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Background. Glioma is a common tumor that originated from the brain, and molecular targeted therapy is one of the important
treatment modalities of glioma. Apatinib is a small-molecule tyrosine kinase inhibitor, which is widely used for the treatment of
glioma. However, the underlying molecular mechanism has remained elusive. Recently, emerging evidence has proved the
remarkable anticancer effects of ferroptosis. In this study, a new ferroptosis-related mechanism of apatinib inhibiting
proliferation of glioma cells was investigated, which facilitated further study on inhibitory effects of apatinib on cancer cells.
Methods. Human glioma U251 and U87 cell lines and normal astrocytes were treated with apatinib. Ferroptosis, cell cycle,
apoptosis, and proliferation were determined. A nude mouse xenograft model was constructed, and tumor growth rate was
detected. Tumor tissues were collected to estimate ferroptosis levels and to identify the relevant pathways after treatment with
apatinib. Results. Treatment with apatinib could induce loss of cell viability of glioma cells, but not of normal astrocytes,
through eliciting ferroptosis in vitro and in vivo. It was also revealed that apatinib triggered ferroptosis of glioma cells via
inhibiting the activation of nuclear factor erythroid 2-related factor 2/vascular endothelial growth factor receptor 2 (Nrf2/
VEFGR2) pathway. The overexpression of Nrf2 rescued the therapeutic effects of apatinib. Conclusion. Our study proved that
treatment with apatinib could restrain proliferation of glioma cells through induction of ferroptosis via inhibiting the activation
of VEGFR2/Nrf2/Keap1 pathway. Overexpression of Nrf2 could counteract the induction of ferroptosis by apatinib.

1. Background

Glioma is a globally well-known primary malignant tumor
characterized by a poor prognosis and a high rate of mortal-
ity [1, 2]. Induction of tumor cell death is the main choice
for cancer therapy. Ferroptosis is a Fe-dependent regulatory
cell death that results from fatal lipid peroxidation [3].
Recently, a number of scholars pointed out that the expres-

sion levels of Fe metabolism-related proteins and the activi-
ties of Fe-related enzymes were elevated in glioma tissues
compared with those in normal tissues [4]. However, very
little is currently known about the inducing factors and cor-
responding outcomes of ferroptosis in glioma.

Apatinib is a vascular endothelial growth factor receptor
2 (VEGFR-2) inhibitor that is successfully used for the treat-
ment of diverse types of cancer [5, 6]. Apatinib possesses
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Figure 1: Continued.
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antiangiogenic and anticancer activities with different mech-
anisms. For instance, apatinib treatment could inhibit cell
growth and metastasis and enhance the antitumor activity
of temozolomide in glioma [7]. However, the efficacy of apa-
tinib has not been fully documented yet. It has been con-
firmed that apatinib could inhibit proliferation of gastric
cancer cells by inducing glutathione peroxidase 4- (GPX4-)
mediated ferroptosis [8]. However, the potential mecha-
nisms of apatinib in the treatment of glioma remain elusive.

In the present study, we explored the mechanism of inhi-
bition of glioma cell proliferation by apatinib. It was found
that apatinib could arrest cell cycle at G0/G1 phase and
inhibit the proliferation of glioma cells through inducing fer-
roptosis in vitro and in vivo. Of note, nuclear factor ery-
throid 2-related factor 2 (Nrf2) pathway was closely
associated with ferroptosis. A number of scholars have con-
firmed that Nrf2-associated antioxidant stress plays a key
role in ferroptosis inhibition [9]. Indeed, we showed that
apatinib inhibits the activation of Nrf2 pathway allowing
the induction of ferroptosis. Accordingly, the overexpression
of Nrf2 could reverse the inhibition of proliferation and the
induction of ferroptosis of glioma cells by apatinib. There-
fore, our study revealed a new ferroptosis-related mecha-
nism of apatinib inhibiting proliferation of glioma cells,
which facilitated further study on inhibitory effects of apati-
nib on cancer cells.

2. Materials and Methods

2.1. Cell Lines and Transfection with Drugs or Plasmids.
Human glioma U251 and U87 cells were obtained from Pro-
cell Life Science & Technology Co., Ltd. (Wuhan, China).

Cells were cultured in a Dulbecco’s modified Eagle’s medium
(DMEM; Gibco, Grand Island, NY, USA) supplemented
with 10% fetal bovine serum (FBS) (Gibco) and 1%
penicillin-streptomycin solution (Gibco). Glioma cells were
transfected with apatinib after reaching 50% confluence
according to the manufacturer’s protocol. For plasmid trans-
fection, cells were seeded and transfected with the plasmids
when they reached 70% confluence using Lipofectamine
2000 reagent (Invitrogen, Carlsbad, CA, USA), according
to the manufacturer’s protocol.

2.2. Cell Counting Kit-8 (CCK-8) Assay. CCK-8 assay was
performed to evaluate cell viability. Briefly, U251/U87 cells
in the logarithmic growth phase were seeded into a 96-well
plate at a density of 5 × 103 cells/well. At the same time, con-
trol group was set, and the controls were cultured overnight
at 37°C (100μL sterile phosphate-buffered saline (PBS) was
added into the well). Cells were then treated with apatinib
for 24, 48, and 72h, respectively. After that, 10μL CCK-8
solution (MCE, USA) was added to each well and cultured
at 37°C for 4 h; the absorbance value of each well was deter-
mined at a wavelength of 450nm by a miroplate reader.

2.3. Cell Cycle Assay. The density of U87 and U251 cells in
the logarithmic growth phase was adjusted to 1 × 105 cells/
mL, and then the cells were seeded into a 6-well plate. After
the cells adhered to the wall, the original medium was dis-
carded, and the cells were treated. The cells were then incu-
bated in an incubator at 37°C for 72 h in the presence of 5%
CO2. Subsequently, the supernatant was removed, and the
cells were washed with PBS twice. 700μL precooled 80% eth-
anol was slowly added until a final concentration of 70%,
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Figure 1: Apatinib induces loss of cell viability and promotes cell cycle arrest at G0/G1 phase. (a) CCK-8 assay showed the survival rate of
U251 cells treated with apatinib for 24, 48, and 72 h. (b) CCK-8 assay indicated the survival rate of U87 cells treated with apatinib for 24, 48,
and 72 h. (c) Representative images of the morphology of U251 cells by an optical microscope. (d) Representative images of the morphology
of U87 cells by an optical microscope. (e, f) Representative histograms of cell cycle analysis of U251 and U87 cells 72 h after the absence or
presence of apatinib. (h)–(k) Quantitative analysis of cell cycle phases in U251 and U87 cells 72 h after treatment with apatinib. (i, j) LDH
levels in the supernatant of U251 and U87 cells without treatment and 72 h after treatment with apatinib 72 h. ∗P < 0:05; ∗∗P < 0:01.
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Figure 2: Continued.
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and the cells were fixed at 4°C for more than 4h. Subsequently,
the cells were centrifuged at 1,500 rpm for 5min, and RNase
(1mg/mL) was incubated at 37°C for 30min. 10μL propidium
iodide (PI, 400μg/mL) solution was added and stained in dark
at 4°C for 30min, and flow cytometry was performed.

2.4. Detection of Reactive Oxygen Species (ROS),
Malondialdehyde (MDA), Glutathione (GSH), Lactate
Dehydrogenase (LDH), and Fe. The density of U87 and
U251 cells in the logarithmic growth phase was adjusted to
1 × 105 cells/mL, and then, the cells were seeded into a 6-
well plate with 2mL cell suspension in each well. For ROS
detection, the treated cells were analyzed by flow cytometry
using a DCFH-DA cell ROS detection kit (Cat. No. S0033;
Beyotime Biotechnology, Shanghai, China), according to
the manufacturer’s instructions. For MDA detection, the
treated cells were analyzed by an MDA detection kit (Cat.
No. S0131S; Beyotime Biotechnology), according to the
manufacturer’s protocol. For GSH detection, the treated cells
were analyzed by a GSH detection kit (Cat. No. A006-1;
Nanjing Jiancheng Bioengineering Institute, Nanjing,
China), according to the manufacturer’s instructions. For
LDH detection, the treated cells were analyzed by a LDH
detection kit (Cat. No. A020-1; Nanjing Jiancheng Bioengi-
neering Institute), according to the manufacturer’s instruc-
tions. For iron detection, the treated cells were analyzed by

an iron detection kit (Cat. No. A039-1; Nanjing Jiancheng
Bioengineering Institute) and the pcDNA3.1 vector by used
(Cat. No.V38520; Invitrogen™).

2.5. Western Blotting. Whole-cell protein extracts were
homogenized in lysis buffer and centrifuged at 12,000× g for
15min. Protein concentration was measured using a BCA
Protein Assay Kit. The protein lysates were separated on a
10% sodium dodecyl sulfate- (SDS-) polyacrylamide gel and
then transferred onto polyvinylidene fluoride (PVDF) mem-
branes (Millipore, Bedford, MA, USA). After blocking with
5% bovine serum albumin (BSA) for 1.5 h at room tempera-
ture, the PVDFmembranes were incubated with primary anti-
bodies overnight at 4°C. After washing, the PVDFmembranes
were incubated with the corresponding secondary antibodies
conjugated to horseradish peroxidase. Signals were detected
using a commercial ECL kit (Thermo Fisher Scientific, Wal-
tham, MA, USA). Antiglyceraldehyde 3-phosphate dehydro-
genase (GAPDH) (Cat. No. 26415-1-AP) was purchased
from Proteintech (Chicago, IL, USA). Anti-GPX4 (Cat. No.
DF6701), anti-SLC7A11 (Cat. No. DF12509), and inti-
phospho-VEGFR2 (Cat. No. AF3279) were purchased from
Affinity Biosciences (Cincinnati, OH, USA). Anti-KEAP1
(Cat. No. GTX60660) was purchased from GeneTex Inc.
(Irvine, CA, USA). Anti-NRF2 (Cat. No. Ab137550) was pur-
chased from Abcam (Cambridge, UK).
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Figure 2: Apatinib induces ferroptosis of glioma cells. All the data refer to 72 h in the presence and in the absence of apatinib. (a) Flow
cytometry representative histograms of DCFH-DA-stained U251 cells. (b) Fold change of the mean fluorescence intensity of DCFH-DA-
stained U251 cells. (c) Flow cytometry representative histograms of DCFH-DA-stained U87 cells. (d) Fold change of the mean
fluorescence intensity of DCFH-DA-stained U87 cells. (e, f) MDA levels in U251 and U87 cells. (g, h) Fe levels in U251 and U87 cells.
(i, j) GSH levels in U251 and U87 cells. (k, l) Western blotting was used to determine the levels of GPX4 and SLC7A11 in U251 and
U87 cells. (m, n) Western blotting was employed to detect the expression levels of Keap1, Nrf2, p-VEGFR2, and VEGFR2 in U251 and
U87 cells. ∗P < 0:05; ∗∗P < 0:01.
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Figure 3: Continued.
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Figure 3: Overexpression of Nrf2 reverts the loss of cell viability and the cell cycle arrest at G0/G1 phase induced by apatinib. All data refer
to of U251 and U87 cells transfected with the empty vector (NC) and overexpressing Nfr2. (a, b) CCK-8 assay shows the cell viability 24, 48,
and 72 h after treatment with apatinib. (c, d) Representative images of the morphology of cells by an optical microscopy. (e, g)
Representative histograms of cell cycle analysis 72 h after treatment with apatinib. (f, h) Quantitative analysis of cell cycle phases 72-hour
after treatment with apatinib. ∗P < 0:05; ∗∗P < 0:01.
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Figure 4: Continued.
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2.6. Hematoxylin-Eosin (HE) Staining and
Immunohistochemistry. The gliomas from the nude mice
were fixed in 10% paraformaldehyde at 4°C for 12 h and then
dehydrated in different concentrations of ethanol. The
tumor tissues were permeabilized using xylene and embed-
ded in paraffin. They were then sliced (0.5μm), rehydrated,
and stained with HE at 4°C for 10min and sealed. For IHC
assessment of Ki-67 in gliomas, the DAKO Envision system
(Dako; Agilent Technologies, Inc.) was used. Briefly, the
paraffin-embedded sections of gliomas were heated at 60°C
and then incubated with primary antibody against Ki-67
(1 : 1,000; cat. no. ab279653; Abcam) overnight at 4°C. The
sections were then incubated with biotin-labeled secondary
antibodies (1 : 1,000; cat. no. ab205718; Abcam) at 37°C for
20min. For evaluation of Ki67, the number of positive cells
was calculated in three representative areas of high staining
under a light microscope.

2.7. Animal Studies. Female BALB/c nude mice (age, 4 weeks
old) were purchased from Changzhou Cavens Experimental
Animal Co., Ltd. (Changzhou, China). The experimental
procedures in this study were performed according to our
institutional guidelines for animal experiments, and the pro-

tocol was approved by the Institutional Animal Care and
Use Committee of Zhejiang Cancer Hospital (Hangzhou,
China).

2.8. Statistical Analysis. Data were presented as the mean ±
standard error of themean (SEM) from three independent
assays. The Student’s t-test was used to analyze differences
between various groups using the GraphPad Prism 6.0 soft-
ware (GraphPad Software Inc., San Diego, CA, USA). A two-
tailed P < 0:05was considered statistically significant
(∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001).

3. Results

3.1. Apatinib Causes Loss of Cell Viability through Induction
of Ferroptosis of Glioma Cells. Glioma U251 and U87 cell
lines were used in the current study. After treatment with
apatinib for 24, 48, and 72 h, the survival rate of U251 and
U87 cells significantly decreased, and the effect was the most
significant at 72 h (Figures 1(a) and 1(b)). Thus, 72-hour
treatment with apatinib was selected for further study. The
cell morphology was also observed by an optical microscope.
After treatment with apatinib for 72h, the morphology of
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Figure 4: Overexpression of Nrf2 reverts ferroptosis induction by apatinib. All data refer to of U251 and U87 cells transfected with the
empty vector (NC) and overexpressing Nfr2 72 h after treatment in the presence or absence of apatinib. (a, b) LDH levels in the cell’s
supernatant. (c) flow cytometry representative histograms of DCFH-DA-stained U251 cells. (d) Fold change of the mean fluorescence
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Figure 5: Continued.
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U251 cells was disordered, the edge became blurred
(Figure 1(c)), and round-shaped U87 cells were observed
(Figure 1(d)). Flow cytometry showed that the % of cells at
G0/G1 phase increased, at S phase decreased, and at G2/M
phase slightly decreased or remained unchanged (Figures 1
(e)–1(h)), indicating that the cell cycle progression of U251
and U87 cells was arrested at G0/G1 phase. After treatment
with apatinib for 72 h, the LDH level in the supernatant of
U251 and U87 cells significantly increased, indicating cell
damage (Figures 1(i) and (j)).

In addition, after treatment with apatinib for 72h, the
ROS level in U251 and U87 cells significantly increased
(Figures 2(a)–2(d)). Moreover, the levels of MDA
(Figures 2(e) and 2(f)) and Fe (Figures 2(g) and 2(h))
increased, and GSH levels (Figures 2(i) and 2(j)) decreased
in U251 and U87 cells after treatment with apatinib for
72 h. These results indicated that cells were damaged after
apatinib treatment. Considering the increase of Fe levels,
we checked for ferroptosis status of cells. It was found that
the expression levels of GPX4 and SLC7A11 decreased in
both U251 and U87 cells after treatment with apatinib for
72 h (Figures 2(k) and 2(l)), indicating the induction of
ferroptosis.

3.2. Apatinib Induces Ferroptosis through Modulation of
VEGFR2/Nrf2/Keap1 Pathway. We next examined whether
apatinib affected the regulatory pathways involved in ferrop-
tosis induction, particularly the VEGFR2/Nrf2/Keap1 path-
way. The results revealed that the expression levels of
Keap1 and VEGFR2 increased, while the expression levels
of Nrf2 and p-VEGFR2 decreased in U251 and U87 cells
72 h after treatment with apatinib (Figures 2(m) and 2(n)).
In order to ascertain whether Nrf2 could be involved the

response of U251 and U87 cells to apatinib treatment, fur-
ther analysis was performed with cells overexpressing Nrf2.
The results showed that survival of U251 and U87 cells over-
expressing Nrf2 remarkably increased 24, 48, and 72h after
treatment with apatinib (Figures 3(a) and 3(b)) with the
most significant increase after 72 h, in comparison with cells
transfected with the empty vector. The morphology of U251
cells was disordered, and the edge became blurred in the
apatinib treatment group, while in the Nrf2 overexpression
group, it tended to be normal and the edge was clear
(Figure 3(c)). The same trend was observed in U87 cells
(Figure 3(d)). Flow cytometry showed that the cell cycle
increased at G0/G1 phase, decreased at S phase, and did
not significantly change at G2/M phase after treatment with
apatinib for 72 h, which indicated that apatinib could block
the cell growth at G0/G1 phase. After overexpression of
Nrf2, there was no significant change at G0/G1 phase, and
the cell cycle increased at S phase in U87 cells, indicating
that the inhibition of cell growth was relieved. However,
results from U251 cells did not show any relevant differences
between Nrf2 overexpressing and nonoverexpressing cells
treated with apatinib (Figures 3(e)–3(h)). In addition, the
levels of LDH (Figures 4(a) and 4(b)), ROS (Figures 4(c)–4
(f)), MDA (Figures 4(g) and 4(h)), and Fe (Figures 5(a)
and 5(b)) were significantly elevated, while GSH levels
(Figures 5(c) and 5(d)) decreased in U251 and U87 cells
treated with apatinib for 72h, indicating that the cells were
damaged. On the basis of apatinib treatment, the overex-
pression of Nrf2 could reduce the effects of apatinib treat-
ment, thereby reducing cell damage. Moreover, the
overexpression of Nrf2 in apatinib-treated cells increased
the expression levels of GPX4 and SLC7A11 (Figures 5(e)
and 5(f)). Additionally, the decrease in Nrf2 and
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Figure 5: Nrf2 overexpression reverts the increase in iron, the decrease in GSH, GPX4, and SLC/A11, and the changes in expression of the
VEGFR2/Nrf2/Keap1 pathway components induced by apatinib. (a, b) Fe levels; (c, d) GSH levels; (e, f) expression levels of GPX4 and
SLC7A11; (g, h) expression levels of Keap1, Nrf2, p-VEGFR2, and VEGFR2 in U251 and U87. ∗P < 0:05; ∗∗P < 0:01.
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phosphorylated VEGFR2 and the increase in Keap1 in
Apatinib-challenged glioma cells were abolished by the
Nrf2 overexpression (Figures 5(g) and 5(h)). These results
indicated that apatinib could inhibit the proliferation of gli-
oma cells and promote ferroptosis through modulation of
VEGFR2/Nrf2 pathway.

3.3. In Vivo Experiments Confirm That Apatinib Could
Promote the Ferroptosis of Glioma Cells. Our results were
further verified using a nude mouse xenograft model. The
tumor volume of nude mice gradually increased. Compared
with the control group, the tumor volume was significantly
reduced at each time point after treatment with apatinib
(Figures 6(a) and 6(b)). The tumor weight was lighter in
the apatinib-treated group compared with that in the control
group (Figure 6(c)). Compared with the control group, the
proliferation of tumor cells was significantly reduced after
treatment with apatinib. Nuclear pyknosis and fibrous
tumor tissues appeared in the apatinib-treated group
(Figure 6(d)). The percentage of Ki67-positive tumor cells
significantly decreased, indicating that the cell proliferation
was inhibited (Figure 6(e)). In addition, the levels of ROS,

MDA, and Fe in the tumor tissues were significantly ele-
vated, while the GSH level was markedly reduced after treat-
ment with apatinib, indicating that the tumor cells were
damaged (Figures 6(f)–6(i)). Western blotting of tumor tis-
sues showed that the expression levels of GPX4 and
SLC7A11 were downregulated after treatment with apatinib
(Figure 6(j)). The expression levels of Keap1 and VEGFR2
increased, while the expression levels of Nrf2 and p-VEGFR2
decreased in the apatinib-treated group (Figure 6(k)). The
abovementioned results indicated that apatinib could promote
ferroptosis of glioma cells in vivo.

4. Discussion

Glioma is a common tumor that originated from the brain,
and molecular targeted therapy is one of the important treat-
ment modalities of glioma [10]. Apatinib is a small-molecule
tyrosine kinase inhibitor, which is widely used for the treat-
ment of gliomas [7, 11, 12]. For instance, apatinib could
inhibit the growth of gastric cancer cells by inducting apo-
ptosis and autophagy [13]. However, the underlying molec-
ular mechanism has still remained mysterious. Induction of
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Figure 6: Apatinib promotes in vivo ferroptosis of glioma cells. (a) Subcutaneous tumor images of nude mice. (b) The growth curve of
subcutaneous tumors. (c) The weights of subcutaneous tumors. (d) Representative hematoxylin-eosin (HE) staining images of
subcutaneous tumors. (e) Representative immunohistochemistry images of Ki67 using subcutaneous tumors. Effect of apatinib treatment
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tumor cell death is the main choice of cancer treatment.
Recently, ferroptosis has been proved as a new type of regu-
lated cell death that could be caused by iron-dependent lipid
peroxidation [14]. Triggering ferroptosis of tumor cells has
been confirmed as an effective anticancer approach [15].

In the present study, we attempted to investigate the role
of ferroptosis in apatinib-involved anticancer mechanism.
We first proved that apatinib could inhibit the growth of gli-
oma cells. It has been demonstrated that a high ROS level
increases intracellular Fe level and ferroptosis [16]. For
instance, RSL3 could drive ferroptosis by inactivating
GPX4 and producing ROS [17]. The levels of ROS and Fe
were measured, as well as of cellular changes typical of fer-
roptosis indicating that the treatment with apatinib commit-
ted glioma cells to this type of regulated death.

A number of scholars pointed out that Keap1/Nrf2 sig-
naling pathway could regulate the activation of ferroptosis
[18]. HMGB1, for instance, could regulate ferroptosis
through activation of Keap1/Nrf2 signaling pathway in
mesangial cells [19]. In addition, Nrf2 overexpression or
Keap1 knockdown could accelerate the proliferation and
oncogenic transformation of glioma cells [20]. Nrf2-Keap1
pathway was also proved to diminish ferroptosis [21, 22].
To explore the potential mechanism of apatinib regulating
ferroptosis, we determined the expression level of Nrf2 in
glioma cells treated with apatinib. The in vitro and in vivo
results revealed that the expression levels of Nrf2 and p-
VEGFR2 decreased in cells and tumor tissues treated with
apatinib. Moreover, the overexpression of Nrf2 could reverse
the induction of ferroptosis and inhibition of cell prolifera-
tion by apatinib in the apatinib-treated group. These results
indicated that apatinib could promote ferroptosis of glioma
cells via modulation of the Keap1/Nrf2 signaling pathway.

5. Conclusions

In summary, our study indicated that apatinib could inhibit
proliferation of glioma cells by induction of ferroptosis. In
terms of the underlying mechanism, it was proved that
Keap1/Nrf2 signaling pathway mediated this process. There-
fore, the results of the present research revealed a new mech-
anism of apatinib inhibiting proliferation of glioma cells,
which facilitated further study on the inhibitory effects of
apatinib on cancer cells.
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