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Astaxanthin (AX), which is produced by some marine animals, is a type of carotenoid that has antioxidative properties. In this
study, we initially examined the effects of AX on the aging of a model organism C. elegans that has the conserved intracellular
pathways related to mammalian longevity. The continuous treatments with AX (0.1 to 1 mM) from both the prereproductive and
young adult stages extended the mean lifespans by about 16–30% in the wild-type and long-lived mutant age-1 of C. elegans. In
contrast, the AX-dependent lifespan extension was not observed even in a daf-16 null mutant. Especially, the expression of genes
encoding superoxide dismutases and catalases increased in two weeks after hatching, and the DAF-16 protein was translocated to
the nucleus in the AX-exposed wild type. These results suggest that AX protects the cell organelle mitochondria and nucleus of the
nematode, resulting in a lifespan extension via an Ins/IGF-1 signaling pathway during normal aging, at least in part.

1. Introduction

It has been understood that antioxidants and free radical
scavengers decrease the intracellular reactive oxygen species
(ROS) in treated experimental organisms and prolong their
lifespans based on the free radical theory of aging [1, 2]. In
the model organism nematode, Caenorhabditis elegans (C.
elegans), there are many reports that dietary supplements,
such as antioxidants and radical scavengers, extended the
lifespan. C. elegans is an excellent experimental system to
assess the pharmacological influence on intracellular aging
pathways conserved between invertebrates and vertebrates
[3, 4]. For example, it is conceivable that antioxidants, such
as vitamin E, simply act to reduce the intracellular ROS
in C. elegans [5]. The flavonoids, such as quercetin, are
made to decrease the accumulation of the aging marker
lipofuscin and localize the DAF-16 transcription factor, a
homolog of mammalian FoxO, in the nucleus from the
cytosol via an insulin/insulin-like growth factor-1 (Ins/IGF-
1) signaling [6]. Oxaloacetate, the citric acid cycle metabo-
lite, also increased the lifespan through an AMPK/FOXO-
dependent pathway [7]. CoQ10, which is essential for the
mitochondrial respiratory chain, reduced the superoxide

anion levels mainly produced during electron transport [8].
In contrast, resveratrol that is a polyphenol found in red wine
mimics calorie restriction by stimulating sirtuins, increasing
the DNA stability, and extending the lifespan of metazoans
[9–11]. Thus, molecular mechanisms of the supplemental
lifespan extension are classified based on several intracellular
pathways evolutionarily conserved from yeast to mammals.

Environmental effects on the nematode, which changes
the DNA structure and repair, behavior, genetic recombi-
nation frequency, oxygen (O2) consumption, and lipofuscin
accumulation over its lifespan, are very important when
considering the lifespan extension [12]. It is estimated that
the heritability of the lifespan in C. elegans is between 20%
and 50%, and the remaining percentage is mainly due to
environmental effects, including nutrients and pathogens in
the medium and ROS resources such as O2 and ionizing
radiation (IR) in atmosphere, on the lifespan [13]. Therefore,
the environmental effects on the lifespan of worms are not
negligible. During its growth, the worm continues to intake
nutrients from the medium with or without the bacterium
Escherichia coli (E. coli) as the food source. The length of the
mean lifespan as a worm group is remarkably affected by the
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environmental nutrients in the culturing medium because
the C. elegans genome has a nearly uniform base composition
[14]. These environmental effects can be classified into
factors that shorten or extend the nematode lifespan upon
their exposure or lack of exposure.

On the other hand, the enzymatic antioxidant systems
in C. elegans, for example, superoxide dismutase (SOD) and
catalase, play an important role in protecting living cells from
ROS. SOD and catalase scavenge the intracellular superoxide
radical (•O2

−) and hydrogen peroxide (H2O2), respectively.
In C. elegans, five genes encoding these SODs (sod-1 to sod-
5) and three genes encoding these catalases (ctl-1 to ctl-
3) have been identified in the genome [15–21]. sod-1 and
sod-5 genes encode cytosolic Cu/Zn SODs, sod-2 and sod-
3 genes encode mitochondrial Mn SODs, and sod-4 gene
encodes the homolog of the extracellular Cu/Zn SOD in
mammals. ctl-1 and ctl-3 genes encode unusual cytosolic
catalases, and ctl-2 gene encodes a peroxisomal catalase. In
these genes, sod-3, sod-5, ctl-1, and ctl-2 are direct targets of
the transcription factor DAF-16, which is a key regulator of
the Ins/IGF-1 signaling pathway implicated in the normal
aging process of C. elegans [22–24]. Expressions of these
subsets of antioxidant genes in C. elegans are also induced
by the exposure to dietary supplements via the Ins/IGF-1
signaling pathway [6].

Astaxanthin (AX), which is produced by marine animals,
is a kind of carotenoid and shows a strong antioxidant
activity that is attributed to the quenching of singlet oxygen
(1O2) and the scavenging of lipid peroxidation by free
radicals. In addition, AX inhibits the production of lipid
peroxides in the animal cell membranes, and the antioxidant
activity is about 2-fold more effective than β-carotene. The
efficient antioxidant activity of AX is suggested to be due
to the unique conjugated polyene structure of the terminal
ring moiety [25]. It is reported that a marine carotenoid,
fucoxanthin (FX), improved the insulin resistance and
decreased the blood glucose level in mammals through the
downregulation of the tumor necrosis factor-α [26]. Thus,
the specific regulation of carotenoids containing AX and
FX on the intracellular biomolecules is responsible for the
characteristic chemical structures, which differ depending
on the length of the polyene chain, a long conjugated
double bond system forming the backbone of the molecule.
We report the effects of AX, which has not only a strong
antioxidant activity but also some biological activities that
affect the nematode C. elegans lifespan.

2. Results

Continuous treatment with 0.1 to 1 mM AX from each
stage of the first-stage larva (L1) or young adult in the
hermaphrodite extended about 16–30% each mean of lifes-
pan in the wild-type N2 and long-lived mutant age-1 of C.
elegans (Figure 1 and Table 1). The AX-dependent lifespan
extensions in N2 were more notable than these of the
age-1 animals. Moreover, the maximum lifespan in N2 also
increased significantly depending on the concentration of
AX. In contrast, the AX-dependent increases in the mean

and maximum lifespan were not statistically clear in a null
allele of the daf-16 gene mutant, daf-16(mgDf50) animals.
The wild-type lifespans measured using AX, which had not
been solubilized in DMSO, were not significantly extended in
a preliminary experiment (data not shown).

On the other hand, the AX-dependent increases in the
expression of some genes encoding antioxidant enzymes,
such as SOD and catalase, were significantly observed in
the wild-type N2 (Figure 2). Especially, the expression of
the sod-3, sod-5, ctl-1, and ctl-2 genes in the AX-treated
N2 was significantly increased within two weeks after the
AX treatment. All these genes are targets of the DAF-16
transcription factor, and the expression is regulated via
the Ins/IGF-1 signaling pathway associated with oxidative
stress resistance and aging in C. elegans [22–24]. The AX-
dependent increases in the expression levels of these genes
were not yet observed in the 7-day-old animals (data not
shown). Thus, it was recognized that there are the time lags
until the AX-dependent rising in the expression of these
genes. In these genes; however, there are the genes that
were regulated by other transcription factors (e.g., role of
SKN-1 in ctl-genes) [27]. Therefore, the inconsistency during
the intrinsic catalase activities in this paper and the mRNA
levels in the previous data may depend on the diversity in
transcriptional regulation of ctl genes expression [28].

Furthermore, we found that AX still decreased the
mitochondrial •O2

− production levels in the 14-day-old
animals of the age-1 mutant but not the daf-16 null mutant.
There was no significant difference in the mitochondrial
•O2

− levels after 14 days from hatching in the AX-treated
wild-type N2 compared with the 4-day-old animals. The AX
treatment did not decrease but increased the mitochondrial
•O2

− production levels of the 4-day-old animals of N2 and
age-1 (Figure 3(a)). However, the AX-dependent increases in
the mitochondrial •O2

− levels were not significant in the AX-
treated 14-day-old animals of N2 and age-1 (Figure 3(b)). In
general, dose ranging revealed that the mitochondrial •O2

−

production levels per mg of mitochondrial protein in the
14-day-old animals, at approximately 150–300 × 103 the
relative luminescence intensity unit (RLU) per second, was
significantly enriched compared to the values in the 4-day-
old animals (Figures 3(a) and 3(b)).

In the 4-day-old animals of wild-type N2, almost all
DAF-16 protein was observed in the cytoplasm and not
the nucleus. This phenomenon was also similar in the
AX-exposed 4-day-old animals (Figures 4(a) and 4(b)). In
contrast, the DAF-16 translocation into the nucleus had
already been observed in the 4-day-old animals of age-
1 with and without AX. The DAF-16-translocated nuclei
were mainly in the epithelia, musculature, intestine, and
part of the nervous system (Figures 4(c) and 4(d)). On the
other hand, the DAF-16 was more localized in the nuclei
of the 14-day-old animals of N2, and the translocation was
significantly enhanced in the AX-exposed animals (Figures
4(e), 4(f), and Table 2). In the 14-day-old animals of age-1,
more DAF-16 was translocated into the cytoplasm from the
nucleus of the musculature and intestine compared to the 4-
day-old animals (Figures 4(c), 4(d), 4(g), and 4(h)).
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Figure 1: Survival curves at 20◦C in wild-type N2, age-1(hx546), and daf-16(mgDf50) animals. About 100 animals were used in each
experiment. Open circle, square, and triangle show controls, shaded circle, square, and triangle show the treatment with 0.1 mM AX, and
closed circle, square, and triangle show the treatment with 1 mM AX. Means of lifespan ± standard deviation (SD) in control, 0.1 mM, and
1 mM AX were as Table 1.

Table 1: Effect of AX on mean and maximum lifespans at 20◦C in several age-related mutants.

Strain (condition) Mean lifespan (days) Max. lifespan (days)

N2 (control) 31.5 ± 6.4 25.5 ± 6.0 24.5 ± 5.1 43.8 ± 4.8

N2 (0.1 mM AX) 38.4 ± 5.3∗∗ 32.2 ± 9.1∗∗ 27.7 ± 5.7∗∗ 51.6 ± 6.0∗

N2 (1 mM AX) 41.4 ± 6.5∗∗ 32.8 ± 8.7∗∗ 28.6 ± 6.4∗∗ 53.3 ± 6.1∗

age-1 (control) 47.1 ± 15.1 40.1 ± 14.6 46.4 ± 14.7 77.6 ± 7.0

age-1 (0.1 mM AX) 50.2 ± 16.1 50.2 ± 16.8∗∗ 50.5 ± 13.1∗ 80.0 ± 7.8

age-1 (1 mM AX) 54.8 ± 14.7∗∗ 49.8 ± 17.6∗∗ 51.4 ± 12.9∗ 82.6 ± 8.2

daf-16 (control) 19.2 ± 2.8 19.3 ± 2.9 18.0 ± 4.2 24.6 ± 2.6

daf-16 (0.1 mM AX) 21.2 ± 4.0 20.1 ± 2.8 18.6 ± 3.5 27.6 ± 3.5

daf-16 (1 mM AX) 22.0 ± 4.7 19.6 ± 3.5 19.5 ± 2.9 28.6 ± 3.8

Results about mean lifespan are indicated as means ± SD from three independent experiments. Results about maximum lifespan are expressed as means ±
SD of more than six determinations. P values by t-test with an asterisk (controls versus AX-treated conditions) significantly differ as follows; ∗P < 0.05 and
∗∗P < 0.001.

3. Discussion

Based on exposure of AX to several strains, we observed a
longevity effect of about 16–30% in the wild-type N2 and
long-lived mutant age-1 of C. elegans. In contrast, no signifi-
cant differences in the AX-dependent lifespan extension were
noted in a daf-16 null mutant. AX exposure to wild-type and
age-1 animals mainly enhanced the mRNA expression of the

DAF-16 target genes and increased the nuclear localization
of the DAF-16 transcription factor. Furthermore, it was
shown that AX also caused a decrease in the mitochondrial
ROS production during the long-term exposure to these
animals. This finding suggests that AX indirectly protects
intracellular organelles, such as mitochondria and nuclei,
from oxidative damage during normal aging because the
AX molecules at the surface and inside the phospholipid
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Figure 2: mRNA expression levels of sod and ctl genes in wild-type N2, age-1(hx546), and daf-16(mgDf50) animals using RT-PCR. Each
mRNA of 14-day-old animals was prepared and analyzed. Panels indicate the quantitative data obtained using the luminescent image analyzer
and AU in the panels indicates arbitrary unit. Data are means ± SD of three or more independent experiments. Left-hand open column and
right-hand shaded column for each strain indicate values without and with 1 mM AX-exposure, respectively. Asterisk indicates significant
difference during the values without and with AX exposure. P values, which were calculated using a two-tailed t-test for paired samples with
unequal variances, are ∗P < 0.05 and ∗∗P < 0.005.
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Figure 3: Mitochondrial •O2
− contents of various strains. Left-hand open bar for each strain of 4 days old (a) and 14 days old (b) indicates

mitochondrial •O2
− level in vitro without 1 mM AX exposure, and right-hand shaded bar indicates values with AX exposure. Data are means

± standard error of the mean (SEM) of ten independent measurements. P values, which were calculated using a two-tailed t-test for paired
samples with unequal variances, are ∗P < 0.001.

Table 2: Effect of AX on DAF-16 localization into the nucleus in
several age-related mutants.

Strain (condition) Age (days)
Number of

DAF-16-translocated nuclei
(/unit area)

N2 (control) 4 N.D.

N2 (1 mM AX) 4 N.D.

N2 (control) 14 3.4 ± 0.5

N2 (1 mM AX) 14 12.0 ± 2.0∗

age-1 (control) 4 12.6 ± 1.1

age-1 (1 mM AX) 4 13.6 ± 3.2

age-1 (control) 14 14.2 ± 2.3

age-1 (1 mM AX) 14 13.6 ± 1.3

DAF-16-translocated nuclei were counted mainly in the epithelia, muscula-
ture, and intestine. N.D. indicated not detected. Results about the number
of DAF-16-translocated nuclei are indicated as means ± SD from more
than five independent transgenic animals. P values by t-test with an asterisk
(controls versus AX-treated condition) significantly differ as follow; ∗P <
0.001.

membranes in intracellular organelles have dual activities to
quench 1O2 and scavenge lipid peroxidation by free radicals
[25]. That is, the mitochondria protected from oxidative
damage leak less ROS during the mitochondrial respiration,
and the nuclei protected from oxidative damage are more
active for the gene expression in organisms. It is likely
that the oxidative stress-induced expression of antioxidant
genes has been continued at least until 14 days old in
the AX-treated animals. Moreover, we propose that AX
protects the intracellular organelles through the bioactivities
at the phospholipid membranes of cells (including the
mitochondrial and nuclear membranes) [25] and increases
the expression of the DAF-16 target genes via the Ins/IGF-
1 signaling pathway, at least in part, in the nematode C.
elegans. As a result, AX increases the lifespans of the wild-
type and long-lived age-1 mutant, which has activated the
Ins/IGF-1 signaling. In particular, attention is directed to a

more effective AX-dependent lifespan extension in the wild-
type rather than the Ins/IGF-1 signaling-activated strain.

On the other hand, it is interesting that the functionality
of the carotenoids (such as AX) is determined by its
subcellular localization [29]. Studies using domestic animals
have shown a significant uptake of orally fed carotenoids, for
example, lutein and β-carotene, by the microsomes, cytosol,
and nuclei of the circulating peripheral blood leukocytes
with the mitochondria showing the highest uptake in the
animals [30, 31]. In a recent paper, it was reported that
AX had accumulated in the mitochondria of normal human
mesangial cells cultured with a high concentration of glucose
and reduced the production of the mitochondrial ROS-
modified proteins [32]. The mitochondrial respiratory chain
system utilizes approximately 85% of the oxygen consumed
by the cell to generate ATP; therefore, an intracellular
organelle mitochondrion is the most important source of
ROS [33]. Thus, the mitochondria are a key player for lifes-
pan determination in organisms based on the mitochondrial
oxidative stress theory of aging [1, 2, 34]. Accordingly, the
localization of the carotenoids in the mitochondria has been
of particular relevance based on the previous reports. AX
prevented the lipid hydroperoxide (LOOH) generation in
membrane liposomes enriched with polyunsaturated fatty
acids and improved the muscle lipid metabolism under
the ROS generation in exercise groups of mice [35, 36].
Notably, McNulty et al. inferred that AX preserved the
membrane structure and exhibited a significant antioxidant
activity because AX showed a significant reduction in lipid
peroxidation rather than other apolar carotenoids, such as
lycopene and β-carotene [35]. In addition to this dual antiox-
idant capacity (quenching of 1O2 and scavenging of lipid
peroxidation), the direct •O2

− scavenging efficiency of AX
delivered in the DMSO vehicle was evaluated using an in vitro
isolated human neutrophil assay [29]. Likewise, our study
indicated that supplemental DMSO-dissolved AX delivered
into the nematode plays a role regarding some antioxidant
properties in the mitochondrial and nuclear membranes
without modification of the constituent lipid structure under
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Figure 4: Localization of DAF-16::GFP in wild-type (a, b, e, and f) and age-1 animals (c, d, g, and h). Panels of (a, b, c, and d) show the
4-day-old animals, and panels of (e, f, g, and h) show the 14-day-old animals. Furthermore, Panels of (b, d, f, and h) show AX-exposed
animals in each strain. Scale bar = 200 μm. Means of number of DAF-16-translocated nuclei ± SD in control and 1 mM AX were as Table 2.

stressful conditions during normal aging. Of course, it is
expected that these physical properties of AX against cellular
and intracellular membranes are effective even in the daf-16
null mutant used in the current study. However, we consider

that an imbalance during the production and quenching of
ROS had occurred in the mitochondria of the AX-treated
daf-16 mutant because not only the antioxidant genes but
also the mitochondrial metabolic genes were regulated as the
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targets of DAF-16 transcription factor and related to the C.
elegans lifespan and metabolism [37].

Recently, Miyashita has suggested that carotenoids have
other novel biological activities, which are independent of
the antioxidant properties. Modulation of the transcription
activity of carotenoids is known to have an anticancer
effect; however, the underlying mechanisms of this action
still remain uncertain [26]. Moreover, the nonprovitamin A
carotenoids (such as lutein, cantaxanthin, lycopen, and AX)
are also capable of altering the patterns of gene and protein
expressions and have a cellular function with a specific
nutritional impact on the body [30, 38].

In summary, we conclude that AX taken into the subcel-
lular organelles in nematode C. elegans consequently protects
the cells at the surface and inside lipid-rich membranes
against oxidative injury and functions to keep the optimal
intracellular ROS balance mediated by regulation of the
DAF-16 targets via the Ins/IGF-1 signaling pathway during
normal aging. Hence, AX as a potential in vivo supplemental
agent, extends the lifespan of nematodes not only by the
direct antioxidant activities but also via the indirect AX-
related activation of the Ins/IGF-1 signaling.

4. Methods

4.1. Materials. The C. elegans strains, wild-type N2 var.
Bristol, age-1(hx546), and daf-16(mgDf50) were obtained
from the Caenorhabditis Genetics Center at the University
of Minnesota (Minneapolis, Minn, USA). The age-1(hx546)
mutant is the first long-lived strain [39, 40], and the daf-
16(mgDf50) mutant has a deficiency completely eliminating
the daf-16 coding region [41]. Worms were grown at 20◦C
on nematode growth medium (NGM) agar plates with E. coli
[42–44].

4.2. Measurements of AX-Treated Lifespan. The gravid
hermaphrodites from the NGM agar plates were washed
then dissolved in alkaline sodium hypochlorite in order to
collect the eggs in utero. The released eggs were allowed to
hatch by overnight incubation at 20◦C in S buffer to the
age synchronous cultures of the L1 stage larvae [44]. The
lifespan of the hermaphrodites at 20◦C was measured with
or without AX crystalline (Santa Cruz Biotechnology, Inc.,
Santa Cruz, Calif, USA) solubilized in dimethyl sulfoxide
(DMSO; Sigma Chemical Co., St. Louis, Mo, USA) (Figure 5)
[29]. In order to prevent progeny production, 5-fluoro-2′-
deoxyuridine (FUdR; Wako Pure Chemical Industries Ltd.,
Osaka, Japan) was added to the NGM agar plate at the
final concentration of 40 μM after the animals had reached
adulthood [43].

4.3. Quantitative RT-PCR for Antioxidant Enzymes. The
poly(A)+ RNA of the animals cultured with or without AX
was prepared, and then the cDNA was synthesized using a
reverse transcription reaction [42]. The cDNA was used as
a template for the subsequent polymerase chain reactions
(PCR). We carried out the PCR for five sod and two ctl genes
in the 14-day-old animals. Fragments of the PCR products

Figure 5: AX-containing NGM plates for measurement of lifespan
in nematode. Left-, middle-, and right-hand plates contain a red
carotenoid pigment AX of 0, 0.1, and 1 mM, respectively. For its
lipid solubility, nonesterified AX crystalline was delivered using a
DMSO vehicle in NGM [29].

were confirmed by agarose gel electrophoresis and ethidium
bromide (EtBr). The fluorescence intensity of EtBr in the
DNA fragments was half-quantitatively measured using a
LAS-4000UVmini luminescent image analyzer (Fujifilm Co.,
Tokyo, Japan). The expression data were normalized to each
transcript level of the act-1 gene (encoding the body wall and
pharyngeal muscle actin protein) in N2, age-1(hx546), and
daf-16(mgDf50).

4.4. Measurements of Mitochondrial •O2
− Production. For

isolation of the mitochondria fraction, the 4- and 14-day-
old animals were treated as previously described [28]. The
mitochondria fraction was resuspended in the TE buffer. The
protein content of each fraction was determined using a BCA
Protein Assay Kit (Pierce Biotechnology, Inc., Rockford, Ill,
USA). The mitochondrial •O2

− production was measured
using the specific chemiluminescent probe, 2-methyl-6-p-
methoxyphenylethynyl imidazopyrazinone (MPEC; ATTO
Co., Tokyo, Japan) [45]. Forty μg of the intact mitochondria
in 1 mL of the assay buffer containing 0.7 μM MPEC was
placed in an AccuFLEX Lumi 400 luminometer (Aloka Co.,
Ltd., Tokyo, Japan), and the relative luminescence intensity
per second was measured.

4.5. Subcellular Localization of DAF-16. To detect the intra-
cellular DAF-16 activity, pGP30 vector (obtained from Dr.
T. E. Johnson’s laboratory), which has a construct fuged
the daf-16 gene transcript a2 (daf-16a2) to gfp gene, was
microinjected into each gonad of the wild-type and age-1
animals at 100 ng/μL with pRF4 containing the rol-6(su1006)
gene. The presence or absence of DAF-16 localization into
the nucleus of the 1 mM AX-exposed transgenic 4- and 14-
day-old animals was observed using an Olympus Fluores-
cence Microscope with Digital Imaging System BX51TRF
(Olympus Co., Tokyo, Japan).
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