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Alzheimer’s disease (AD), Parkinson’s disease (PD), and cancer (e.g., leukemia) are the most devastating disorders affecting
millions of people worldwide. Except for some kind of cancers, no effective and/or definitive therapeutic treatment aimed to
reduce or to retard the clinic and pathologic symptoms induced by AD and PD is presently available. Therefore, it is urgently
needed to understand the molecular basis of these disorders. Since oxidative stress (OS) is an important etiologic factor of the
pathologic process of AD, PD, and cancer, understanding how intracellular signaling pathways respond to OS will have a significant
implication in the therapy of these diseases. Here, we propose a model of minimal completeness of cell death signaling induced
by OS as a mechanistic explanation of neuronal and cancer cell demise. This mechanism might provide the basis for therapeutic
design strategies. Finally, we will attempt to associate PD, cancer, and OS. This paper critically analyzes the evidence that support
the “oxidative stress model” in neurodegeneration and cancer.

1. The Verdict: Oxygen Is Guilty, Not Guilty

Oxidative stress (OS) has become a major topic in all areas
of medical knowledge. Entry of the term “oxidative stress” in
PubMed (http://www.ncbi.nlm.nih.gov/pubmed) shows that
the number of publications has dramatically increased from
none in the early 1970’s to cover ∼90,000 peer-reviewed
articles in 2011 (Figure 1(a)). A similar trend is recorded
for Alzheimer’s disease (AD), Parkinson’s disease (PD), and
cancer when searched jointly with OS (Figure 1(b)). Since
the discovery of the superoxide dismutase (SOD) in 1969 by
McCord and Fridovich ([1], for a historical perspective see
[2–4]), our understanding of the molecular defense mech-
anisms, which include catalase [5], glutathione peroxidase
(GPx), and peroxiredoxin [6] and thioredoxin reductase
[7], against diverse stress stimuli and pathogens [8] has
dramatically changed (reviewed in [9, 10]). Moreover, given
the phylogenetic distribution and subcellular localization of
the SOD isozymes, the discovery has provided strong support
for the hypothesis that the chloroplasts and mitochondria
of eukaryotic cells arose from prokaryotic endosymbionts

[11]. SOD is an enzyme that catalyzes the dismutation of
the superoxide radical (O2

·−) very efficiently (k2 ∼ 2 ×
109 M−1 s−1) through a redox reaction of its copper centre
enzyme into oxygen (O2) and hydrogen peroxide (H2O2).
Today, it is clear that decrease of enzymatic activity of the
defense system or an overwhelming production of O2

·−

and/or H2O2 is linked to neurodegenerative disorders (e.g.,
familial amyotrophic lateral sclerosis [12], AD [13], PD
[14], and cancer [15]). The idea that oxygen might not
only be involved in the beginning of life and evolution
[16–18] but also it might be a toxic molecule [19] was
further popularized by Halliwell and Gutteridge in their
book entitled “Free Radicals in Biology and Medicine”
[20] and some important follow-up papers [21–23]. The
chemistry of oxygen is well known. Basically, O2 is classified
as a free radical. By definition, a free radical is an atom
or group of atoms with at least one unpaired electron.
Indeed, the electronic configuration of the oxygen diatom
is [2He4]2s42p8 with the first ten electrons placed into σ ,
σ∗, π, orbitals, and two unpaired electrons each located in
a different π∗ antibonding orbital. Removal of an electron
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from O2 results in a superoxide cation radical (O2
·+). In

contrast, if a single electron is added, the product is the
superoxide anion radical (O2

·−). Addition of one more
electron will yield the peroxide ion, O2

2−, which is not
a radical. Since this reaction may take place in solution,
it is quite likely that this ion became protonate (2H+)
and converted into H2O2. This last compound represents
a potential danger. In the presence of metal ions such as
iron (Fe2+) and copper (Cu+), H2O2 decomposes into more
reactive free radical specie, the hydroxyl radical (·OH). In
sharp contrast with O2

·−, there is not an antioxidant system
to protect cells against ·OH. Indeed, this last radical can
provoke a whole series of radical chain reactions involving
damage of lipids, proteins, and nucleic acids. Therefore, an
excessive generation or accumulation of O2

·−/H2O2 may
lead to a biochemical phenomenon known as OS. Simply,
this term refers to an atypical state in which exaggerate
production of reactive species overwhelms the antioxidant
defense systems of the cell [24]. Interestingly, O2

·− and
H2O2 are recognized to play signaling functions (reviewed
in [25, 26]). However, H2O2 best fulfills the requirements of
being a second messenger, that is, its enzymatic production,
along with the requirements for the oxidation of thiols
by this molecule, provides the specificity for time and
place that are required in signaling, whilst O2

·− is more
likely as a precursor of H2O2. Although efforts have been
made to explain the complexities of OS in cancer [27,
28] and neurodegeneration [29–31], several questions still
remain unanswered, mainly because of two key issues. First,
except for a few causative genetic mutations, the underlying
pathogenic mechanism(s) of Parkinson’s and Alzheimer’s
cases is not yet well understood. Consequently, this makes
it difficult to identify potential therapeutic targets to stop
their progression. Therefore, it is imperative to elucidate
the precise molecular mechanism and/or identify the molec-
ular “switches” that trigger neuronal death [32]. Clearly,
identifying the precise steps/“switches” in the pathological
cascade has been proven difficult since multiple death
signaling pathways are often activated in response to a
single stimulus. Thus, the questions what kills neurons and
how do they get deteriorate in neurodegenerative diseases
[33, 34] are still unresolved. Second, it is not surprising
that some neuroprotective clinical trials had been completely
unsatisfactory [35–38]. This last outcome is even aggravated
by either technical incongruities [39], the challenging task of
recruitment and retention of subjects in clinical trials (e.g.,
AD, [40]), limited knowledge on antioxidant bioavailability
[41, 42], or that they have failed because they have not been
aimed at the right target [43–45].

2. The Bad Touch of Oxidative Stress:
Involvement in Alzheimer’s and Parkinson’s
Disease

AD and PD are the two most common progressive neu-
rodegenerative disorders worldwide [46, 47] affecting all
ethnicities but especially some genetically isolated groups,
such as the “paisa community” living in the Antioquia region

of Colombia [48–52]. AD and PD are neuropathologically
characterized by abundant insoluble protein deposits (e.g.,
Aβ[1–40/42] and hyperphosphorylated tau in AD [53], α-
Synuclein in PD [54], metal deposition (e.g., iron [55–
57]), specific neuronal and synaptic loss of the hippocampal
pyramidal neurons (AD), and dopaminergic neurons of
the substantia nigra (PD), probably via OS [58]. Despite
the fact that both of these types of cells are vulnerable
to OS, it is still unknown the complete cascade of molec-
ular events at a single cell level responsible for neural
deterioration. Consequently, no effective and/or definitive
therapeutic treatment aimed at reducing or delaying clinical
and pathological symptoms is currently available. Therefore,
it is urgently needed to elucidate the molecular cell death
signaling pathway involved in these processes to identify
potential pharmacological target(s).

To get insight into these issues, we initially selected
peripheral blood lymphocyte (PBL) culture as model system
in AD and PD. Indeed, these cells display striking biochem-
ical similarities to neurons (e.g., [59–63]). Lymphocytes
therefore represent a remarkable nonneural cell model
for understanding the molecular machinery and metabolic
regulation of apoptosis associated with cell survival signaling
against stressful stimuli. Apoptosis is a controlled and
regulated form of programmed cell death defined by specific
morphological features such as rounding-up of the cell,
reduction of cellular volume, chromatin condensation (i.e.,
stage I nuclei morphology composed of high molecular
weight DNA), nuclear fragmentation (i.e., stage II nuclei
morphology composed of low molecular weight DNA, highly
chromatin condensation packed in round masses), classically
little or no ultrastructural modifications of cytoplasmic
organelles, and plasma membrane blebbing [64]. Although
morphologically similar, apoptosis can be triggered through
different intrinsic or extrinsic signaling biochemical routes
[65–67]. Because H2O2 is more stable reactive oxygen
specie (ROS), it can work either as a second messenger
in prosurvival [68] or in prodeath intracellular signaling
pathways. During the last decade, we have focused on inves-
tigating the H2O2-induced cell death signaling in PBLs. We
have consistently shown that Aβ[25–35] [69], dopamine (DA,
[70]), and its related neurotoxins (e.g., 6-hydroxidopamine
(6OHDA), 5,6 and 5,7-dyhydroxy-tryptamine (5,6- and -
5,7-DHT, [71]), paraquat (PQ, [72]), and rotenone (ROT,
[73]) induce apoptosis in lymphocytes in a concentration-
and time-dependent fashion by OS mechanism involving
several steps: O2

·− and H2O2 generation (Figure 2, step 1,
numbers in red), activation of the nuclear factor kappa-B
(NF-κB, step 2)/p53 (step 3)/c-Jun N-terminal kinase (JNK,
step 4)/c-Jun (step 5) transcription factors, mitochondrial
depolarization (step 6), and caspase-3 activation (step 7).
As a result we observed the typical nuclei morphologi-
cal feature of apoptosis including chromatin condensation
and fragmentation (step 8). Remarkably, this cell death
subroutine can be blocked by the action of antioxidants
(e.g., N-acetyl-cysteine (NAC) [69, 71], vitamin C (VC,
[71]), testosterone [70], 17β-estradiol [70, 74], cannabinoids
(e.g., CP55940 and JWH-015 [72, 75]), mitochondria per-
meabilization transition pore inhibitor (e.g., cannabinoids
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Figure 1: Number of articles reported in PubMed by using the term “oxidative stress” (OS) alone (a) or together (b) with the term
“Parkinson” (P), “Alzheimer” (A), and “cancer”.

[76]), insulin-like growth factor-1 [72, 73, 77]), high glucose
[72, 73], specific pharmacological inhibitors (e.g., PDTC,
pifithrin-α, SP600125, Ac-DEVD-cho inhibitor of NF-κB,
p53, JNK, and caspase-3, resp.) and inhibitors of protein
(e.g., cycloheximide [71]), and RNA (e.g., actinomycin D
[69, 71]) synthesis. These findings may be explained by the
following assumptions. H2O2 might indirectly activate NF-
κB through phosphorylation of the IκBα (i.e., the inhibitor of
the complex NF-κB or p50/p62) either by the spleen tyrosine
kinase protein (Syk, step 9, number in blue) at tyrosine 42
[78, 79] or at serine 32 and 36 via SH2 (Src homology
2)-containing inositol phosphatase-1 (SHIP-1, step 10)/IκB-
kinase (IKK) complex pathway [80]. Alternatively, H2O2

might activate NF-κB through activation of the IKK complex
by mitogen-activated protein kinase/ERK kinase kinase-1
(MEKK1, step 11, [81]). Once the IκB is phosphorylated,
the release of active NF-κB dimmer (p50/p63) translocates
into the nucleus and transcribes several antiapoptotic genes
(e.g., Bcl-2, cIAP-1-2, and Bcl-xL) (step 12) and pro-
apoptotic genes, amongst them the p53 [82]. At this point,
a vicious cycle is established wherein p53 plays a critical
role by balancing the cell to a death decision because of
its many actions. First, p53 transcribes proapoptotic genes
such as Bax (step 13), which in turn might contribute to
the permeabilization of the outer mitochondrial membrane
by antagonizing antiapoptotic proteins (e.g., Bcl-2, cIAP-1-
2, and Bcl-xL). Second, p53 not only induces prooxidant
genes (e.g., p53-induced gene-3 (PIG3), proline oxidase (PO),
step 14), which generate more H2O2 but also represses the
transcription of antioxidant genes (e.g., NAD(P)H: quinone
oxidoreductase-1) [83]. Elevated stress stimuli (i.e., H2O2

production, step 1) and further activation of NF-κB induce
upregulation of proapoptotic genes (e.g., p53), which in

turn amplify the initial H2O2-induced cell death signal.
Formation of the mitochondrial permeabilization transition
pore allows the release of apoptogenic proteins (by a not
fully established mechanism, step 15 [84, 85]) such as
the apoptosis-inducer factor (AIF, [86]) responsible for
causing DNA fragmentation and chromatin condensation
(i.e., stage I nuclei morphology) and cytochrome C, which
together with Apaf 1, dATP, and procaspase-9 (i.e., the
apoptosome) elicits caspase-3 protease activation [87]. This
protease is essential for the fragmentation and morphologi-
cal changes associated with apoptosis [88]. Indeed, caspase-
3 activates the endonuclease DNA fragmentation factor 40
(DFF40) or caspase-activated DNAse (CAD) by cutting the
nuclease’s inhibitor DFF45/ICAD [89]. Finally, DFF40/CAD
causes nuclear chromatin fragmentation (i.e., stage II nuclei
morphology), typical of apoptosis [90]. Interestingly, the
apoptosis signal-regulating kinase (ASK1; step 16, [91]) and
MEKK1 (step 11, [92]) phosphorylate MKK4/MAPK kinase
(step 17). MEKK1 kinase therefore represents a cross-talk
between the JNK and NF-κB pathway. Indeed, MEKK1
kinase phosphorylates IKK and MKK4. This last kinase phos-
phorylates JNK/stress apoptosis protein kinase (SAPK [93],
step 4), which in turn phosphorylates the c-Jun transcription
factor [94], also involved in transcription of death signaling
[95]. Interestingly, it has also been shown that JNK1/2
cooperates in the activation of p53 apoptotic pathway [96,
step 3]. Alternatively, high concentration of metal ions (e.g.,
Fe2+; Cu+, Mn2+) alone or in combination with H2O2 are
able to directly induce mitochondria damage and apoptotic
morphology by caspase-3-dependent mechanism [70, 97]. In
conclusion, NF-κB, p53, c-Jun and caspase-3 activation, and
mitochondrial depolarization are crucial events in mediating
cell death by apoptosis.
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Figure 2: Proposed model of minimal completeness of cell death signaling induced by oxidative stress as a mechanistic explanation of
neuronal and cancer cell demise.The neurotoxins Aβ[25–35], dopamine (DA) and its related neurotoxins (6OHDA, 5,6- and 5,7-DHT),
paraquat (PQ), and rotenone (ROT) trigger a cell death subroutine in lymphocytes, a well-established model of AD and PD. This mechanism
is characterized by O2

·−/H2O2 generation (step 1, numbers in red), activation of the transcription factors NF-κB (step 2), p53 (step 3), and c-
Jun (step 5), activation of the JNK kinase (step 4), mitochondrial depolarization (step 6), caspase-3 activation (step 7), and nuclei chromatin
condensation/fragmentation (step 8). These findings may be explained by the following assumptions. H2O2 might indirectly activate NF-κB
through phosphorylation of its inhibitor IκBα either by Syk (step 9, numbers in blue) or via SHIP-1 (step 10)/IKK complex pathway. H2O2

might also activate NF-κB through activation of the IKK complex by the MEKK1 protein (step 11). Once NF-κB is activated, it translocates
into the nucleus and transcribes several antiapoptotic genes (step 12) and proapoptotic genes, amongst them the p53 (step 3). At this point, a
vicious cycle is established. First, p53 transcribes proapoptotic genes such as Bax (step 13), contributing to the permeabilization of the outer
mitochondrial membrane by antagonizing antiapoptotic proteins. Second, p53 induces prooxidant genes (e.g., p53-induced gene-3 (PIG3),
proline oxidase (PO), step 14), which generate more H2O2 (step 1) and represses the transcription of antioxidant genes. H2O2 overproduction
and further activation of NF-κB induce upregulation of proapoptotic genes (e.g., p53), which in turn amplify the initial H2O2-induced
cell death signal (step 2–8). Mitochondrial damage allows the release of apoptogenic proteins (step 15) responsible for the formation of
apoptosome and activation of caspase-3 protease. This protease in turn activates the endonucleases DFF40/CAD, by cutting the nuclease’s
inhibitor DFF45/ICAD. Finally, DFF40/CAD causes nuclear chromatin fragmentation, typical of apoptosis. Alternatively, ASK1 (step 16) and
MEKK1 (step 11) phosphorylate MKK4/MAPK kinase (step 17). MEKK1 kinase also phosphorylates IKK. This last kinase phosphorylates
JNK1/2/SAPK (step 4), which in turn phosphorylates c-Jun, also involved in death signaling. Noticeably, vitamin C (VC) and vitamin K3
(VK3) alone or in combination induce apoptosis in Jurkat and K562 cells by a similar mechanism as described. This mechanism might
provide the basis for therapeutic design strategies in AD, PD, and cancer (leukemia).
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Over the years, not only in vitro (e.g., [98–107] or
in situ (e.g., [55, 108–115]) but also in vivo studies have
validated the findings highlighted in Figure 2, step 1–8.
Of note, McLellan et al. [116] have shown directly that
a subset of amyloid plaques (e.g., dense core plaques)
produce ROS, that is, H2O2, in animal Alzheimer’s models
(e.g., Tg2576 APP overexpressing transgenic mice) and in
human postmortem Alzheimer tissue. Wang et al. [117]
found that Aβ[1–42] injection in Sprague-Dawley male rats
increased JNK and NF-κB protein levels in brain. This
effect was prevented by hydrogen-rich saline implicating
OS. Likewise, Mogi et al. [118, 119] showed significant
increase in the levels of p53, NF-κB, and caspase-3 reflecting
apoptosis in the Parkinsonian brain. In agreement with
these human brain data, Liang et al. [120] have shown
that NF-κB activation contributes to 6-OHDA OS-induced
degeneration of dopaminergic neurons through a NF-κB-
dependent p53-signaling pathway in rat model of PD.
Interestingly, Li et al. [121] have shown that bilobalide (an
active component of Gingko biloba) and the peptide inhibitor
of NF-κB, SN50 inhibit 6-OHDA-induced activation of NF-
κB and loss of dopaminergic neurons in rat substantia nigra.
Muñoz et al. [122] have shown that systemic administration
of NAC protects dopaminergic neurons against 6-OHDA-
induced degeneration in rats. Remarkably, Braithwaite et
al. [123] have shown that SP600125 inhibition of JNK
provides neuroprotection in a Tg2576/PSm146L transgenic
mice model of AD. To establish in vivo relevance of our
in vitro findings, we showed that SP600125 increased the
survival and locomotor activity of Drosophila melanogaster
(D. melanogaster [124]), used as a valid model of PD [125,
126], against acute exposure to PQ [127]. Furthermore,
the cannabinoid CP55,940 prolongs survival and improves
locomotor activity in Drosophila against acute exposure to
PQ [124]. We also demonstrated that pure polyphenols such
as gallic acid (GA), ferulic acid (FA), caffeic acid (CA),
coumaric acid (CouA), propyl gallate (PG), epicatechin
(EC), epigallocatechin (EGC), and epigallocatechin gallate
(EGCG) protect, rescue, and, most importantly, restore
the impaired movement activity (i.e., climbing capability)
induced by PQ in the fly [128]. Remarkably, PG and
EGCG protected and maintained movement abilities in flies
cotreated with PQ and iron [128]. Recently, Ortega-Arellano
et al. [129] have demonstrated that chronic polyphenols
prolong life span and restore locomotor activity of D.
melanogaster chronically exposed to PQ compared to flies
treated with PQ alone. These observations support the
notion that polyphenols might be potential therapeutic
compounds in the treatment of PD [130, 131]. Moreover,
Bonilla-Ramirez et al., [132] have found that desferrioxam-
ine (DFO), ethylenediaminetetraacetic acid (EGTA), and D-
penicillamine chelators were able to protect but not rescue
D. melanogaster against acute or chronic metal intoxication.
Taken together, in vitro and in vivo data suggest that
antioxidants (e.g., NAC [133]), polyphenols, cannabinoids,
metal chelators [134], mitochondrial targeted antioxidant
compounds [135, 136], pharmacological inhibition of NF-
κB [137, 138], p53 [139, 140], JNK [141], and caspase-3 may
be of therapeutic value in AD and PD.

3. The Good Touch of Oxidative Stress:
A Perspective for Cancer Cell Death

Oxidative stress has two opposite outcomes in cancer cells:
on one side, OS has been associated to initiation, promotion,
progression, and maintenance of tumor cell phenotypes [26,
27]. Specifically, H2O2 stimulates proliferation, migration,
and adhesion of these cells [142–144]. However, the causative
relationship of ROS increase, and oncogene activation
remains unclear. On the other side, OS has been associated
with antitumorigenic actions, senescence, and apoptosis
[145, 146]. Strikingly, NF-κB has been found to play pro-
and antiapoptotic roles, which might depend on the type
of cell [147–151], intracellular level of ROS, induced or
constitutive expression of NF-κB, quantity of cellular antiox-
idant defenses, and absence or presence of growth factors or
metabolic sources (e.g., glucose). Therefore, NF-κB consti-
tutes a critical molecule in cell survival/death decision. Based
on our previous experience with OS mechanism and cell
death, we hypothesize that cancer and neurodegeneration
processes share common cellular foundations. In contrast
to the unsatisfactory results of the antioxidant therapy in
AD [152, 153] and PD [154], generation of ROS to kill
cancer cells is currently not only an idea but has already been
effective as treatment in cancer patients (e.g., procarbazine,
doxorubicin, and arsenic). We reasoned that the OS mech-
anism depicted in the Figure 2 might be operative in both
neurodegeneration and cancer processes but with opposite
therapeutic approaches: while it might be used to destroy
malignant cells, it might also be stopped with antioxidants
or signals to retard or delay neural cell death. Concerning
the former consideration, we found that low-dose (10 μM)
vitamin K3 (VK3, also known as menadione or 2-Methyl-
1,4-naphthoquinone) or high-dose (10 mM) vitamin C (VC,
also known as ascorbate, AscH−) alone or in combination
induced apoptosis in Jurkat (model of acute lymphoblastic
T-cell leukemia [155]) and K562 (model of myelogenous
leukaemia cells) cells by OS mechanism [156]. This data
provided, for the first time, in vitro evidence supporting a
causative role for OS in VK3- and VC-induced apoptosis in
Jurkat and K562 cells in a domino-like mechanism similar
to the mechanism identified in lymphocytes and neuronal
cells under OS (Figure 2). The VC/VK3 observations can
be explained because the synthetic VK3 can be reduced via
one- or two-electron transfer by intracellular reductases or
by VC. The two electron reductions of VK3 to hydroquinone
VK3 (VK3QH2) can slowly autoxidise to reform VK3. The
single-electron reduction of the VK3 by VC− (AscH−) gives
semiquinone anion radical (VK3Q·−), which in turn reduces
O2 to O2

·− and regenerates the VK3. Consequently, redox
cycling of VK3 can ensue and produce large amounts of
O2

·−, which can dismutate via SOD to form H2O2 and
O2. As mentioned, H2O2 can take part in metal-catalyzed
reactions to form more toxic species of active oxygen
such as ·OH. Therefore, if the single-electron reduction
pathway predominates and the rate of redox cycling of
VK3 exceeds the capacity of the detoxifying enzymes (e.g.,
catalase, GPx, and SOD), OS occurs, ultimately triggering
a specific subroutine of cell death signaling (Figure 2 and
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[156]). Altogether these data suggest that VK3 and VC or
any molecule capable of producing excessive amount of
O2

·−/H2O2 can be useful in the treatment of leukemia (e.g.,
arsenic [157], taxol [158]).

4. Dangerous Liaisons: Oxidative Stress as
Central Aspect for Neurodegeneration and
Cancer

Up-to-date, >200 pathogenic mutations distributed in 3
(Aβ amyloid precursor protein (APP), presenilin-1 (PSEN1),
presenilin-2 (PSEN2)), and 6 genes (α-Synuclein (SNCA),
Leucine-rich repeat kinase 2 (LRRK2), PARKIN, PTEN-
induced putative kinase 1 (PINK1), DJ-1, and P-type
ATPase 13A2 (ATP13A2)) have been conclusively shown
to cause familial Alzheimer and Parkinsonism, respectively
(http://www.molgen.ua.ac.be, reviewed in [159, 160]). Inter-
estingly, mutations in those genes are directly related to OS
and mitochondrial alterations [161, 162]. Specifically, Vinish
et al. [163] have found increase in malondialdehyde content
and SOD activity in peripheral blood parameters in PD
patients with PARKIN mutations in comparison to controls.
Ramsey and Giasson [164] found that the p.E163K DJ-1
mutant loses the ability to protect against OS while demon-
strating a reduced redistribution towards mitochondria.
Moreover, Ren et al. [165] have shown that DJ-1 protects
cells against UVB-induced cell death dependent on its
oxidation and its association with mitochondrial Bcl-X(L).
Heo et al. [166] have shown that the p.G2019S mutation
in LRRK2 generates H2O2 and induces neurotoxicity via
its kinase activity. Last, the Butterfield’s group has shown
that mutation in APP and PSEN1 (e.g., APPNLH/PS-1P264L

mice) induces brain OS [167, 168]. Taken together, these data
support the notion that environmental and genetic pathways
converge in the pathogenesis of AD [169] and PD [170–172].
It is interesting to note that iron accumulation is linked with
the brain pathology in AD [55] and familial PD [56, 57].
These observations suggest that iron might play a toxic
role in the pathophysiology of both neurologic disorders
[173, 174], most probably linked to a common molecular
mechanism of cell death via generation of intermediate ROS
and mitochondrial damage [97, 175, 176]. Therefore, it is not
unusual that PD patients develop dementia [164, 177, 178]
concomitantly with AD pathology [179]. Moreover, recent
data suggest that exposition to ethacrynic acid, a compound
that induces cellular glutathione (GSH) depletion therefore
causing OS, increases presenilin-1 protein levels in human
neuroblastoma SH-SY5Y cells [180]. Furthermore, the γ-
secretase protein complex mediates OS-induced expression
of β-site APP cleaving enzyme I (BACE1) resulting in
excessive Aβ production in AD [181]. Remarkably, extensive
analysis of the effects and interactions of the AD [182, 183]
and PD [184, 185] pathogenic genes in D. melanogaster
has shown that mutations in parkin [186, 187], pink-1
[188], α-synuclein [189], Lrrk [190] genes, or overexpression
of normal α-synuclein [189] cause death of dopaminergic
neurons in Drosophila probably via OS [166, 191–195].
Accordingly, it has been shown that DJ-1 and parkin are

essential for mitochondrial function and rescue pink-1 loss
of function [196, 197]. Since these genes are conserved in
invertebrates (insects) and vertebrates (mammals) [198],
we believe that D. melanogaster could provide new insights
into the relationship between gene mutations, OS, and
mitochondria [184]. Taken together, these data suggest that
OS is at the pathobiological basis of PD and AD and that
its generation and detrimental effects can be exacerbated by
environmental factors and mutation in causative genes.

Surprisingly, epidemiological studies have consistently
shown the cooccurrence of PD and melanoma [199, 200]
and this association is strongly increased by mutations
in PARKIN, LRRK2, and α-Synuclein (for a review, see
[201]). Moreover, Veeriah et al. [202] have shown that point
mutations and exon rearrangements of PARKIN are linked
to glioblastoma multiform, colon cancer, and lung cancer.
Although, the exact mechanism(s) underlying the observed
cancer-PD association is not clear, it has been suggested
that genes (e.g., PARKIN) that cause neuronal dysfunction
when mutated in the germline may instead contribute to
oncogenesis when altered in nonneuronal somatic cells
[202]. Whether OS is involved in these malignancies needs
further investigation. However, based on the assumption
that cancer and neurodegeneration share some of the same
genes and molecular mechanisms of OS-induced cell death,
one may anticipate a positive correlation between OS,
cancer and PD. Recently, Zhang et al. [203] have found
that Parkin is a p53 target and Parkin contributes to
the role of p53 in regulating antioxidant defense. Indeed,
ectopic Parkin expression significantly reduced ROS levels in
H460p53siRNA treated with or without H2O2. Simultaneous
knockdown of p53 and Parkin results in higher intracellular
ROS levels than individual knockdown of p53 and Parkin.
Moreover, ectopic Parkin expression significantly increased
GSH (reduced) levels, thus altering the GSH : GSSG (oxi-
dized) ratio in human lung cancer line, H460p53siRNA.
Interestingly, Parkin knockdown in H460 (control) cells and
Parkin knockout in mouse embryonic fibroblast (MEF) cells
significantly decreased GSH levels and the GSH : GSSG ratio.
Given that Parkin has also been reported to repress p53 [204],
together these data suggest that the regulation of Parkin by
p53, or vice versa, could be cell type or tissue specific. Further
investigation is warranted in this topic.

5. Oxidative Stress: Quo Vadis?

In conclusion, there is enough support evidence for the
role of OS in AD, PD, and cancer. Clearly, the relationships
between some causative genes of Parkinson’s such as PARKIN
and LRRK2 and cancer will challenge the medical research
for designing new therapeutic approaches and the necessity
to bring new proposals of unified models of disease and
molecular mechanisms. In this respect, the model of minimal
completeness of cell death induced by H2O2 (see Figure 2,
steps 2–8) might provide a platform to evaluate new natural
or synthetic antioxidants, pharmacological agents which
target the mitochondria, transcription factor(s), and/or
caspase-3, or it simply might be used as a model to test
other novel hypothesis (e.g., [205, 206]). In this regard,
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plant polyphenols has been suggested as promising com-
pounds for the prevention of neurodegenerative diseases and
treatment of cancer (For reviews see [130, 207–209]). Yet,
whether polyphenols might function as effective antioxidant
compounds in vivo is still a controversial issue [210–213].
One of the most urgent issues is to clarify the many
studies reported to show failed clinical benefit or persuasive
evidence of neuroprotection [214]. Most importantly, we
will need to definitely establish the molecular mechanism(s)
of cell death in neurodegenerative disorders before novel
treatments can be available. Undoubtedly, there are still
many unresolved issues. Perhaps, studying the biology of
cancer cells might provide understanding of the underlying
pathogenic mechanisms of cell death in neurodegeneration
and help developing new treatment strategies.
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