as increased
EMT and WNT target, while cell cycle, DNA replication,
and mismatch repair were remarkably enhanced in gene
cluster A.

To more accurately predict the patterns of m6A methyl-
ation modification in a single tumor, we should use a differ-
ent method to compensate for the error caused by the
heterogeneity of each tumor. Hence, we developed a scoring
scheme called the MREGS (m6A-related exosome gene
score), based on the identified 3787 signature genes to calcu-
late the score of individual CC patients. Because of the com-
plicacy of m6A-related exosome gene modification, we used
an alluvial diagram to observe the flow of data (Figure 4(a)).
Furthermore, by exploring the relationship between MREGS
and some recognized signatures, we could have more knowl-
edge of m6A-related exosome gene signatures. Moreover, it
was found that MREGS was positively associated with
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Figure 5: Characteristics of m6A-related exosome gene modification in TCGAmolecular subtypes and tumor somatic mutation. (a) Survival
analyses for low (331 cases) and high (99 cases) MREGS patient groups in TCGA-COAD cohort using Kaplan-Meier curves (P = 0:009, log-
rank test). (b) Differences in MREGS between different TCGA-COAD molecular subtypes. The upper and lower ends of the boxes
represented interquartile range of values. The lines in the boxes represented median value. The Kruskal-Wallis test was used to compare
the statistical difference between four TCGA-COAD molecular subtypes. CIN: chromosomal instability; MSI: microsatellite instability;
CIMP: CpG island methylator phenotype. (c) Differences in MREGS among different types. The upper and lower ends of the boxes
represented interquartile range of values. The lines in the boxes represented median value. The asterisks represented the statistical P
value (∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001). MSS: microsatellite stable; MSI-H: high microsatellite instability; MSI-L: low microsatellite
instability. (d, e) The waterfall plot of tumor somatic mutation established by those with high MREGS (d) and low MREGS (e). Each
column represented individual patients. The upper bar plots showed TMB (tumor mutation burden); the number on the right indicated
the mutation frequency in each gene. The right bar plots showed the proportion of each variant type.

19Oxidative Medicine and Cellular Longevity



1.00

0.75

0.50

0.25
P = 0.031

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0.00

0

70 47 31 17 3
188 129 100 68 8

Number at risk

5 10
Time in months

15

High MREGS
Low MREGS

20

0 5 10
Time in months

15 20

(a)

100

75

50

Subtype

14%

86%

32%

68%

CR/PR
SD/PD

Pe
rc

en
t w

ei
gh

t

25

0

Low High

MREGS

(b)

–2 0.12

–3

–4

M
RE

G
S

CR/PR SD/PD

Type
CR/PR
SD/PD

(c)

1.00

0.75

0.50

0.25
P = 0.223

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0.00

0

26 14 8 6 0
37 21 15 7 0

1
3

Number at risk

50 100

Time in months

150

High MREGS
Low MREGS

250200

0 50 100 150 250200

Time in months

(d)

Figure 6: Continued.

20 Oxidative Medicine and Cellular Longevity



EMT- and TGFβ-related pathway and angiogenesis, whereas
it was negatively related to DNA damage repair and mis-
match repair (Figure 4(b)). Also, there was a prodigious dif-
ference that existed in MREGS between m6A-related
exosome gene clusters (clusters 1, 2, and 3) by the Kruskal-
Wallis test. It displayed that cluster 2 corresponded with
high MREGS but cluster 1 represented relatively low
MREGS (Figure 4(c)). Additionally, as the activation of
fibroblasts is dependent on TGFβ secreted by immunocytes

or cancer cells and IL-11 secreted by TGFβ1-stimulated
CAFs (cancer-associated fibroblasts) could enhance the sur-
vival rate and invasion ability of cancer cells [26, 27], we
chose to analyze stromal activation-related and TGFβ path-
ways. We found that fibroblasts’ increased stromal activation
and TGFβ pathway activity corresponded with high MREGS
(Figure 4(d)). Moreover, the dMMR subtype ranked last in
MREGS, while the CSC subtype was the highest
(Figure 4(e)). The mentioned description powerfully
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Figure 6: m6A-related exosome gene modification patterns in the role of anti-PD-1/L1 immunotherapy. (a) Survival analyses for low (188
cases) and high (70 cases) MREGS patient groups in the anti-PD-L1 immunotherapy cohort using Kaplan-Meier curves (IMvigor210 cohort;
P = 0:031, log-rank test). (b) The proportion of patients with response to PD-L1 blockade immunotherapy in low or high MREGS groups.
SD: stable disease; PD: progressive disease; CR: complete response; PR: partial response; CR/PR: responder; SD/PD: nonresponder.
Responder/nonresponder: 32%/68% in the low MREGS groups and 14%/86% in the high MREGS groups. (c) Distribution of MREGS in
distinct anti-PD-L1 clinical response groups. (d) Survival analyses for low and high MREGS patient groups in the anti-PD1
immunotherapy cohort using Kaplan-Meier curves (GSE78220 cohort; P = 0:223, log-rank test). (e) The proportion of patients with
response to PD-1 blockade immunotherapy in low or high MREGS groups. Responder/nonresponder: 53%/47% in the low MREGS
groups and 57%/43% in the high MREGS groups. (f) The correlation of MREGS with clinical response to anti-PD-1 immunotherapy.
CR, red; PD, blue; PR, yellow; SD, green. (g) Differences in stroma-activated pathways and TGFβ pathway in fibroblasts between low
MREGS and high MREGS groups in the anti-PD-L1 immunotherapy cohort (∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001). (h) Survival analyses
for patients receiving anti-PD-L1 immunotherapy stratified by both MREGS and tumor neoantigen burden using Kaplan-Meier curves.
H: high; L: low; NEO: tumor neoantigen burden (P < 0:05, log-rank test). (i) The predictive value of the quantification of m6A-related
exosome gene modification patterns in patients treated with anti-PD-1/L1 immunotherapy (AUC, 0.725).
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elucidated that low MREGS was associated with DNA dam-
age repair and high MREGS was associated with stromal
activation. Furthermore, we attempted to ascertain the sig-
nificance of MREGS in forecasting patients’ prognoses.
Patients with low MREGS were superior to those with high
MREGS survival rates (Figure 4(f)) because their 5-year sur-
vival rate was two times higher than those with high
MREGS. Whether MREGS could act as a robust prognostic
biomarker for colon cancer is the next question we were sup-
posed to solve. Consequently, we used a multivariate Cox
regression model analysis, which contained patients’ gender,
age, stages, tumor location, MMR status, and subtypes. We
found that MREGS was interrelated with patients’ age,
stages, and MMR status which confirmed MREGS as a cred-
itable and independent prognostic biomarker for evaluating
patient outcomes (Figures S6a-b). Due to adjuvant
chemotherapy (ADJC) being a standard treatment after
colon cancer surgery, MREGS was designed to validate its
predictive ability to the efficacy of ADJC in CC patients.
We discovered that patients with low MREGS-ADJC
displayed remarkable adverse reactions compared with
patients who did not receive adjuvant chemotherapy. At
the same time, ADJC positively impact patients with high
MREGS. The high MREGS-ADJC patients displayed key
therapeutic advantages compared with patients who did
not receive adjuvant chemotherapy. The other obtained
results indicated that low MREGS patients invariably
displayed a tremendous survival advantage regardless of
ADJC treatment (Figure 4(g)).

Moreover, according to mutation patterns, tumors can
be classified into dMMR and pMMR. DMMR (defective
mismatch repair) had more mutation burden than pMMR
(proficient mismatch repair) [28]. In addition, we discussed
the correlation between MREGS and molecular subtype and
discovered that the pMMR subtype was distinctly related to
higher MREGS. In addition, in the stage IV patients, there
was a remarkable enhancement in MREGS compared to
three other groups (Figure S6b). This is consistent with the
result that the dMMR subtype was related to higher
survival than the pMMR subtype. These phenomena
illustrated that MREGS could also indirectly assess some
clinical features such as MMR subtypes and clinical stage.

3.7. Characteristics of m6A-Related Exosome Gene
Modification in TCGA Molecular Subtypes and Somatic
Tumor Mutation. To comprehensively study the characteris-
tics of m6A-related exosome gene modification patterns, we
introduced TCGA project. Three phenotypes classified by
TCGA project are comprised chromosomal instability
(CIN), invasive, and microsatellite instability (MSI). Next,
the difference in MREGS among the three phenotypes was
calculated. The higher MREGS was pronouncedly concen-
trated on CIN and had a shorter lifespan, whereas the inva-
sive phenotype is relevant with lower MREGS, which was
related to better survival (Figures 5(a) and 5(b)). Different
stages indicated differential expression of m6A-related exo-
some gene in TCGA project (Figure 5(c)). Additionally, we
used the Maftools software package to analyze the differ-
ences in the distribution of high MREGS and low MREGS

somatic mutations in TCGA-COAD cohort. A more exten-
sive tumor mutation burden was presented in the low
MREGS patients than the high MREGS group
(Figures 5(d) and 5(e)). Accumulated evidence demon-
strated a potential connection between the enhanced sur-
vival rate of receiving PD-1/PD-L1 immunological therapy
and higher somatic tumor mutation burden (TMB). Conse-
quently, it was indirectly elucidated that clinical reactions to
immunological treatments like anti-PD-1/PD-L1 drugs may
depend on different m6A-related exosome gene modification
patterns in tumors. Also, we confirmed MREGS as a reliable
method to predict prognostic outcomes after immunother-
apy. In both clinical trials and preclinical studies, higher
TMB patients receiving immune checkpoint inhibitor treat-
ment have a prominent superiority in survival rate and clin-
ical response [29].

3.8. m6A-Related Exosome Gene Modification Patterns in the
Role of Anti-PD-1/L1 Immunotherapy. To test the reliability
of MREGS and its prognostic value, MREGS signatures,
obtained from the GSE39582 cohort (Figures S7a-b), were
also applied to five other colon cancer datasets (GSE17536,
GSE29621, GSE33113, GSE37892, and, GSE38832;
Figures S7c-g). ROC curve was used to evaluate a model’s
accuracy, and the higher the AUC value, the more accurate
it is. Moreover, MREGS model displayed high accuracy of
predictive superiority in patients with 3-year (AUC = 0:785
) and 5-year (AUC = 0:754) colon cancer (Figures S7h-i).
Immunological therapy exemplified by anti-PD-L1/PD-1
drugs has made immense progress in molecular targeted
cancer therapy in recent years. Therefore, we selected two
immunotherapy datasets (IMvigor210 and GSE78220) to
validate the predictive ability of MREGS to treat patients
with PD-L1/PD-1 inhibitors. In the anti-PD-L1 dataset
(IMvigor210), through analyzing clinical response and
survival rate, we exposed that the low MREGS group
surpassed the high MREGS group (Figures 6(a)–6(c)),
while in the anti-PD-1 dataset (GSE78220), there was no
significant difference between patients with low MREGS
and high MREGS (Figures 6(d)–6(f)). The following
analysis unraveled that the TME stroma and TGFβ
pathway in fibroblasts were notably activated in the high
MREGS group, which mediated tumor migration
(Figure 6(g)). Tumor neoantigen burden (TNB) is
associated with the efficacy of immunological therapy and
is a major element in the judgment of clinical
immunotherapies. Furthermore, high TNB would be
expected to be characterized by extensive T cell responses
and specifically be sensitive to immunotherapy [30]. In
addition, we discovered that the low MREGS group with
high neoantigens displayed a significant preponderance in
survival rate (Figure 6(h)). As aforementioned, MREGS,
quantifying m6A-related exosome gene signatures, is an
underlying and reliable biomarker for evaluating patients’
outcomes and clinical manifestation after treating
immunological therapy (Figure 6(i)). All in all, calculated
from m6A-related exosome gene signatures, MREGS is
available for forecasting patients’ clinical responses to
receiving anti-PDL1 drugs and is a referable indicator for
the judgment of surgeons.
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4. Discussion

Increasing evidence illustrated that m6A modification played
a monumental role in inflammation, innate immunity, and
antineoplastic interaction with many m6A regulators. How-
ever, because most researchers individually paid attention
to a kind of immunocyte in a tumor environment or a func-
tioning regulator, the characteristics of TME infiltration
were unknown, mediated by the combined function of mul-
tiple m6A regulators. Exosomes, the vector containing RNA
and protein to promote tumor growth, can travel through
the whole body. Also, it can deliver “information” from
tumors, which can be learned more conveniently than nee-
dling biopsy [31, 32]. Thus, through decoding “information”
from exosomes in the body fluid, ascertaining the status of
distinguishing m6A-related exosome gene modification pat-
terns will strengthen the cognitive knowledge of TME
immunological reaction and enlighten more targeted
immune therapy like personalized treatment.

According to the 59 m6A-related exosome genes, TME
cell infiltration had distinct characteristics in this study’s dif-
ferent m6A-related exosome gene modification patterns.
Cluster 1, featured by the suppression of immunity, was
divided into the immune-desert group. Cluster 2, enriched
by natural immunocytes and enhanced activity of stroma,
was divided into the immune-excluded group. Cluster 3,
which was fulfilled of acquired immune cells in tumors,
was divided into the immune-inflamed group. As previous
research demonstrated, the scientists would name the
tumors in the immune-excluded and immune-desert groups
as noninflamed tumors. On the other hand, the tumors in
the immune-inflamed group manifested mountainous
immune cell infiltration in TME [22, 33, 34]. It is shown that
the number of immunocytes was high in the immune-
excluded phenotype. However, instead of penetrating the
tumor parenchyma, immunocytes tended to retain in the
stroma encircled by tumor cells [35–37]. Based on recent
reports, increased TGFβ and activation of EMT-related
pathways in the tumor microenvironment would contribute
to the immune evasion mechanism that blocks the way to
immune infiltration [38, 39]. Some specific molecular inhib-
itors aim at TGFβ, which enables the renovation of the
tumor microenvironment and liberates T cells from tumors
[39, 40]. Furthermore, consistent with the above findings,
cluster 2 demonstrated a unique state of stromal activation,
with high expression of EMT and TGF pathways and angio-
genesis factors, all of which were thought to suppress T cell
activation. Therefore, it is ensured that the immune-
phenotype classification for three modification patterns is
considered credible when connected with each cluster’s
characteristics of cell infiltration in the tumor microenviron-
ment. According to our findings, there was no doubt that a
population of activated innate immunocytes existed in clus-
ter 2 but had a lower survival rate.

Next, mRNA transcriptome differences between distin-
guishing m6A-related exosome gene modification patterns
were remarkably relevant to the biological pathways of
m6A modification, formation of exosomes, and RNA trans-
port. Furthermore, these differentially expressed genes were

named m6A-related exosome gene signatures. Consistent
with the clustering results of the m6A modification patterns
(clusters 1, 2, and 3), three gene clusters (A, B, and C) clus-
tered by m6A-related exosome gene signatures were also sig-
nificantly correlated with stromal activation and immune
response. Hence, it will increase our knowledge of TME
cell-infiltrating characteristics by comprehensively assessing
m6A-related exosome gene modification patterns. Due to
the difference in m6A modification in different tumors, every
tumor should be quantified its unique m6A modification
patterns. Therefore, we set a scoring role to quantify the level
of m6A methylation in exosomes of sufferers with colon can-
cer—m6A-related exosome gene score (MREGS). As men-
tioned, the immune-excluded-related modification pattern
displayed a higher MREGS, whereas lower MREGS was
exhibited in the immune-inflamed-related pattern. It indi-
cated that MREGS is one of the reliable indexes to evaluate
the m6A-related exosome gene modification pattern of indi-
vidual tumor and further identify tumor immune
phenotype.

Our data also illustrated that low MREGS strongly corre-
lated with high tumor mutation burden (hTMB), developing
a more robust and sensitive biomarker to immune check-
point inhibitors and a positive index to receive immunother-
apeutic treatments like immune checkpoint inhibitor (ICPI)
[41]. In addition, the low MREGS group was related to the
dMMR (different mismatch repair) subtype. Previous
reports said, metastatic colorectal cancer patients with
dMMR could benefit tremendously from immune check-
point inhibitors such as PD-L1 monoclonal antibody pem-
brolizumab [42]. Moreover, we found that the low MREGS
group with high neoantigens had higher survival rates than
the high MREGS group with high neoantigens. Furthermore,
Anagnostou et al. discovered that as more neoantigens were
identified, the immune system increased T cells fighting
tumors, increasing the efficacy of ICPI [43]. Therefore,
MREGS with integrated biomarkers like mutation load,
neoantigen load, MMR status, stromal activation, and TME
immune phenotypes could be more beneficial for designing
strategies for immunotherapy. Also, in the cohort with
anti-PD-L1 immune therapy, the predictive value of MREGS
was confirmed, and a remarkable difference existed in
MREGS between responders and nonresponders.

Interestingly, analyzing the correlation between adjuvant
chemotherapy (ADJC) and MREGS, the high MREGS group
was more suitable for ADJC than the low MREGS group
because ADJC negatively impacted the low MREGS group
reflecting in survival rate. Combined with two facts that high
MREGS was relevant to the augmented expression of TGFβ
and EMT and a higher possibility of tumor recurrence in
patients with increased TGFβ- and EMT-related pathways
[44], it is not hard to conclude that ADJC can restrain the
metastasis of residual cancer cells. However, ADJC also
had certain toxicity on patients as the lower survival rate
in low MREGS with the ADJC group versus with the non-
ADJC group. Consequently, MREGS is probably expected
to be a biomarker to sift optimal sufferers that need to
receive ADJC-like microsatellite status and BRAF and KRAS
mutations [45].
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In sum, detecting the level of m6A methylation of exo-
somes in patients’ serum, MREGS could be utilized for asses-
sing the m6A-related exosome gene modification patterns of
each patient and their matching characteristics of TME cell
infiltration. Next, ascertain immunological classifications of
tumors and assist clinicians in tailoring optimal treatment
for patients. We also expounded that MREGS could evaluate
patients’ clinicopathological features such as genetic varia-
tion, the status of tumor cell infiltration, MMR status, clini-
cal stages, and TMB. Our analysis graphics could find the
correlation between MREGS and clinicopathological charac-
teristics. Furthermore, predicting the clinical reaction to
anti-PDL1 immune therapy and the therapeutic effect of
ADJC will be one of MREGS’s greatest advantages. Although
this approach was convenient for detection, it also had sev-
eral unresolved challenges, such as exosome extraction and
purity, the sensitivity of detected m6A methylation, and
how to deal with cancer metastasis, which meant lesions
were not only found in one tissue of one patient. Current
solutions, in our opinion, are constantly reforming exosome
extraction technologies and platforms and deeply mining
clinical data to explore tumor-specific exosome markers.
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