
Hindawi Publishing Corporation
Oxidative Medicine and Cellular Longevity
Volume 2012, Article ID 914273, 16 pages
doi:10.1155/2012/914273

Review Article

Dietary Polyphenols as Modulators of Brain Functions:
Biological Actions and Molecular Mechanisms Underpinning
Their Beneficial Effects

David Vauzour

Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK

Correspondence should be addressed to David Vauzour, d.vauzour@uea.ac.uk

Received 19 February 2012; Accepted 30 March 2012

Academic Editor: Tullia Maraldi

Copyright © 2012 David Vauzour. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Accumulating evidence suggests that diet and lifestyle can play an important role in delaying the onset or halting the progression
of age-related health disorders and to improve cognitive function. In particular, polyphenols have been reported to exert their
neuroprotective actions through the potential to protect neurons against injury induced by neurotoxins, an ability to suppress
neuroinflammation, and the potential to promote memory, learning, and cognitive function. Despite significant advances in our
understanding of the biology of polyphenols, they are still mistakenly regarded as simply acting as antioxidants. However, recent
evidence suggests that their beneficial effects involve decreases in oxidative/inflammatory stress signaling, increases in protective
signaling and neurohormetic effects leading to the expression of genes that encode antioxidant enzymes, phase-2 enzymes, neuro-
trophic factors, and cytoprotective proteins. Specific examples of such pathways include the sirtuin-FoxO pathway, the NF-κB
pathway, and the Nrf-2/ARE pathway. Together, these processes act to maintain brain homeostasis and play important roles in
neuronal stress adaptation and thus polyphenols have the potential to prevent the progression of neurodegenerative pathologies.

1. Introduction

A gradual increase in human life span, with people over the
age of 60, is expected to double between 2000 and 2050 [1].
As the elderly population expands, the prevalence of both
Alzheimer’s disease (AD) and Parkinson’s disease (PD) is
likely to augment, therefore having profound economical
and social implications. Although the exact cause is not yet
finally known, it has been postulated that the behavioural
and neuronal declines associated with these age-related
neurodegenerative disorders are triggered by multifactorial
events including neuroinflammation, glutamatergic excito-
toxicity, increases in iron, and/or depletion of endogenous
antioxidants [2–4]. Therefore, it becomes imperative to
develop drugs that possibly exert neuroprotective actions in
order to prevent or even reverse age-related health disorders.
One such possibility is the use of nutritional substances such
as polyphenols [5, 6]. For example, a large number of dietary
interventions using polyphenol rich foods or beverages, in
particular those using tea [7–9], Gingko Biloba [10, 11],

cocoa [12, 13] and blueberry [14–16], have demonstrated
beneficial effects on memory and learning in both animals
and humans. Furthermore, individual flavonoids such as the
citrus flavanone tangeretin, have been observed to maintain
nigrostriatal integrity and functionality following lesioning
with 6-hydroxydopamine, suggesting that it may serve as
a potential neuroprotective agent against the underlying
pathology associated with PD [17]. While historically
research focused on their antioxidant properties [18], recent
data support the view that polyphenols, and their in vivo
metabolites, do not act as conventional hydrogen-donating
antioxidants but may exert modulatory actions in cells
through actions at protein kinase and lipid kinase signalling
pathways [19] and may even involve hormetic effects to pro-
tect neurons against the oxidative and inflammatory stressors
[20]. This paper will describe the potential of polyphenols
to modulate neuroinflammation, to counteract neurotoxins
induced neurodegenerative disorders, and to enhance mem-
ory, learning, and cognitive performances. Neuroprotective
mechanisms through the ability of polyphenols to interact
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with neuronal signaling pathways and to mediate endoge-
nous cellular defense systems including sirtuin, NF-κB, Nrfs,
and related pathways will be also presented.

2. Sources and Structures of Polyphenols

Polyphenols are a group of naturally occurring phytochemi-
cals which are present in high amounts in fruits, vegetables,
and natural products and are characterised by the presence
of multiple hydroxyl groups on aromatic rings. These com-
pounds are divided into two main categories: the flavonoids
and nonflavonoids, based on the number of phenol rings and
the way in which these rings interact.

2.1. Flavonoids. Flavonoids are polyphenolic compounds
comprising 15 carbons, with two aromatic rings connected
by a three-carbon bridge (C6–C3–C6). Hydroxylation in
position 3 of C-ring allows the differentiation of flavanonols
from flavanones since they share a similar structure based
on the 2,3-dihydro-2-phenylchromen-4-one skeleton. From
these central intermediates, the pathway diverges into several
side branches, each resulting in a different class of flavonoids.
Flavonoids share a common feature which consists of two
aromatic carbon rings, benzopyran (A and C rings) and ben-
zene (B ring) and may be divided in various subgroups based
on the degree of the oxidation of the C-ring, the hydroxy-
lation pattern of the ring structure, and the substitution of
the 3-position. The main dietary groups of flavonoids are (1)
flavones (e.g., apigenin, luteolin), which are found in parsley
and celery. Hydroxylation on position 3 of the flavone struc-
ture gives rise to the 3-hydroxyflavones also known as the
(2) flavonols (e.g., kaempferol, quercetin), which are found
in onions, leeks, and broccoli; (3) isoflavones (e.g., daidzein,
genistein), which are mainly found in soy and soy products.
These compounds have a large structural variability, and
more than 600 isoflavones have been identified to date and
are classified according to oxidation level of the central pyran
ring; (4) flavanones/flavanonols (e.g., hesperetin, narin-
genin/astilbin, engeletin), which are mainly found in citrus
fruit, herbs (oregano), and wine; (5) flavanols (e.g., (+)-
catechin, (−)-epicatechin, epigallocatechin, and epigallocat-
echin gallate (EGCG), which are abundant in green tea, red
wine, and chocolate. Flavanols are found both as monomers
and oligomers referred to as condensed tannins or proantho-
cyanidins. Variations in their structures lie in the hydroxyla-
tion pattern of the B ring and the presence of gallic acid in
position 3. The lack of a double bond at the 2-3 position and
the presence of a 3-hydroxyl group on the C ring create two
centres of asymmetry; (6) anthocyanidins (e.g., pelargoni-
din, cyanidin, and malvidin), whose sources include red wine
and berry fruits. These compounds exist as glycosides in
plants, are water-soluble, and appear red or blue according
to pH. Individual anthocyanins arise from the variation
in number and arrangement of the hydroxyl and methoxy
groups around the 3 rings (Figure 1).

2.2. Nonflavonoids. The nonflavonoid group may be sep-
arated into two different classes: (1) the phenolic acids,

including the hydroxybenzoic acids (HBAs; C1–C3 skeleton)
and hydroxycinnamic acids (HCAs; C3–C6 skeleton) and (2)
the stilbenes (C6–C2–C6 skeleton).

The most common phenolic acids are not present in
plants in a free state but occur as simple esters of glucose,
tartaric acid, and quinic acid [21], and variations in the
structure mainly lie in the hydroxylation and methoxylation
pattern of the aromatic cycle [22]. HBAs are derivatives of
the hydroxybenzoic acids such as p-hydroxybenzoic, proto-
catechuic, and gallic acids and are mostly present in the form
of glucosides and some esters with glucose. However, gallic
acid is mainly esterified to quinic acid or catechins and
usually present in polymeric forms as soluble tannins [21].
HCAs are found in a variety of foods, the most common
being caffeic and ferulic acids and their derivatives. They are
mostly present in ester forms bound to quinic, shikimic, or
tartaric acids. Caffeic acid is generally the most abundant
phenolic acid and is mainly found as the quinic ester, chloro-
genic acid, in blueberries, kiwis, plums, and apples [23].
However, very high intake of chlorogenic acid is common
among coffee drinkers because of very high concentrations
(50–150 mg of chlorogenic acids in one cup (200 mL) of
instant coffee [24] (Figure 1).

Stilbenes possess a 1,2-diarylethenes structure based on
the C6–C2–C6 backbone and are usually synthesized in plants
in response to infection or injury [25]. Resveratrol, the main
stilbene, can be found in the cis or trans configurations, either
glucosylated (piceid) or in lower concentrations as the parent
molecule of a family of polymers such as viniferins, pallidol,
or ampelopsin A [26]. Major dietary sources of resveratrol
include grapes, wine, and peanuts. Resveratrol is found in
low concentrations (0.3–7 mg aglycones/L and 15 mg glyco-
sides/L) in red wine, and thus it seems unlikely to produce
protective effects at normal nutritional intakes (Figure 1).

3. Brain Localisation of Polyphenols

Despite the increasing amount of evidence for the bioavail-
ability of polyphenols in the systemic circulation [22, 27–
29] only little information is available regarding their ability
to reach the central nervous system (CNS). In order for
polyphenols to access the brain, they must first cross a tightly
regulated, selectively permeable endothelial cell layer which
isolates the CNS tissue from the vasculature, the blood-
brain barrier (BBB). The BBB is permeable to nutrients and
actively excludes many substances from the central nervous
system [30]. Using in vitro models, initial studies have
demonstrated that polyphenols permeation through the BBB
is dependent on the degree of lipophilicity of each compound
with less polar polyphenols or metabolites (i.e., O-methy-
lated derivatives) capable of greater brain uptake than the
more polar ones (i.e., sulfated and glucuronidated deriva-
tives) [31]. Their brain entry will also depend on their inter-
actions with efflux transporters, such as P-glycoprotein (Pgp)
[32] and their stereochemistry. For example, both catechin
and epicatechin could cross a cellular model of BBB in a
time-dependent and stereoselectivity manner with epicate-
chin � catechin [33]. The amount of nutrient or drug that
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Figure 1: Structures of polyphenols. Polyphenols are a group of naturally occurring phytochemicals which are present in high amounts in
fruits, vegetables, and natural products and are characterised by the presence of multiple hydroxyl groups on aromatic rings. These com-
pounds are divided into two main categories, the flavonoids and non flavonoids, based on the number of phenol rings and the way in which
these rings interact. For the flavonoid group, the major differences between the individual groups arise from the hydroxylation pattern
of the ring-structure, the degree of saturation of the C-ring, and the substitution of the 3-position. HBAs, hydroxybennzoic acids; HCAs,
hydroxycinammic acids.

penetrate into the brain was also investigated in vivo, with
animal studies indicating that polyphenols are able to cross
the BBB and to colocalise within the brain tissues indepen-
dently of their route of administration. For example, narin-
genin was found in the brain following its intravenous
administration [34], whilst epigallocatechin gallate [35], epi-
catechin [36], and anthocyanins [37, 38] were observed after
oral administration. Although the uptake and distribution of
dietary polyphenols within the brain are well documented,
the question of the dose reaching the target tissues remains
uncertain. Discrepancies in the findings mainly stem in the
fact that studies reporting polyphenol brain uptake and con-
centrations often disregard residual blood as a potential con-
founder. Studies using exsanguinated, perfused animals or
applying the recently published mathematical correction
model [39] may therefore be more suitable for assessing poly-
phenol uptake and metabolism in the brain. Data deriving

from such studies suggest that polyphenols usually localise
in the brain at levels below 1 nmol/g tissue (see review by
Schaffer and Halliwell [40]). Furthermore, several polyphe-
nols have been identified in different regions of the rat
[38, 41] and pig brains [42, 43] and usually accumulates in a
nonregion-specificic manner [16, 44]. For example, recently,
Janle et al. demonstrated that 14C-labelled grape polyphenols
did not show any regional differences in 14C accumulation
from anterior to posterior slices of the brain [44]. Collec-
tively, these results indicate that polyphenols transverse the
BBB and localise within the brain tissue, suggesting that they
are candidates for direct neuroprotective and neuromodula-
tory actions. Nonetheless, our knowledge regarding polyphe-
nol absorption, metabolism, tissue distribution, and intra-
cellular accumulation and excretion remains insufficient, and
future work is needed to better understand their biological
effects.
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4. Effect of Polyphenols on Memory, Learning,
and Neurocognitive Performance

Accumulating evidence suggests that diet and lifestyle can
play an important role in delaying the onset or halting the
progression of neurodegenerative diseases and improving
cognitive function [45–48]. With regards to diet, polyphe-
nols have been associated with a reduced risk of developing
dementia [45, 49], an improved cognitive performance in
normal ageing [48] and an improved cognitive evolution [5].
More recently, high total polyphenol intake was also associ-
ated with better language and verbal memory but not with
executive functioning. In particular, intake of catechins, thea-
flavins, flavonols, and hydroxybenzoic acids was positively
associated with language and verbal memory, especially with
episodic memory as assessed by the RI-48 test [50]. Although
a positive correlation between dietary polyphenol consump-
tion and cognitive decline has been mostly reported, a
limited body of evidence is, however, suggestive that carrier
of the APOε4 genotype may influence the beneficial effect of
polyphenols in relation to dementia and AD. For example,
the frequent consumption of fruits and vegetables was asso-
ciated with a decreased risk of all cause dementia (hazard
ratio [HR] 0.72, 95% CI 0.53 to 0.97) especially amongst the
APOε4 noncarriers [51]. The relationship between polyphe-
nols intake and APOε genotype is intriguing, and further
work is required to gain a better understanding of the phys-
iological and molecular mechanisms underlying such dispar-
ity.

Over the last years, there has been much interest in the
neurocognitive effects of berries, in reversing age-related
deficits in motor function and spatial working memory
[14, 16, 52]. While the consumption of cranberry juice over a
6 weeks period in older adults has failed to report any cogni-
tive benefits [53], consumption of both grape or blueberry
juices in older adults with or without mild cognitive impair-
ment (MCI) reported significant improvement in memory
function after 12 weeks intervention [54, 55]. In addition to
spatial memory, blueberry supplementation in aged animals
has also been shown to improve “object recognition mem-
ory” [56] and “inhibitory fear conditioning learning” [57,
58]. Blueberry appears to have a pronounced effect on short-
term memory [58] and has also been shown to improve
long-term reference memory following 8 weeks of supple-
mentation. [14]. Tests using a radial arm maze have sup-
ported these findings and have provided further evidence for
the efficacy of blueberries [16]. Indeed, these have shown
that improvements in spatial memory may emerge within 3
weeks, the equivalent of about 3 years in humans. Although
not fully understood, evidence suggest that blueberry-
derived polyphenols may enhance the efficiency of spatial
memory by indirectly acting on the dentate gyrus (DG), an
hippocampal subregion particularly sensitive to the effects
of aging [59]. In particular, blueberry supplementation has
been shown to significantly increase the precursor cells in the
DG of aged rats [14]. Such link between hippocampal neu-
rogenesis, cognitive performance, and aging may represent
a potential mechanism by which polyphenol-derived foods
may improve memory [60].

In addition to those with berries, human and animal
studies with cocoa and tea flavanols have also provided
further evidence that dietary polyphenols are beneficial in
reversing the course of neuronal and behavioural aging
[7, 61]. For example, two recent acute human studies have
shown that cocoa flavanol consumption was able to improve
working memory and attention [12, 13]. In addition, pure
(−)-epicatechin (500 μg/g) was also observed to enhance the
retention of mice spatial memory, especially when combined
with exercise [62], suggesting that polyphenols may be causal
agents in inducing the behavioural effects. Although the
exact mechanisms underlying such behavioural changes
remain to be elucidated, evidence suggests that flavanol-rich
foods improve peripheral blood flow and surrogate markers
of cardiovascular function [63–65]. In addition, CNS imag-
ing studies in humans have demonstrated that the consump-
tion of flavanol-rich cocoa may improve cerebral blood flow
(CBF) in healthy older adults [66] and in young adults in
response to a cognitive task [67]. These effects are particu-
larly significant, as increased cerebrovascular function is
known to facilitate adult neurogenesis [68] and to enhance
vascularisation [69, 70], two events important in the mainte-
nance of cognitive performances.

The flavonoid-rich plant extract, Ginkgo biloba, has also
been shown to induce positive effects on memory, learning,
and concentration [71, 72]. Ginkgo biloba has a prominent
effect on brain activity and short-term memory in animals
and humans suffering from cognitive impairment [11, 73]
and promotes spatial learning in aged rodents [74, 75].
However, the pharmacological mechanisms by which Ginkgo
biloba promotes cognitive effects remain unclear, although its
ability to elicit a reduction in levels of reactive oxygen species
(ROS) [76], to increase cerebral blood flow [77], to modulate
membrane fluidity [78], to interact with muscarinic cholin-
ergic receptors [79], to protect the striatal dopaminergic sys-
tem [80], and to upregulate AMPA, calcium and chloride
channels, and growth hormones [81] have been suggested
as possible mechanisms underlying its actions in the CNS.
Together, these data provide a strong indication that regular
polyphenol consumption may have a positive effect on
neurocognitive performance as we age (Figure 2).

5. Polyphenol Protection against
Neuronal Injury Induced by Neurotoxins

There are a number of epidemiological studies which suggest
that plant-derived polyphenol-rich foods or supplements
might delay the initiation and progression of AD, PD, and
related neurodegenerative disorders [5, 82]. With regard to
AD, most of the preclinical studies of the effects of poly-
phenols have focused on models where there is increased
production of beta-amyloid (Aβ), a small protein produced
by the enzymatic cleavage of amyloid precursor protein
(APP) [83]. For example, the chronic consumption of ferulic
acid with the drinking water protected mice from the del-
eterious effects of an intracerebral injection of β-amyloid
peptide [84]. More recently, using transgenic mouse mod-
els, studies have started to address the potential effect
of polyphenol-rich diets on AD. Oral administration of
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Figure 2: Modulation of neuronal dysfunction by dietary polyphenols. In ageing and neurodegenerative diseases, neuronal death can be
triggered by specific genetic mutations, neurotoxins, and/or neuroinflammation. Initiating factors promote cellular alterations, including
increases in oxidative stress, protein aggregation, DNA damage, and activation of apoptotic cascades. Dietary polyphenols have been observed
to protect the brain against such cellular alteration through the modulation of neuronal function against endogenous neurotoxins and inhi-
bition of glial-induced neuroinflammation. Aβ, amyloid beta; CysDA, 5-S-cysteinyldopamine; DHBT1, dihydrobenzothiazine 1; TNF-α,
tumor necrosis factor alpha; IL-1β, interleukine-1 beta; CRP, C reactive protein; NO, nitric oxide.

epigallocatechin-3-gallate (EGCG) for 6 months in mice
which overexpress the Swedish mutation of APP (APPsw),
reduced Aβ pathology and improved cognition [85]. Sim-
ilarly long-term green tea catechin administration also
improved spatial learning and memory in senescence prone
mice, by decreasing Aβ1−42 oligomers and upregulating syn-
aptic plasticity-related proteins in the hippocampus [86].
The antiamyloidogenic activity is not unique to EGCG and
a number of other polyphenols bind to Aβ fibrils and pre-
vent further fibrillization [87–89]. For example, gallic acid
and catechin-rich grape seed polyphenolic extract (GSPE)
inhibited cognitive deterioration coincident with reduced
levels of soluble high molecular weight oligomers of Aβ [88].
Repeated intraperitoneal injection of nobiletin has similar
effects [90]. The mechanisms underlying these changes are
not clear but might be linked to increased nonamyloidogenic
processing of APP, through stimulating the activity of α-
secretase, which cleaves APP at a site which prevents the for-
mation Aβ species [91, 92]. Alternatively, it is conceivable
that polyphenols reduce Aβ plaque pathology by inhibiting
amyloid aggregation and fibrillization either as a result of
metal chelation activity [93–95] or by favouring the for-
mation of nontoxic oligomers [96]. Additional mechanisms
have been also suggested for the ability of polyphenols to

delay the initiation of and/or slow the progression of AD-like
pathology, including a potential to inhibit neuronal apopto-
sis triggered by neurotoxic species (e.g., oxidative stress and
neuroinflammation) or disrupt amyloid β aggregation and
effects on amyloid precursor protein processing through the
inhibition of β-secretase (BACE-1) [97] and/or activation of
α-secretase (ADAM10) (See review by Williams and Spencer
[98]).

The potential utility of polyphenols in neurodegener-
ation extends beyond AD, and there is also considerable
interest in their therapeutic potential in PD [47, 99]. There is
good evidence to suggest that the consumption of green tea
may have a beneficial effect in reducing the risk of PD [82],
as has been extensively reviewed elsewhere [100, 101]. The
efficacy of green tea is likely to be mediated by the effects
of EGCG, which has been shown to attenuate the selective
degeneration of dopamine neurons in animal models of PD
induced by toxins including 6-hydroxydopamine [102] and
MPTP [103]. In addition, the citrus flavonoid tangeretin has
also been observed to be neuroprotective against 6-hydrox-
ydopamine lesioning in a rat model of PD [17]. In vitro
studies have also indicated that polyphenols might act to
prevent PD pathology via their ability to prevent the forma-
tion of the endogenous neurotoxin, 5-S-cysteinyl-dopamine
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(CysDA) [104, 105]. Such adducts may be generated by reac-
tive species [105] and have been observed to be elevated in
the human substantia nigra of patients who died of PD [104],
suggesting that such species may be potential endogenous
nigral toxins. However, CysDA-induced neuronal injury is
counteracted by nanomolar concentrations of various poly-
phenols including pelargonidin, quercetin, hesperetin, caf-
feic acid, tyrosol, p-coumaric acid, and the 4′-O-Me deriva-
tives of catechin and epicatechin [105, 106]. Furthermore,
in presence of the flavanol, (+)-catechin, tyrosinase-induced
formation of CysDA was inhibited by a mechanism linked to
the capacity of catechin to undergo tyrosinase-induced oxi-
dation to yield cysteinyl-catechin adducts [107]. In contrast,
the inhibition afforded by flavanones, such as hesperetin, was
not accompanied with the formation of cysteinyl-hesperetin
adducts, indicating that it may be inhibited via direct inter-
action with tyrosinase [107]. Furthermore, the stilbene res-
veratrol also had a small inhibitory effect; however, its reac-
tion with tyrosinase in the presence of l-cysteine led to
the formation of dihydrobenzothiazine (DHBT-1) [107], a
strong neurotoxin known to selectively inhibit the respira-
tory chain complex I, the alpha-ketoglutarate dehydrogenase
(alpha-KGDH), and the pyruvate dehydrogenase complexes
(PDHC) [108] (Figure 2). Collectively, these studies suggest
that polyphenols have the potential to confer benefit in
diverse neurodegenerative disorders. Some of the major neu-
roprotective mechanisms are discussed in more detail below.

6. Role of Polyphenols in
Preventing Neuroinflammation

Although neuroinflammation plays a critical role in brain
host defence, it also contributes to the underlying neuronal
loss in neurodegenerative disorders, such as PD, AD [109–
111] and to damages associated with cerebral ischemia [112].
Neuroinflammation is “driven” by activated resident glial
cells (astrocytes and microglia) which result in invasion of
circulating immune cells and the production of proinflam-
matory cytokines (TNF-α, IL-1β, and IL-6), nitric oxide
(NO•), prostaglandin E2, chemokines, and reactive oxygen
species (ROS). Amongst the numerous factors released by
activated glial cells, excessive NO• production has been
reported to induce neuronal cell death by damaging the
mitochondrial electron transport chain function in neurons
[113] therefore resulting in neuronal ATP synthesis disrup-
tion and in increased generation of ROS [114]. Furthermore,
NADPH oxidase activation, an important event in activated
microglia-induced neurotoxicity, has also been suggested to
mediate both superoxide (O2

•−) production and to release
proinflammatory molecules such as TNF-α [115]. NO• pro-
duced in microglia or astrocytes may react with O2

•−, pro-
duced by NADPH oxidase [116, 117], to generate the neu-
rotoxic peroxynitrite radical (ONOO−) [116]. ONOO− has
been observed to inhibit mitochondrial respiration, induce
caspase-dependent neuronal apoptosis, and to induce gluta-
mate release resulting in excitotoxicity and neuronal death
[116, 118]. Additionally, glial cytokine production may also
play a deleterious role in neurodegenerative diseases by
binding to specific cell surface receptors expressed in neurons

and activating apoptotic pathways. For example, TNF-α
binds to the tumour necrosis factor receptor-1 (TNFR1)
which may lead to neuronal apoptosis [119, 120].

Since long-term use of nonsteroidal anti-inflammatory
drugs (NSAIDs) has been shown to lower the risk of AD in
later life [121], there has been much interest in the devel-
opment of new drugs capable of preventing neuroinflam-
matory-mediated brain injury. Emerging evidence suggests
that dietary polyphenols may exert neuroprotective effects
by suppressing the activation of microglia, which mediates
inflammatory processes in the CNS. Although rather com-
plex, the main anti-inflammatory properties of polyphenols
include: (1) an inhibitory role on the release of cytokines,
such as IL-1β and TNF-α, from activated glia; (2) an inhi-
bitory action against iNOS induction and subsequent nitric
oxide production in response to glial activation; (3) an ability
to inhibit the activation of NADPH oxidase and subsequent
ROS generation in activated glia; (4) a capacity to downreg-
ulate the activity of proinflammatory transcription factors
such as NF-κB through their influences of a number of glial
and neuronal signaling pathways, such as MAPK cascade
(discussed in details below) [122, 123].

For example, the commonly consumed flavonol quer-
cetin has been reported to inhibit neuroinflammation by
attenuating nitric oxide production and iNOS gene expres-
sion in microglia [117, 124] and by preventing inflammatory
cytokine production, thus preventing neuronal injury [125,
126]. However, one of the major physiological metabolites
of quercetin, quercetin-3′-sulfate, failed to demonstrate any
anti-inflammatory action [117]. Nevertheless, these studies
have employed quercetin concentrations (10–50 μM) much
higher than of those found in plasma after ingestion [28].
In contrast to this, epicatechin and catechin (10–300 nM)
were observed to inhibit TNF-α release but not iNOS expres-
sion or nitric oxide production in primary glial cells [127]
suggesting that flavanols at physiologically relevant concen-
trations may hold the potential to exert anti-inflammatory
effects in the central nervous system. Polyphenols present
in blueberry have also been reported to inhibit NO•, IL-1β
and TNF-α production in activated microglia cells [128], and
the flavanone naringenin was observed to be highly effective
in reducing LPS/IFN-γ-induced glial cell activation [127].
Dietary polyphenols are also potent inhibitors of NADPH
oxidase activity in vitro. A study comparing 45 polyphenolic
compounds indicated that whilst both the flavanols (+)-
catechin and (−)-epicatechin failed to inhibit NADPH oxi-
dase, their relevant methylated metabolites exhibited strong
NADPH oxidase inhibition through an apocynin-like mech-
anism [129]. Interestingly, other apocynin-like phenolic
compounds, such as, ferulic acid, homovanillin alcohol, caf-
feic acid, tyrosol, and vanillic acid were also observed to
inhibit NADPH oxidase activity, therefore indicating that
smaller polyphenols, more structurally related to some colo-
nic metabolites, may also serve as novel therapeutic agents in
neuroinflammation (Figure 2).

There is also data which shows encouraging positive
effects of polyphenols in animal and in vitro models rele-
vant to multiple sclerosis (MS), a chronic debilitating dis-
ease which is characterised by demyelination, progressive
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irreversible axonal damage and inflammation [130]. For
example, EGCG delivered orally reduces symptom severity
in the autoimmune encephalomyelitis model of relapsing-
remitting MS by reducing inflammation and increasing neu-
roprotection [131]. Quercetin has also been reported to be
effective in the Experimental Autoimmune Encephalomyeli-
tis (EAE) mouse model, and reduces T-cell proliferation in
vitro at concentrations exceeding 10 μM [132]. Micromolar
concentrations of luteolin, apigenin, fisetin, and quercetin
(but not morin or hesperetin) were reported to suppress the
production of the cytokine interferon-gamma (IFNγ) from
lymph-node-derived T cells but, paradoxically, worsen clin-
ical severity in the EAE model. More recently, resveratrol
protection against EAE was associated with rises in IL-17/IL-
10 and with repressed macrophage IL-6 and IL-12/23 p40
expression [133]. Thus, the studies to date show promising
proof of concept of beneficial effects of polyphenols in sup-
pressing immune and inflammatory responses in models of
MS.

7. Mechanisms Underpinning the
Beneficial Effects of Polyphenols

It has generally been assumed that the health benefits of
polyphenols were linked to their capacity to directly scavenge
free radicals and other nitrogen species in vitro [134–137].
However, the concentrations at which they exert such anti-
oxidant activity are unlikely to be easily achieved in vivo as
many polyphenols have very limited bioavailability and are
extensively metabolised therefore reducing their antioxidant
potential [19]. During the last years, a new realisation of how
nutritional antioxidants may function has been envisaged,
and recent findings have suggested that in lower amounts,
typical of those attained in the diet, polyphenols may activate
one or more adaptive cellular stress responses pathways [93,
138–140]. Activation of such hormetic pathways in neurons
results in the production of several types of cytoprotective
proteins including neurotrophic factors, protein chaperones,
antioxidant and phase II enzymes, and antiapoptotic pro-
teins [141, 142]. One particular protective pathway which
is receiving considerable attention in regard to hormesis in
the nervous system involves the transcription factor NF-E2-
related factor-2 (Nrf2). Nrf2 binds to the antioxidant-res-
ponsive element (ARE) with high affinity and plays a central
role in the upregulation of genes implicated in the regulation
of the cellular redox status and the protection of the cell from
oxidative insult [143, 144]. Under basal conditions, Nrf2
interacts with a cytosolic repressor protein Keap1 (Kelch
ECH associating protein) limiting Nrf2-mediated gene
expression [145]. In cells exposed to oxidative stress, Nrf2 is
released from Keap1 and translocates to the nucleus, where
it activates ARE-dependent transcription of phase II and
antioxidant defence enzymes, such as glutathione-S-trans-
ferase (GST), glutathione peroxidase (GPx), and heme oxy-
genase-1 (HO-1) [146].

Most polyphenols have been reported to respond in
a bell-shaped dose-response manner, presenting cellular
toxicity at high concentrations while inducing light chemical

stress at lower doses with activation of physiological horme-
sis in cells [142], resulting in overexpression of defensive
genes such as those activated by Nrf2. For example, resver-
atrol was observed to protect PC12 cells against H2O2-
mediated oxidative stress [147] and to attenuate cerebral
ischemic injury in rat [148] via the activation of Nfr2 and
the upregulation of HO-1. The caffeic acid phenethyl ester
(CAPE), the active component of propolis, protected nigral
dopaminergic neurons in an experimental mouse model of
dopaminergic neurodegeneration through the modulation
of heme oxygenase-1 and brain-derived neurotrophic factor
(BDNF) [149]. The ethyl ferulate (EFE), a lipophilic poly-
phenol also found in propolis, was observed to protect rat
neurons against oxidative stress via the induction of Nrf2/
HO-1 [150]. The flavanol (−)-epicatechin prevented stroke
damage through the Nrf2/HO1 pathway [151], and increased
glutathione levels in primary astrocytes through an upregu-
lation of ARE-mediated gene expression [152]. Although a
positive correlation between dietary polyphenol consump-
tion and brain function has been mostly reported, evidence
is also suggestive that APOε4 carriers may not benefit from
the frequent consumption of fruits and vegetables rich in
such phytochemicals. Indeed, previous findings suggest that
APOε4 carriers are less responsive towards the anti-inflam-
matory, paraoxanase-1 inducing, and blood pressure lower-
ing activity of quercetin [153–155]. Such diminished respon-
siveness of the APOε4 versus APOε3 genotype (approxi-
mately 55–60% of the Caucasians population are homozy-
gotes for the ε3 allele) may be attributed to an impaired
Nrf2 signalling and to a lower activity of Nrf2 target genes
including glutathione-S-transferase, heme oxygenase-1, and
NAD(P)H dehydrogenase, quinone 1 [156].

Several upstream signaling cascades may either individu-
ally, or in a combined manner, activate Nrf2. These include
selective actions on a number of protein kinase and lipid
kinase signalling cascades, most notably the PI3K/Akt and
MAP kinase pathways which regulate prosurvival transcrip-
tion factors and gene expression [19]. In general, in vitro
studies have reported that polyphenols, at submicromolar
concentrations, activate ERK, as determined by measuring
increased phosphorylation of this enzyme. For example, both
the flavanol (−)-epicatechin (0.1 and 0.3 μM) [139] and the
citrus flavanone hesperetin at nanomolar concentrations
[140] were observed to activate ERK1/in cortical neurons.
Furthermore, EGCC was reported to restore ERK1/2 activ-
ities in 6-hydroxydopamine-treated or serum-deprived neu-
rons [102]. ERK activation often leads to the activation of
CREB, a transcription factor considered to be critical in the
induction of long-lasting changes in synaptic plasticity and
memory [157, 158]. CREB activation regulates the expres-
sion of a number of important genes, including BDNF, thus
playing a pivotal role in controlling neuronal survival and
synaptic function in the adult central nervous system [159,
160]. Regulation of BDNF is of particular interest as it
is linked with the control of synaptic plasticity and long-
term memory [161], and recent studies have shown that spa-
tial memory performance in rats supplemented with blue-
berry correlates well with the activation of CREB and
with increases of BDNF in the hippocampus [58]. Fisetin,
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Figure 3: Mechanisms underlying the biological effects of polyphenols. Polyphenols and their in vivo metabolites activate cellular stress-
response pathways resulting in the upregulation of neuroprotective genes. For example, both PKC and ERK can activate the nuclear factor
erythroid 2-related factor 2 (Nrf2). Nrf2 then translocates to the nucleus and binds to the antioxidant response element (ARE) in genes that
encode cytoprotective proteins such as antioxidant enzymes (AOE) and phase 2 (Ph2) enzymes. The transcription factor cAMP-response-
element-binding protein (CREB) is also activated by ERK, which induces the expression of brain-derived neurotrophic factor (BDNF), a
mediator of neurohormesis. In addition, polyphenols can also regulate the transcription factor NF-κB, which can mediate adaptive cellular
stress responses by reducing the expression of inflammatory cytokines. Activated SIRT1 may also inhibit NF-κB and so can reduce the cellular
stress response. Another important pathway activated by metabolic and oxidative stress involves transcription factors of the forkhead (FoxO)
family, which modulate genes that encode antioxidant enzymes and other stress-response proteins.

a polyphenol found in strawberries, has also been shown
to improve long-term potentiation and to enhance object
recognition in mice by a mechanism dependent on the acti-
vation of ERK and CREB [162].

As well as effects on the ERK/CREB/BDNF axis, polyphe-
nols are also known to modulate the activity of an enzyme
system associated with neuroprotection, Akt (also known as
PKB). One of the major enzymes which controls Akt/PKB
activity is the lipid kinase, PI3K. In cortical neurons, poly-
phenols such as the citrus flavanone hesperetin (0.1 and
0.3 μM) cause the activation of Akt/PKB and the consequent
inhibition of proteins associated with cell death such as apop-
tosis signal-regulating kinase 1 (ASK1), Bad, caspase-9 and
caspase-3 [140]. The activation of Akt by flavonoids in hip-
pocampal neurons has been shown to trigger the increased
translation of specific mRNA subpopulations [163], includ-
ing the activity-regulated cytoskeletal-associated protein
(Arc/Arg3.1) [58]. Arc is also under the regulatory of control
of both BDNF [164] and ERK signalling [165]. Increased Arc
expression may facilitate changes in synaptic strength, and
the induction of morphological changes in dendritic spines
[166]. In support of this, studies have indicated that changes
in neuronal morphology occur in response to flavonoid

supplementation [8], and that certain polyphenols can
influence neuronal dendrite outgrowth in vitro [167–169].

In addition to the previously described signalling sys-
tems, two additional pathways that are known to play impor-
tant roles in neuronal stress adaptation are those involving
the transcription factor NF-κB and the protein sirtuin-1
(SIRT1) [170]. In neurons activation of NF-κB can prevent
cell death induced by a range of insults including exposure to
excitotoxins and oxidative stress [171]. Numerous polyphe-
nols have been shown ascribe to inhibit NF-κB in different
cell types. For example, quercetin (50 μM) suppresses NF-κB
in a microglial cell line [117]. Apigenin (5–15 μM) blocks
LPS stimulation of the NF-κB pathway in RAW 246.7 macro-
phages and reduces κB-transcriptional activity [172]. Cat-
echin (0.13–2 mM) has been reported to increase mouse
microglial cell survival following exposure to the oxidative
agent tert-butylhydroperoxide (tBHP) by suppressing NF-κB
activation [173]. The flavone wogonin (50 μM) was shown
to reduce NF-κB activation in C6 glioma cells and prevent
microglial activation [174], and baicalein is reported to inhi-
bit NO. Production in and NF-κB activity in microglia [175,
176]. Although these data give proof of principle that NF-κB
is a potential target of polyphenols, the concentrations
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required for positive effects of those particular compounds
in vitro are supraphysiological and difficult to be achieved
through the diet. While it is likely that the antioxidant effects
of the polyphenols used in those studies account for the posi-
tive effects on suppressing NF-κB activation, at dietary rele-
vant concentrations (0.1–1 μM), different classes of polyphe-
nol were unable to suppress NF-κB-signaling pathways in
primary astrocytes [177]. Despite the fact that polyphenols
may be effective compounds at suppressing neuroinflamma-
tion in vitro, the NF-κB signalling system is unlikely to be
regarded as the primary signalling system responsible for
their effects in vivo.

The protein SIRT1 can also be activated by polyphenols
resulting in cell proliferation and cell survival. Cellular sub-
strates of SIRT1 include the tumor suppressor p53, the trans-
cription factor NF-κB, the forkhead box class O (FoxO)
family of transcription factors, the peroxisome proliferator-
activated receptor (PPAR)-γ, the PPAR-γ coactivator 1α
(PGC-1α), and endothelial nitric oxide synthase (eNOS)
[178]. In the realm of polyphenols, resveratrol has been the
most extensively studied for its ability to modulate SIRT1
both in vivo and in vitro [179, 180]. However, the observed
activation of SIRT1 by resveratrol in vitro now appears to be
an artefact of the assay used, therefore raising doubt on the
direct resveratrol-SIRT1 connection [181]. Recently, further
insight into the mechanisms by which resveratrol interact
with sirtuins has been proposed. Using a model of aged-
related metabolic phenotype, Park et al. identified phospho-
diesterase (PDE) enzymes as direct targets and proposed
that resveratrol indirectly activates SIRT1 through a signaling
cascade involving cAMP, Epac1, and AMPK [182]. Although
these results provide important new mechanisms by which
resveratrol interacts with sirtuins, the supraphysiological
dose used in these experiments must be taken with caution
when translating these results to in vivo dietary intervention.
SIRT1 also plays an important role in the regulation of neu-
rodegenerative disorders [183], and several findings have
now converged on the notion that activation of sirtuins by
polyphenols could be extended to degenerating neurons. For
example, resveratrol, was observed to protect both C. elegans
and mouse neurons against the cytotoxicity of the mutant
polyglutamine protein huntingtin through a mechanism
involving Sir-2.1 and SIRT1 activation, respectively [184].
Furthermore, resveratrol decreased cell death associated with
neurons cultured from a mutant huntingtin (109Q) knock-in
mice, in a manner that is reversible by two SIRT1 inhibitors,
sirtinol and nicotinamide [183]. Finally, overexpression of
SIRT1 and resveratrol treatment markedly reduced NF-κB
signaling stimulated by Aβ and had strong neuroprotective
effects, therefore linking SIRT1-NF-κB activity to AD [185]
(Figure 3).

8. Conclusion

The neuroprotective actions of dietary polyphenols involve
a number of effects within the brain, including a potential
to protect neurons against injury induced by neurotoxins, an
ability to suppress neuroinflammation, and the potential to

promote memory, learning, and cognitive function. While
many of the mechanisms underpinning their beneficial
effects remain to be elucidated, it has become clear that they
in part involve decreases in oxidative/inflammatory stress
signaling increases in protective signaling, and may also
involve hormetic effects to protect neurons against oxidative
and inflammatory stressors. Most of the dietary polyphenols
that have been shown to be protective against age-related
disease are all chemically reactive and nearly all are electro-
philic. Such chemical features renders these molecules capa-
ble of influencing the redox potential of their target cells
and to modulate series of transcriptions factors that result
in the activation of phase I and phase II metabolism genes.
Nonetheless, much of the data obtained on their bioactivity
derived from short-term basis in vitro or in vivo studies where
the dose used was not of nutritional relevance. Although at
the moment, the balance of evidence that does suggest that
polyphenol effects contribute to the benefits of a high intake
of fruits and vegetables, the extent of their contribution
in vivo, and at physiological relevant concentrations remains
uncertain. More work needs to be done to prove whether
this class of compounds is most likely to result in health
benefits and to determine their beneficial effects in slowly
developing neurodegenerative disorders. In view of their
multiple biological activities, the consumption of poly-
phenol-rich foods throughout life holds a potential to limit
neurodegeneration and to prevent or reverse age-dependent
deteriorations in cognitive performance. However, the ther-
apeutic and pharmacological potential of these natural com-
pounds still remains to be translated in humans in clinical
conditions. Moreover, efficacy in RCT is also needed to
support the relatively consistent epidemiological and mecha-
nistic evidence. Despite this lack of efficacy data and the
uncertainty of their effects in vivo, investigations into the
absorption and metabolism of various polyphenols in
humans indicate that there are common pathways for the
metabolism of the majority of polyphenols, notably via their
bacterial metabolism in the large intestine [186, 187]. Con-
sequently, research on developing dietary polyphenols for
applications in neurodegenerative disorders should prioritise
investigations of smaller polar polyphenols for brain bio-
availability and bioactivity. The challenge ahead therefore is
to proceed cautiously until rigorous randomized controlled
clinical trials have been undertaken to determine empirically
whether polyphenols and/or their metabolites have efficacy
in individuals affected by dementia and other neurodegener-
ative conditions.
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