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Amajor role of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family of enzymes is to catalyze the production
of superoxides and other reactive oxygen species (ROS).These ROS, in turn, play a key role asmessengers in cell signal transduction
and cell cycling, but when they are produced in excess they can lead to oxidative stress (OS). Oxidative stress in the kidneys is
now considered a major cause of renal injury and inflammation, giving rise to a variety of pathological disorders. In this review,
we discuss the putative role of oxalate in producing oxidative stress via the production of reactive oxygen species by isoforms of
NADPH oxidases expressed in different cellular locations of the kidneys. Most renal cells produce ROS, and recent data indicate
a direct correlation between upregulated gene expressions of NADPH oxidase, ROS, and inflammation. Renal tissue expression of
multiple NADPH oxidase isoforms most likely will impact the future use of different antioxidants and NADPH oxidase inhibitors
to minimize OS and renal tissue injury in hyperoxaluria-induced kidney stone disease.

1. Introduction

In this review, we aim at focusing on the putative role of
oxalate (C

2
O
4

2−) leading to oxidative stress (OS) by produc-
tion of reactive oxygen species (ROS) via different isoforms of
nicotinamide adenine dinucleotide phosphate (NADPH) oxi-
dase present in the kidneys. First, we provide a background
of different types of hyperoxaluria and address the factors
involved in oxalate and calcium-oxalate (CaOx-) induced
injury in the kidneys. Second, we aim at addressing the
role and different types of ROS and other free radicals,
which when overproduced lead to OS and a brief description
of different markers in the kidney which increase during
OS. Third, we discuss the different isoforms of NADPH
oxidase, their location, function, and expression in different
cell types. Fourth, we address the pathophysiological role
of NADPH oxidase in the kidneys and the regulation of
NADPH oxidase (NOX enzymes). Finally, we discuss the role
of antioxidants used for renal treatment and the different
NADPH oxidase inhibitors involved in blocking NADPH

oxidase from catalyzing production of superoxide with a
potential of reducing OS and injury in the kidneys.

Oxalate, the conjugate base of oxalic acid (C
2
H
2
O
4
), is

a naturally occurring product of metabolism that at high
concentrations can cause death in animals and less frequently
in humans due to its corrosive effects on cells and tissues
[1]. It is a common ingredient in plant foods, such as nuts,
fruits, vegetables, grains, and legumes, and is present in the
form of salts and esters [2–4]. Oxalate can combine with a
variety of cations such as sodium, magnesium, potassium
and calcium to form sodium oxalate, magnesium oxalate,
potassium oxalate, and calcium oxalate, respectively. Of all
the above oxalates, calcium oxalate is the most insoluble
in water, whereas all others are reasonably soluble [5].
In normal proportions, it is harmlessly excreted from the
body via the kidneys through glomerular filtration and
secretion from the tubules [6, 7]. Oxalate, at higher con-
centrations, leads to various pathological disorders such as
hyperoxaluria, nephrolithiasis (formation and accumulation
of CaOx crystals in the kidney), and nephrocalcinosis (renal
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calcifications) [1, 5, 8, 9]. Hyperoxaluria is considered to
be the major risk factor for CaOx type of stones [10] with
nearly 75% of all kidney stones composed of CaOx [9].
These CaOx crystals, when formed, can be either excreted
in the urine or retained in different parts of the urinary
tract, leading to blockage of the renal tubules, injury to
different kinds of cells in the glomerular, tubular and intesti-
nal compartments of the kidney, and disruption of cellular
functions that result in kidney injury and inflammation,
decreased and impaired renal function [11, 12], and end-
stage renal disease (ESRD) [13, 14]. Excessive excretion
of oxalate in the urine is known as hyperoxaluria and a
significant number of individuals with chronic hyperoxaluria
often have CaOx kidney stones. Dependent on food intake,
a normal healthy individual is expected to have a regular
urinary oxalate excretion somewhere between 10–40mg/24 h
(0.1–0.45mmol/24 h). Anything over 40–45mg/24 h (0.45–
0.5mmol/24 h) is regarded as clinical hyperoxaluria [15, 16].
Hyperoxaluria can be commonly classified into three types:
primary, secondary, and idiopathic. Primary hyperoxaluria
in humans is generally due to a genetic defect caused by
a mutation in a gene and can be further subdivided into
three subgroups, type I–III. It is inherited in an autosomal
recessive pattern and results in increased oxalate synthesis
due to disorders of glyoxalate metabolism. There is inability
to remove glyoxylate. Primary hyperoxaluria type I (PH I) is
the most abundant of the three subgroups of primary hyper-
oxaluria (70–80%) [13], caused by the incorrect sorting of
hepatic enzyme alanine-glyoxylate aminotransferase (AGT)
to the endosomes instead of the peroxisomes. AGT function
is dependent on pyridoxal phosphate protein and converts
glyoxalate to glycine. Owing to deficiency of AGT in PH
I cases, glyoxalate is alternatively reduced to glycolate and
oxidized to oxalate. In some cases of PH I, AGT is present
but is misdirected to mitochondria where it remains in an
inactive state. The metabolic defect of PH I is restricted to
liver peroxisomes and the AGT fails to detoxify glyoxalate
in the peroxisomes. Primary hyperoxaluria type II (PH II)
results from the scarcity of hepatic enzyme glyoxylate reduc-
tase/hydroxypyruvate reductase (GRHPR) activity normally
found in the cytosol. In studies, different cohorts have shown
concentrations of urinary oxalate excretion between 88–
352mg/24 h (1–4mmol/24 h) for PH I and 88–176mg/24 h (1-
2mmol/24 h) for PH II [13, 17, 18]. In some cases, there is
natural occurrence of AGT and GRHPR activities, but still
there may be PH type III due to anion exchanger SLC26A6
and mutations in DHDPSL [13, 19–21]. All three types of PH
show symptoms from infant to adolescence stages, with a
majority showing clinical symptoms at 5 years in PH I to 15
years in PH II, and during the neonatal years in PH III [18].
Approximately, 35% of patients with PH I may be unnoticed
due to misinterpretation, lack or subtlety of the symptoms,
until the onset of renal failure [13].

In contrast to primary hyperoxaluria, secondary hyper-
oxaluria appears to result from eating foods rich in high-
oxalate levels or exposure to large amounts of oxalate/oxalate
precursors. Regular daily oxalate consumption by West-
ern populations varies highly from 44 to 351mg/day (0.5–
4mmol/day) but may exceed 1000mg/day (11.4mmol/day)

when oxalate rich foods (e.g., spinach or rhubarb) are eaten
in excess [3, 22–24]. Exceedingly high values of up to
2045mg/day have also been reported due to consumption
of seasonal foods consisting of purslane, pigweed, amaranth,
and spinach [25].There are different factors that affect dietary
oxalate absorption such as oxalate bioavailability in the gut
after it is consumed, number and accessibility of cations that
attach to oxalate, such as calcium (Ca2+) and magnesium
(Mg2+) in the gut, oxalate precursors and their effect on
dietary oxalate, inherited absorption capacity, emptying of
the gastrointestinal fluids, time taken for transit in the
intestine, and the accessibility of oxalate degrading microor-
ganisms such asOxalobacter formigenes [15, 22–26]. A further
subtype of hyperoxaluria is idiopathic hyperoxaluria which
is spontaneous with unknown causes. Previous research has
shown that idiopathic CaOx stone patients have the ability to
absorb a greater quantity of oxalate as compared to normal
individuals [27–29]. This may be true for why some autistic
children have a high state of hyperoxaluria.

Previous studies have shown that dietary oxalate usually
contributes just 10–20% of the urinary oxalate [9] but can
be as high as ∼50%, as oxalate is neither stored nor further
metabolized inside the body [2]. Different studies have shown
that foods rich in oxalate cause a transient state of hyperox-
aluria, therefore difficult sometimes to detect in 24 h urinary
samples [4, 30] Another mechanism for hyperoxaluria is
fat malabsorption, also known as enteric hyperoxaluria. It
can arise for two different reasons: (a) greater access of the
mucous membrane in the intestine to oxalate caused by
greater numbers of dihydroxy bile acids such as taurocholic
and glycocholic acid and (b) interaction of fatty acids with
calciumpresent in the lumen, augmenting the quantity of sol-
uble oxalate when few insoluble CaOx complexes are formed
[31]. This condition has been shown to be linked with bypass
surgeries of small distal bowel or resections and other patho-
physiological disorders in which grave steatorrhea occurs,
for example, in pancreatic insufficiency and celiac spruce in
both children and adults. Furthermore, patients who have
had jejunoileal bypass surgery also tend to have higher rate
of occurrence of enteric hyperoxaluria. Additional reasons
for malabsorption include biliary obstruction, overgrowth of
bacteria, and blind loop syndrome [31].

2. Oxalate and Calcium Oxalate
Induced Injury

Studies have shown that oxalate and calcium oxalate cause
renal injury leading to inflammation and other pathophys-
iological conditions in the kidneys [32–35]. Oxalate levels
in the urine crosses the supersaturation limits, causing crys-
tallization of CaOx, calcium oxalate monohydrate (COM)
deposition in the renal cells and tissues that leads to damage
that ultimately results in end-stage renal failure [35]. Many
studies have shown that oxalate and CaOx crystals lead to
death of cells in in vitro analyses [32, 36, 37].

Oxalate ions are generated in the liver by glyoxalate
metabolism, but due to low solubility they are carried at
low concentrations in the plasma membrane [38]. Previous
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studies have shown that oxalate is quickly taken up by
proximal tubule cells and high concentration of oxalate can
be excreted in urine by the secretary pathway [39, 40].
The major pathway of oxalate excretion from the body is
via urinary excretion; however, a study in rats has shown
that large quantities of oxalate can also be removed by the
gastrointestinal system when there is kidney failure [41].

It is now well known that CaOx crystals cause injury to
cells and tissues by causing damage to cell membranes, pro-
duction of lipidmediators (prostaglandins, leukotrienes), and
excessive production of reactive oxygen species, all of which
lead to an imbalance between oxidants and antioxidants, with
malfunctioning ofmitochondria [42, 43]. Studies have shown
that CaOx crystals induce the phosphatidylserine imbalance
in themembrane and greater production of ceramide, signals
of cell death [42–44]. CaOx also causes hemolysis of red
blood cells [45] and CaOx crystal injury may also be due to
abundant release of ROS and other free radicals produced
from molecular oxygen which ultimately lead to oxidative
stress. Our review provides an insight on oxalate- and CaOX-
induced renal injury due to different types of ROS produced
by numerous enzyme complexes and mitochondria with
special focus on NADPH oxidases leading to oxidative stress.

3. Reactive Oxygen Species (ROS)
and Oxidative Stress

Reactive oxygen species are chemically reactive molecules
and free radicals generated from molecular oxygen that, if
produced in excess, cause damage to tissues and different
components of the cells. Yet, if produced in physiological
balance, ROS have been shown to play a principle role in
normal cell signal transduction pathways, including apopto-
sis, gene expression, and activation of different cell signaling
cascades.They are produced by different constitutively active
oxidases such as NADPH oxidase, xanthine oxidase, lipoxy-
genase, cyclooxygenase, hemeoxygenase, and in the electron
transport chain of mitochondria during cellular respiration
[1, 46]. Major cellular ROS include the superoxide anion
(O
2

−∙), nitric oxide radical (NO∙), hydroxyl radical (OH∙),
and hydrogen peroxide (H

2
O
2
), all of which are produced by

different signaling pathways [1, 46]. The superoxide anion,
precursor of the more powerful and complex oxidants, is
mainly produced by the respiratory burst of phagocytes
which is regarded as the most significant free-radical gener-
ator in vivo [47]. These ROS may react with chemicals and
enzymes to generate additional oxidative species or become
ineffective by nonenzymatic and enzymatic intercellular and
intracellular reactions [48]. O

2

−∙ reacts with nitric oxide
(NO) to produce peroxynitrite (ONOO−) which is a highly
reactive and toxic nitrogen-containing species which nitrates
proteins causing nitrative stress, augment platelet aggregation
and vasoconstriction of the blood vessels [49]. Due to this
reaction, there is diminished bioavailability of NO, a cell-
to-cell messenger, and this causes beneficial effects such as
decreasing blood pressure [50]. Superoxide is highly reactive,
has a short half-life, cannot cross the cell membrane, and
is therefore acted on by the scavenging enzyme, superoxide

dismutase (SOD), which converts it to hydrogen peroxide
(H
2
O
2
). Hydrogen peroxide is more stable as compared to

superoxide and it diffuses though the lipid bilayer. Hydrogen
peroxide (H

2
O
2
) is further acted on by another scavenging

enzyme, catalase (CAT), which neutralizes it to water and
oxygen (Figure 1). In a metal catalyzed reaction, called the
Haber-Weiss reaction, hydrogen peroxide yields a short-
lived, short-ranged, and more reactive hydroxyl radical.
Also, in the presence of Fe2+, a highly reactive hydroxyl
radical (OH∙), is formed (Fenton reaction). Hydrogen per-
oxide, after oxidation by myeloperoxidase, gives rise to
another extremely reactive oxygen species, hypochlorous
acid (HOCl). Hypochlorous acid is a powerful oxidizing
agent which is known to alter lipid structure and function,
other membranous components of the cells and proteogly-
cans. It acts on thiol groups of membranous proteins and
is known to cause chlorinative stress [49]. Studies have
shown that hypochlorous acid, along with hypobromous
acid (HOBr), and hypothiocyanous acids (HOSCN) have a
role in antimicrobial defense by neutrophils [48, 51]. These
reactive oxygen species under normal conditions function as
mediators in different cell signaling and regulatory pathways
involving growth and proliferation, activation or inhibition of
differentmolecules and in regulating different transcriptional
activities. Signaling molecules that are controlled by these
ROS include phosphatases, Ras, phospholipases, calcium
signals, serine/theonine kinases and protein tyrosine kinases.
ROS also regulate different nuclear factors such as nuclear
factor-𝜅B (NF𝜅B), transcription factor activation protein-1
(AP-1), and different genes such as c-myc, c-fos, and c-jun
(1). ROS are also involved in initiation and implementa-
tion of programmed cell death (apoptosis). Under normal
conditions, these ROS and reactive nitrogen species (RNS)
are present at equilibrium with other antioxidants and are
only generated when required and then vigorously removed
by various scavenging enzymes and antioxidants. They play
significant regulatory roles in various physiological processes,
including innate immunity, modulation of redox-dependant
signaling pathways, and as cofactors in the production of
hormones.

ROS, when overproduced, can lead to oxidative stress.
The majority of cells respond by increasing the levels of
intracellular levels of antioxidants, but an excess of oxidants
within a biological system leads to a change in the redox state,
towards one that is more oxidizing [52, 53]. Oxidative stress
or abundance of ROS causes permanent damage to macro-
molecules and also causes interference in the important
redox-dependant signaling processes [54]. Oxidative stress
causes disruption of the nitric oxide (NO) signaling pathway
[55]. NO has anti-inflammatory and vasodilator functions,
but under excessive ROS, gets converted to peroxynitrite
[56, 57], a powerful oxidant that causes oxidation of small-
molecule antioxidants such as glutathione, cysteine, and
tetrahydrobiopterin [58]. Limited presence of tetrahydro-
biopterin leads to uncoupling of endothelial nitric oxide
synthase (eNOS), which in turn changes this enzyme from
an NO-producing, vasoprotective enzyme to a superoxide-
producing, oxidative stress enzyme [59, 60]. Peroxynitrite is
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Figure 1: Production of ROS and different reactions. ROS with 1 free electron are shown in red and 2 free electrons are shown in blue. ROS,
when produced in excess, cause damage to different components of the cell. Excess production of hydrogen peroxide (H

2
O
2
) and peroxynitrite

(ONOO−) leads to the production of singlet oxygen (1O
2
). The other radicals shown in the figure are superoxide (∙O

2

−), nitric oxide (∙NO),
nitrogen dioxide (∙NO

2
), hydroxyl radical (∙OH), glutathione (GSH), glutathione disulphide (GSSG), thiocyanate (SCN−), hypothiocyanous

acid (HOSCN), hypochlorous acid (HOCl), and chroramine (R-NHCl). Figure modified from [1, 46].

very harmful and can hinder the activity or totally deactivate
useful antioxidant enzymes such as superoxide dismutase,
glutaredoxin, and glutathione reductase [58]. Peroxynitrite
causes oxidation of the zinc thiolate center of NO synthase
resulting in decreased formation of NO [61]. Decrease in
NO can lead to increase in inflammation and remodeling of
different biomolecules. Research has shown that ROS cause
change in confirmation due to oxidation of proteins, such as
kinases and phosphatases, and activation of nuclear factor-
𝜅B (NF𝜅B) which play important roles in the regulation of
immune response to infection [62]. NF𝜅B is mainly involved
in transcription where incorrect regulation can lead to
inflammation, cancer, and autoimmune diseases. Activation
of NF𝜅B also leads to expression of adhesion molecules such
as ICAM-1 (intercellular cell adhesion molecule-1), VCAM-
1 (vascular cell adhesion molecule-1), and E selectin on the
endothelium [63]. NF𝜅B activation also leads to proliferation
and migration of vascular smooth muscle cells [64]. In this
regard, ROS are also known to excite different cytosolic
molecular complexes known as inflammasomes that have
enzymatic activity mediated by the activation of caspase-1.
Inflamasomes are involved in maturation and cleavage of
cytokines such as IL-1𝛽 which is involved in inflammatory
response [65].

There are a variety of markers in the kidneys which
increase during oxidative stress. These include an increase

in renal excretion of lipid peroxidation markers, but this
increase in renal excretion is not a proof of increased ROS.
Research has shown that there is greater excretion of 8-
Isoprostane, PGF

2𝛼
, and malondialdehyde (MDA) by long-

time infusion of ANG II in rats [66, 67]. Also one study has
shown that animals secrete significantly higher amounts of
thiobarbituric acid reactive substances (TBARS) in the urine,
generated as a byproduct of lipid peroxidation and an indi-
cation of oxidative stress in the kidneys [68]. The presence of
𝛼-glutathione S-transferase (𝛼-GST) in the urine of animals
was also shown to be an indication of oxidative stress in the
kidneys [68]. Oxidative stress is due to excessive production
of ROS or reduction in antioxidants leading to production
of free radicals that are injurious to all components of the
cell including proteins, lipids, and DNA. Oxidative stress also
leads to interruption in the normal signaling processes. 𝛽-
galactosidase (GAL) and N-acetyl-𝛽-glucosaminidase (NAG),
bothmarkers of renal epithelial injury, also showed increased
excretion in the urine [69]. Previous research has also
shown greater urinary MDA, plasma MDA, and urinary
NAG activity but diminished glutathione (GSH), cellular
glutathione peroxidase (cGPx), protein thiol, and vitamin E
activity observed in patients diagnosed with kidney stones
which showed decreased urinary MDA, plasma MDA, and
increased vitamin E after supplementation with potassium
citrate (60mEq/day for 1 month) [1].There is also an increase
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Figure 2: Seven different NOX isoforms-NADPH oxidase complexes. NOX isoform expression is relatively regulated at different
transcriptional, post-transcriptional and translational levels under certain pathophysiological conditions. Most of the NOX isoforms have
structural similarities to NOX2, with maximum in NOX3. NOX4 is most abundant in the kidneys in various kinds of cells. NOX4 is known
to be constitutively active and do not require any subunits. NOX5 is directly activated by calcium. The core subunits of all the complexes
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in the ROS-dependant products such as an increase in the
renal nitrotyrosine immunoreactivity in kidneys of SHR [70],
2k, 1C rats [71]. Also, it is possible to take directmeasurements
of ROS such as superoxide production in the medulla [72]
and the production of H

2
O
2
by an ANG type 1 receptor-

dependant mechanism in rats which helps us estimate the
degree of oxidative imbalance in the kidneys [73]. These
abovementionedmarkers provide an estimate ofOS and renal
injury but further studies and validation of all markers of
OS would greatly augment our understanding of the role OS
plays in causing renal injury.

4. Isoforms of NADPH Oxidase

To date, seven different isoforms of NADPH oxidase have
been described. These are NADPH oxidase 1 (NOX1),
NADPH oxidase 2 (NOX2), NADPH oxidase 3 (NOX3),
NADPHoxidase 4 (NOX4),NADPHoxidase 5 (NOX5),Dual
oxidase 1 (DUOX1), and Dual oxidase 2 (DUOX2). These
isoforms are comprised of different core catalytic subunits:
p22phox, p47phox, p67phox, p40phox, DUOX activator 1
(DUOXA1), DUOX activator 2 (DUOXA2), NOX activator
1 (NOXA1), and NOX organizer 1 (NOXO1) (Figure 2).
These regulatory subunits are involved in different functions.
While p22phox, DUOXA1, and DUOXA2 are responsible
for the growth and expression of the NOX and DUOX core
units in biological membranes, P67phox, and NOXA1 are
involved in enzyme activation and p40phox, p47phox, and

NOXO1 in the spatial organization of different subunits of
the enzyme [74]. RAC1 and RAC2 (small GTPases) may also
be involved in the activation in some isoforms of NADPH
oxidase, per se. Most of the isoforms generate superoxide
except NOX4, DUOX1, and DUOX2 oxidases which directly
generate H

2
O
2
[75, 76]. NOX2 or gp91phox (91-kDa glyco-

protein), previously known as mitogenic oxidase 1 (mox-1),
along with p22phox (22-kDa protein) forms the two com-
ponents of flavocytochrome b

558
, a heterodimeric integral

membrane protein [77]. NOX2 is a catalytic subunit which
produces superoxide and is a protein which consists of six
transmembrane domains with cytosolic C- and N-terminus
[78]. Studies have shown that NOX2 has highest structural
similaritywithNOX3 (58%), followed byNOX1 (56%).NOX4
and NOX5 are remotely associated with NOX2 showing
around 37% and 30% resemblance, respectively [77]. NOX5
has more structural similarity with the DUOX’s subunits as
they all have EF hand motifs (calcium-binding motifs) [77].
NOX1 isoform has been shown to be concerned with redox-
dependent cell signaling and regulation of gene expression
[79] and is mainly expressed in the colon epithelial cells [80].
However, other studies have shown NOX1 to be present in
vascular smoothmuscle cells (VSMC), sinusoidal endothelial
cells, uterus, prostate, osteoclasts, placenta, retinal pericytes,
and microglia [78]. NOX2 expression is well established
in the phagocytes [81–83] but has also been observed in
nonphagocytic cells such as neurons, hematopoietic stem
cells, smooth muscle cells, endothelium, cardiomyocytes,



6 Oxidative Medicine and Cellular Longevity

Nephron Glomerulus

Cortex

Medulla

TAL (Nox2, p22phox,
p47phox, p67phox)

Macula densa
(p22phox, p47phox,

p67phox)

Mesangial cells (Nox4)

Podocytes (Nox4)

Endothelial cells
(p47phox)

RBC

Nox1, Nox2, Nox4

Basement membrane

Proximal tubule 
cells

Figure 3: Different isoforms of NADPH oxidase complex present in different parts of the kidneys. The Nox isoforms expressed in the cortex
and medulla as shown in the nephron and different cellular populations in the glomerulus (see text for details).

skeletal muscle cells, hepatocytes, and neutrophils [78, 81].
NOX3 isoform is known to be significantly expressed in the
inner ear, fetal kidney, brain, and skull [84], while NOX3
has been shown to be favorably localized in cochlear and
vestibular epithelial cells as well as spiral ganglion [78]. NOX4
isoform or renal NADPH oxidase (RENOX) is known to be
highly expressed in the kidneys and is found in different cell
types including neurons, smooth muscle cells, adipocytes,
keratinocytes, hematopoietic stem cells, melanoma cells,
fibroblasts, osteoclasts, and endothelial cells. NOX4 is the
predominant isoform in the endothelial cells [85–88]. NOX5
isoform has been found in different parts of the body such
as testis, vascular smooth muscles, ovaries, lymph nodes,
myometrium, pancreas, spleen, and prostrate [89–91]. NOX5
has been involved in cell growth and thus far 5 subtypes,
namely, NOX5𝛼, 𝛽, 𝛿, 𝛾, and 𝜀, have been found [89–
92]. The other isoforms of NOX, DOUX1, and DOUX2
originally identified as thyroid oxidases have been extensively
found in the thyroid [93], but also in prostate gland and
airway epithelial cells. DUOX1 is expressed in bronchial and
tracheal airway epithelial cells, whereas DUOX2 is found
in epithelial cells of salivary glands, stomach, and brush
border cells of various rectal glands such as caecum and
sigmoidal colon [94]. All of these NOX isoforms play a
significant role in the generation of ROS and oxidative stress.
These enzymes are involved in many pathophysiological
processes that are very crucial for different functions such
as cellular signaling, regulation of gene expression, and
cell differentiation.

5. NADPH Oxidases in the Kidney

Research has shown that NADPH oxidase in the kidneys
may have a specific pathophysiological role; thus, it is present
in different cellular compartments of the kidneys (Figure 3).
The mammalian kidney consists of different cellular popula-
tions including mesangial cells, fenestrated endothelial cells,

tubular epithelial cells of the proximal and distal nephron
segments, glomerular podocytes, dendritic cells, and the
cortical fibroblasts [95, 96]. Previous research has shown that
the main supplier of ROS in the form of superoxide O

2

−∙

in the renal cortex is NADPH oxidase, whereas in the renal
medulla xanthine oxidase also makes similar contribution to
O
2

−∙ generation along with NADPH oxidase [97]. Different
subunits of the NADPH oxidase have also been shown to
be abundantly present in the macula densa (MD), thick
ascending loop of henle (TAL), interstitial cells, blood vessels,
glomeruli, and tubules in the kidneys of spontaneously
hypertensive rats (SHR) [98]. Previous studies in the human
glomerular mesangial cells (HMC) have recognized 𝛼 and
𝛽 subunits of cytochrome b

558
and the 45-kDa flavoprotein

[99]. Human glomerular mesangial cells produce ROS such
as superoxide and express different NADPH oxidase subunits
like p22phox, p67phox, and p47phox [100] and Nox4 [101,
102]. Studies have shown that the thick ascending loop of
henle (TAL) in the outer medullary region expresses differ-
ent NADPH oxidase subunits such as p40phox, p47phox,
p22phox, and Nox2 [103]. Podocytes or visceral epithelial
cells present around the capillaries of the glomerulus in the
kidneys play a significant role in the functioning of the
glomerular capillary wall. Research has shown the produc-
tion of ROS in the cultured human podocytes and ROS
was generated by NADPH oxidase and different subunits
of NADPH oxidase such as p67phox, p47phox, Nox2, and
p22phox were expressed in the podocytes, present in the
glomerulus of the kidneys [104]. Nox4 has been shown as
the most commonNox isoform to be expressed in the kidney
epithelial cells [105, 106] and is distributed in the microvas-
culature, glomeruli, mesangial cells, and nephron segments
[102, 105, 107]. Nox1, Nox2, and Nox4 have also been shown
to be expressed in the renal cortex [66, 108]. Chabrashvili
et al. have shown the expression of p67phox, p22phox,
and p47phox in the renal cortex [66, 98]. The same group
compartmentalized theNADPHoxidase subunits in the renal
cortex to macula densa, specific nephron segments in the
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TAL, cortical and medullary ducts, distal convoluted tubule,
renal microvasculature and glomeruli [66, 98]. P47phox
which is also known as neutrophil cytosol factor-1 (Ncf-1)
was found to be present in the endothelium and glomerular
podocytes and p22phox subunit in the renal interstitial
fibroblasts [98]. These studies give us an insight on the role
of different NADPH oxidase subunits found and expressed
in various subcompartments of the kidneys, makingNADPH
oxidase complex as one of the most important contributor of
oxidative stress in the kidneys.

6. Regulation of NADPH Oxidase
(NOX Enzymes) Expression in the Kidney

It is now well accepted that a significant amount of ROS
production in mammalian cells is derived from the NADPH
oxidase (NOX) of phagocytes (Phox), especially neutrophils
and macrophages that catalyze the respiratory burst (i.e.,
the production of large number of ROS and utilization of
large amounts of O

2
) [109]. Normally, the NADPH oxidase

is nonfunctional but can be activated quickly when a cell
comes in contact with different inflammatory biomolecules
ormicroorganisms resulting in generation of ROS apart from
mitochondrial production. Cytosolic NADPH oxidase is the
electron donor for all the NADPH oxidase isoforms with
molecular oxygen acting as the final electron acceptor. The
electron transfer to molecular oxygen results in the release
of superoxide from the oxidase enzyme in NOX1, NOX2,
and NOX5 isoforms [110]. The other NOX isoforms such
as NOX4, DUOX1, and DUOX2 oxidases do not directly
release superoxide anion as their primary ROS; instead, they
release hydrogen peroxide [75, 76]. The NADPH oxidase
complex consists of themembrane subunitsNox2 (gp91phox)
and p22phox along with the regulatory cytosolic subunits
p67phox, p47phox, p40phox, and the small GTPases protein,
RAC [111].

Research has shown that NADPH oxidase is activated
by Ang II infusion in the rat kidneys leading to increased
expression of p22phox and Nox1 in the renal cortex with
concomitant reduction in the presence of Nox4 and SOD
[66]. Also, high salt intake increased oxidative stress by
increasing the expression of NOX2 and p47phox subunits
and decreased SOD expression [108]. The prolonged effect of
Angiotensin in the kidney has been shown to cause the acti-
vation of NADPH oxidase, enhanced expression of p22phox,
and decrease in the scavenging enzyme SOD leading to renal
cortical hypoxia, renal vasoconstriction, and hypertension
[67]. The Nox1 subunit has been shown to be upregulated
in the rat-cultured vascular smooth muscle cells (VSMC) by
PDGF, Ang II, and serum [112], whereas research has shown
downregulation of Nox4 in the kidney cortex by the infusion
of Ang II [108]. Ang II has been shown to upregulate p67phox
expression in rabbit periadventitial fibroblasts [113] and the
mouse aorta [114]. These research findings provide a brief
insight on the role of angiotensin on the different subunits of
NADPH oxidase and the regulation of expression of NADPH
oxidase in the kidneys.

7. Antioxidants for Renal Treatment

Antioxidants have been shown to reduce oxidative stress.
Treating the kidneys with vitamin E (𝛼-tocopherol) along
with mannitol removed the chances of deposition of CaOx
crystals in rat kidneys injected with sodium oxalate [115].
Furthermore, antioxidants such as methionine, combination
of vitamin E plus selenium, and glutathione monoester
subdued CaOx crystals in the hyperoxaluric rat kidneys [116–
118]. However, recent studies have shown that it is not easy to
remove oxidative stress with increased levels of antioxidants
such as vitamin E in clinical trials [119–121]. These disparate
observations cannot be regarded as proof against antioxidants
as several clinical trials involved high risk patients in which
the end-stage renal disease was quite advanced and doses
of vitamin E differed greatly between trials. Antioxidant
concentration is very critical in controlling oxidative stress
because of the very high rate constants of the reactions
between ROS and othermolecules such as NO, certain amino
acids, and nucleic acids. The reaction between NO and ROS
happens at a rate of 1.9 × 1010M−1 S−1 which is 6 times
faster in magnitude than the reaction between superoxide
and vitamin E [122, 123]. Vitamin E in the body also faces
a highly oxidizing environment one that can lead to rapid
removal of reduced forms of antioxidants. It would seem that
the best approach for reducing oxidative stress is by targeting
the enzyme responsible for the generation of ROS, perhaps
targeting NADPH oxidase by use of inhibitors of NADPH
oxidase.

8. NADPH Oxidase Inhibitors

Identification of NADPH oxidase inhibitors is an ongoing
active field, focused primarily on substances that obstruct
a specific NADPH oxidase from catalyzing production of
superoxide. NADPH oxidase inhibitors act through interfer-
ence in the assembly of theNADPHoxidase complex by inter-
actingwith their subunits, blocking electron transfer decreas-
ing production of ROS [124]. Table 1 lists a number of chem-
icals that alleviate oxidative stress through inhibiting ROS
production by NADPH oxidases. In addition, Table 1 also
describes the mode of action and pharmacologic effects of
different peptide and nonpeptide inhibitors. These chemicals
include, but are not limited to, Apocynin, diphenyleneiodo-
nium chloride (DPI), pefabloc, proline-arginine rich antimi-
crobial peptide (PR-39), and new peptide inhibitors that have
been developed to particularly target NADPH oxidases, such
as gp91 ds-tat and novel nonpeptide VAS2870 [125]. The
two most studied NADPH oxidase inhibitors are Apocynin
and DPI. Apocynin, also known as 4-hydroxy-3-methoxy
acetophenone or acetovanillone, is the best known inhibitor
of NADPH oxidase to date. It was extracted from the roots of
Apocynum cannabinum by Schmiedeberg in 1883 [126] and
found to block the association of p47phox with membrane-
bound p22phox subunit of the NADPH oxidase complex
in leukocytes, monocytes, and endothelial cells and is also
a scavenger of H

2
O
2
[127]. At high concentration, it was

shown to block Nox4, and Nox5 [128], making it more
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Table 1: Inhibitors of NADPH oxidase.

Name Mode of action Pharmacological effects References

Apocynin
NADPH oxidase complex assembly
inhibitor: inhibits binding of p47phox
with membrane bound p22phox

Scavenger of H2O2 [130–132]

DPI
Inhibitor of flavoprotein, takes electrons
from FAD and prevents electron flow
through the flavocytochrome channel

Inhibitor of NADH-ubiquinone oxidoreductase,
NADH dehydrogenase, xanthine oxidase,
cytochrome p450 oxidoreductase, NOS, and
bacterial nicotine oxidase

[133–139]

AEBSF

Inhibits association of NOX2 subunit
with p47phox. Prevents binding of
p47phox and p67phox with cytochrome
b559

Irreversible serine protease inhibitor [140]

Plumbagin
Inhibits O

2

−∙ production in various cell
lines expressing NOX4 oxidase; unknown
mechanism

Naphthoquinone structure may confer
ROS-scavenging effects [141, 142]

PR-39
Inhibits p47phox from binding to
p22phox subunit by cohering to SH3
domains of p47pphox

Non selective for NADPH oxidase [143]

S17834
Flavonoid derivative proposed to directly
inhibit NADPH oxidase activity, although
the mechanism is undefined

None [144]

VAS2870

Undefined mechanism: inhibits NADPH
oxidase activity in NOX2
oxidase-containing HL-60 cell line and in
vascular endothelial cells containing
NOX2 and NOX4 oxidases; does not
scavenge O

2

−∙

None [145, 146]

Gp91dstat

Oxidase assembly inhibitor: inhibits
association of Nox2 with p47phox. Does
not scavenge superoxide generated by
cell-free systems

None [147, 148]

Statins

Decrease superoxide production by
inhibiting synthesis of
farnesylpyrophosphate and
geranylgeranylpyrophosphate which are
crucial for membrane attachment of Rac
and NADPH oxidase assembly. May also
decrease p22phox and Nox1 expression.
Likely to influence Nox1 and Nox2
activities

HMG-CoA reductase inhibitor. Decreases AT1
receptor expression; increases eNOS expression,
most effective for treating cardiovascular disease
with questionable benefit in those without
previous CVD but with elevated cholesterol levels

[149, 150]

AT1 receptor
antagonists

Decrease Ang II-dependent activation of
NADPH oxidase via AT1 receptors.
Unlikely to display Nox selectivity as Ang
II stimulates Nox1 and Nox4 oxidases

None. Controlling high blood pressure [151]

Nebivolol

Inhibits membrane association and also
interaction of p67phox and Rac and
decreases oxidase expression. Inhibits
Nox1-dependent superoxide production

𝛽-adrenoceptor blocker, used in treatment of
hypertension [152–155]

Gliotoxin

A fungal metabolite, thiol-modifying
toxin thought to inhibit phosphorylation
of p47phox by preventing PKC
colocalization with p47phox. Also,
inhibits electron transport through the
flavocytochrome before oxidase
activation. Low potency for blocking
Nox4

Stimulation of cGMP release. Cytoskeletal
reorganization. Disrupts the mitochondrial
membrane potential, possesses
immunosuppressive properties,
anti-inflammatory activity.

[75, 156–160]
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Table 1: Continued.

Name Mode of action Pharmacological effects References

Clostridium difficile
toxin B

Glycosylation of threonine-35 on Rac,
which modifies GTPases activity

Likely to inhibit all Rac-dependent protein
activity. High toxicity, vascular permeability and
inflammation

[161]

Nordihydroguaia-
retic
acid

Blocks H2O2 production in macrophages
in response to phorbol esters and in
endothelial cells in response to thrombin

Lipooxigenase inhibitor. Blocks arachidonic acid
metabolism [162–164]

SKF525A Decreases superoxide and H2O2
production in endothelial cells Cytochrome P450 inhibitor [162, 165]

Metformin

Scavenges hydroxyl radicals but not
superoxide. Could also inhibit PMA and
Ang II-dependent ROS production from
NADPH oxidase. However, this is likely
to be due to inhibition of PKC activity

Antihyperglycemic agent. PKC inhibitor [166–168]

Sildenafil-citrate Inhibitor of endothelial superoxide
production and gp91phox expression

Inhibits phosphodiesterase type 5. Nonselective
and in direct inhibitor for NADPH oxidase
isoforms. Have been shown to influence immune
system due to changes in gp91phox expression

[169–172]

Bilirubin
Inhibitor of superoxide production. No
effect on Nox2, p22phox and p47phox but
may reduce p47phox phosphorylation

ROS scavenger [173–175]

Minocycline

Downregulates p67phox expression.
Inhibitor of superoxide generation in
microglia and dopaminergic neurons in
response to stimuli such as thrombin

Antibiotic [176, 177]

Perhexiline
Inhibits superoxide production in intact
neutrophils stimulated by fMLP or PMA.
Mechanism unknown

Efficient antianginal agent that blocks
carnitine-palmitoyl-transferase [178, 179]

Roxithromycin

Inhibits superoxide generated by intact
neutrophils activated by fMPL or PMA
but not by cell lysates. No effect on
PKC-dependent phosphorylation. May
inhibit translocation of p47phox and/or
p67phox

Macrolide antibiotic. Inhibit RNA-dependent
protein synthesis. Efficient in blocking
cytochrome P450

[180–182]

Taurine chloramines

Inhibits translocation of p47phox and
p67phox to the membrane. Also inhibits
phosphorylation of p47phox. Reversible
inhibition of PMA-dependent superoxide
anion production in human neutrophils

Blocks inducible NOS in alveolar macrophages [183, 184]

Resveratrol
Reduces superoxide generation in intact
macrophages and homogenates. Does not
scavenge superoxide in cell-free systems

Inhibitor of PKC [185–187]

Curcurmin
Reduces superoxide production in intact
macrophages and homogenates. Does not
scavenge superoxide in cell-free systems

Irreversible inhibitor of thioredoxin reductase via
alkylation of cysteine residues [185, 188]

Nitrolinoleate

Nitrated lipid which blocks PMA- and
FMLP-dependent superoxide generation
and degranulation in human neutrophils
by enhancing cAMP but not cGMP levels

Also linked with increasing cAMP vasorelaxation [189, 190]

Mycophenolate acid

Fungal derivative that blocks endothelial
and neutrophil-derived superoxide by
reducing Rac levels. Does not alter mRNA
levels of Nox2, Nox4, and p47phox

Efficient inhibitor of inosine monophosphate
dehydrogenase associated with purine synthesis in
B and T lymphocytes

[191, 192]

GK-136901

Well known NOX1 and NOX4 oxidase
inhibitor. Unknown mechanism, but
structural similarity with NADPH
suggests that it may act as a competitive
substrate inhibitor of this enzyme

None [193, 194]
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Table 1: Continued.

Name Mode of action Pharmacological effects References

ML171

Phenothiazine compound with selectivity
for NOX1 oxidase (IC50 of 0.25 𝜇M) over
other NADPH oxidases (IC50 > 3 𝜇M).
Does not scavenge oxygen radicals
generated by xanthine oxidase activity

None [195]

Mastoparan
Inhibits superoxide production by
neutrophil lysates most likely via
interaction with N-terminal of p67phox

An amphiphilic cationic tetradecapeptide isolated
from wasp venom. Has affinity towards SH3
domains. Also interact with G-proteins

[196–199]

Ghrelin
Blocks superoxide production by thoracic
aorta most probably via release of NO.
Does not scavenge superoxide

Capable of releasing growth hormone releasing
peptide. Stimulates gastric acid secretion [200–202]

Alpha tocopherol

Inhibitor of p67phox-p47phox
translocation and p47phox
phosphorylation in monocytes,
neutrophils and microglial cells. This
effect is likely to be due to PKC inhibition

ROS scavenger [203–206]

Benzylisothiocyanate

Concentration-dependent. Inhibits
TPA-induced superoxide production in a
human leukemia cell line. Does not affect
PKC activity and p47phox translocation.
Mechanism may involve covalent cysteine
modification of the NADPH oxidase

May inhibit NO, PGE2 and TNF-𝛼 production.
Also known to cause apoptosis via induction of
Bak and Bax proteins

[207–209]

Probucol
Known to reduce superoxide production
in rabbit aorta, by down-regulation of
p22phox

Free radical scavenger [54, 210–213]

Nox2ds-tat

Oxidase assembly inhibitor: inhibits
association of NOX2 subunit with
p47phox. Does not scavenge O

2

−∙

generated by cell-free systems

None [148, 214]

VAS3947

Triazolopyrimidine that decreased ROS
production in several cell lines with low
micro molar efficiency, irrespective of the
specific isoforms expressed; showed no
inhibitory effects against xanthine
oxidase-derived ROS or eNOS activity

None [215]

Adapted from [125, 216].
eNOS: endothelial nitric oxide synthase; IC50: half-maximal inhibitory concentration; Nox: NADPH oxidase; O2

−∙: superoxide; ROS: reactive oxygen species;
SH3: Src homology 3; DPI: diphenyleneiodonium chloride; AEBSF: 4-(2-aminoethyl)-benzenesulfonyl fluoride; S178341: 4-dimethyl-2,3,5,6-triiodobenzene;
VAS-2870: 3-benzyl-7-(2-benzoxazolyl) thio-1,2,3-triazolo (4,5-d) pyrimidine; SKF 525A: 2-diethylaminoethyl 2:2–diphenylvalerate hydrochloride.

effective against Nox2, Nox4, and Nox5 dependant NADPH
oxidase-dependant activity. Apocynin has been shown to
reverse activation of the NADPH oxidase system in rat
kidneys induced by hydroxyl-l-proline (HLP) treatment even
in the face of high levels of hyperoxaluria, revealing the role
of Apocynin as an inhibitor as well as having antioxidant
inductive activities [129].

The most frequently used inhibitor of NADPH oxidase is
diphenyleneiodonium chloride (DPI), also known as diben-
ziodolium chloride. Its mode of action is by taking electrons
from electron transporter and creating a radical which blocks
the appropriate transporter of electrons through a covalent
binding step [124]. Regarding NOX isoforms, the action of
DPI appears to be nonspecific towards any isoform and it
partially or completely inhibits different types of enzymes
such as iNOS, xanthine oxidase, and NADPH oxidase [124].

9. Summary

In this review, we talk about renal injury caused by oxalate
and calcium oxalate crystals due to hyperoxaluria. Oxalate
and calcium oxalate can lead to renal injury due to dis-
ruption of membranes, ROS-induced oxidative stress, and
mitochondrial dysfunction. We put the main emphasis on
oxidative stress caused by ROS produced by different iso-
forms of NADPH oxidase as it has been found that these
different isoforms of NADPH oxidase are one of the most
important contributors of ROS and oxidative stress produced
in the different subcellular localizations of the kidneys.These
NADPHoxidase complexes play a crucial role in host defense,
various signaling pathways leading to regulation of gene
expression, and protein functions under normal conditions
of oxidative balance.When this oxidative balance is disturbed
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due to environmental and/or physiological processes, the
potential of the NADPH oxidases in inducing injury to
both microorganisms and cells makes regulation essential,
not only through normal physiological activities, but also
exogenous inhibitors. Chemicals that inhibit generation of
ROS provide considerable benefits over general antioxidants
such as vitamin E, which appears to be less efficient due
to various properties, including decreased bioavailability. It
would seem, therefore, that in order to reduce the function
and downstream effects of NADPH oxidase, a main focus
should be on blocking the assembly of NADPH oxidase
subunits. Various peptide and non-peptide inhibitors are
known which mainly operate by disrupting the association
of NADPH oxidase complex assembly. Special focus should
be on targeting the organizer subunit, that is, p47phox or
the NOXO1 subunits. Other molecular subunits for therapy
may be the activator subunits such as p67phox and NOXA1
along with Rac. Thus, the main focus should be to develop
an inhibitor with increased efficiency and specificity of
binding with the protein subunit. Comprehensive studies are
needed on the molecular subunit structures to be targeted
and their effects on interactions with other subunits present
downstream in the NADPH oxidase complex.
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