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This study aimed to explore morphological changes of hippocampal subfields in patients with multiple system atrophy (MSA) with
and without cognitive impairment using FreeSurfer-automated segmentation of hippocampal subfield techniques and their
relationship with cognitive function. We enrolled 75 patients with MSA classified as cognitively impaired MSA (MSA-CI, n =40)
and cognitively preserved MSA (MSA-CP, n=35), as well as 68 healthy controls. All participants underwent three-dimensional
volume T1-weighted magnetic resonance imaging. The hippocampal subfield volume was measured using FreeSurfer version 7.2
and compared among groups. Regression analyses were performed between the hippocampal subfield volumes and cognitive
variables. Compared with healthy controls, the volume of the right cornu ammonis (CA) 2/3 was significantly lower in the
MSA-CI group (P = 0.029) and that of the left fimbria was significantly higher in the MSA-CP group (P = 0.046). Results of linear
regression analysis showed that the right CA2/3 volume was significantly correlated with the Frontal Assessment Battery score in
patients with MSA (adjusted R*=0.282, $=0.227, and P = 0.041). The hippocampal subfield volume decreased in patients with
MSA-CI, even at the early disease stages. Specific structural changes in the hippocampus might be associated with cognitive

deficits in MSA.

1. Introduction

Multiple system atrophy (MSA) is a progressive neurode-
generative disorder characterized by various combinations
of autonomic failure, cerebellar ataxia, and parkinsonism.
Pathologically, glial cytoplasmic inclusions (GCIs) and
neuronal cytoplasmic/nuclear inclusions (NCIs/NNIs) are
found throughout the brain, especially in striatonigral and
olivopontocerebellar systems [1, 2]. Cognitive impairment is
traditionally believed to rarely develop in MSA [3]; however,
accumulating evidence has indicated that cognitive dys-
function is an integral part of MSA [4]. The frontal executive
function is most commonly affected, whereas attention,
memory, language, and visuospatial functions are some-
times impaired [4].

Recent studies have indicated that the NCI burden rather
than GCI in limbic regions is one of the pathological sub-
strates of cognitive impairment in MSA [5-10]. It is cur-
rently debatable whether the NCI burden in limbic regions is
specifically associated with the memory domain in cognitive
function [5-9]. A longitudinal voxel-based morphometry
study reported an atrophic progression in multiple brain
regions, including the hippocampus [11]. However, the
hippocampus consists of distinctive subfields, including the
cornu ammonis (CA) 1-4, dentate gyrus, subiculum, and
fimbria, which are histologically heterogeneous, with varied
vulnerabilities to aging, and are functionally specialized [12].
Although a study using automated segmentation of hip-
pocampal subfield techniques revealed that hippocampal
subfield impairment is common in MSA patients [13], this
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study included only 30 MSA patients with mild cognitive
impairment and a mean disease duration of 4 years, and it
did not include a detailed evaluation of memory in the
assessment of cognitive function. Therefore, there is in-
sufficient evidence for structural changes in the hippocampal
subfield and its relationship to cognitive function, partic-
ularly memory, in a larger number of MSA patients, in-
cluding those in the early disease stage or who do not have
mild cognitive impairment.

In this study, morphological changes of hippocampal
subfields in patients with MSA in the early disease stage with
and without cognitive impairment and their relationship
with cognitive function including memory were investigated
using FreeSurfer-automated segmentation techniques.

2. Materials and Methods

2.1. Patients. This retrospective study was approved by the
Institutional Review Board of the Chiba University
Graduate School of Medicine, and the need for informed
consent for patients with MSA was waived. All healthy
controls (HCs) provided written informed consent. From
our database, we identified 83 consecutive patients with
MSA who were admitted to Chiba University Hospital
between September 2017 and August 2021. The inclusion
criterion was patients who met the criteria for clinically
possible or probable MSA, as described in the second
consensus statement by Gilman et al. [14]. Diagnosis of
possible or probable MSA was confirmed by a movement
disorder specialist at our center. The exclusion criteria were
as follows: (1) current or previous history of another
neuropsychiatric disorder and (2) abnormal MRI findings
due to another etiology. A total of eight patients were then
excluded (three with depression, one with hemorrhage in
the putamen, two with brain infarction, one with poly-
microgyria on brain MRI, and one with infantile paralysis).
Finally, 75 MSA patients (probable 54, possible 21) were
included in the present study. Based on the predominant
clinical symptomatology at the time of MRI, 44 patients
were classified as having cerebellar ataxia-predominant
MSA (MSA-C) and 31 as having parkinsonism-
predominant MSA (MSA-P). In this study, 40 patients
with MSA with Frontal Assessment Battery (FAB) scores of
<14 were classified as cognitively impaired MSA (MSA-CI)
and 35 patients with scores of >14 were classified as cog-
nitively preserved MSA (MSA-CP) [15]. Twenty-six pa-
tients with MSA with one or more Wechsler Memory Scale-
Revised (WMS-R) indices of <77.5 (-1.5 standard de-
viations) were classified as memory-impaired MSA (MSA-
MI), and 49 patients with WMS-R indices of >77.5 were
classified as memory-preserved MSA (MSA-MP) [16].
Sixty-nine healthy participants who volunteered in re-
sponse to a local advertisement were recruited as HCs.
These healthy participants had no history of neurological or
psychiatric illnesses, had normal neurological examination
results, and had a Mini-Mental State Examination score of
>26.

The medical records of patients with MSA were reviewed
to determine their ages at the time of an MRI scan, disease
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duration (time from onset to an MRI scan), the Unified
Multiple System Atrophy Rating Scale (UMSARS) scores,
the Zung Self-Rating Depression Scale (SDS) scores, Frontal
Assessment Battery (FAB) scores, Addenbrooke’s Cognitive
Examination IIT (ACE-III) [17], and WMS-R indices.

2.2. MRI Acquisition. All MRI examinations were per-
formed using a single 3-T MRI system (GE DISCOVERY
MR750, GE Healthcare). Imaging parameters for TI1-
weighted images were 3D-IR-SPGR; sagittal plane; TR,
8ms; TE, 3ms; TI, 420 ms; flip angle, 15°; FOV, 256 mm;
matrix, 256 x 256; and voxel size, 1 x1x 1 mm.

2.3. Imaging Data Preprocessing. The structural T1-weighted
image data were processed using FreeSurfer 7.2 (http://
surfer.nmr.mgh.harvard.edu/). First, several preprocessing
steps were performed to reconstruct the cortical and sub-
cortical regions, including nonbrain tissue removal, auto-
mated Talairach transformation, intensity normalization,
white and gray matter volume segmentation in subcortical
regions, and tessellation of the gray matter/white matter and
gray matter/cerebrospinal fluid boundaries. After the
abovementioned processing, the results of cortical and
subcortical structural segmentation were visually inspected
and corrected as necessary for each participant. Sub-
sequently, hippocampal subsegmentation was performed
using an automatic segmentation function of FreeSurfer
version 7.2. The detailed process of hippocampal subfield
volumetric analysis has been previously described [18]. One
HC was excluded during the visual inspection of processed
images due to gross errors in hippocampal subfield
segmentation.

The hippocampus was divided into 12 subregions:
hippocampal tail, subiculum, CAl, hippocampal fissure,
presubiculum, parasubiculum, molecular layer, granular
cell-molecular layer-dentate gyrus (GC-ML-DG), CA2/3,
CA4, fimbria, and hippocampus-amygdala transition area
(HATA) (Figure 1). The overall bilateral hippocampus
volume, each subfields’ volume, and estimated total in-
tracranial volume (eTIV) were obtained.

2.4. Statistical Analysis. All statistical analyses, except for the
Steel-Dwass test, were performed using SPSS software ver.
25.0 (SPSS Japan, Tokyo, Japan). The Steel-Dwass test was
performed using JMP pro 14.2.0 (SAS Institute). De-
mographic variables from MSA-CI, MSA-CP, and HC pa-
tients were compared using the x2 test for sex and disease
subtypes, and the Kruskal-Wallis one-way analysis of var-
iance with the post hoc Steel-Dwass test was adjusted for
multiple comparisons for age at MRI and education. One-
way analysis of variance was used to compare eTTV among
groups. Disease duration, UMSARS part 2 scores, FAB, and
the visual memory index of WMS-R were compared between
MSA-CI and MSA-CP using the Mann-Whitney U test.
WMS-R indices, except for visual memory, and SDS were
compared between MSA-CI and MSA-CP using Student’s ¢-
test.
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FiGure 1: Sample of left hippocampal subfield automated segmentation. CA, cornu ammonis; GC-ML-DG, granular cell-molecular layer-

dentate gyrus; HATA, hippocampus-amygdala transition area.

Analysis of covariance with controlled age, sex, edu-
cation, and eTIV was used for group comparisons in
hippocampal subfield volumes, with the post hoc Bonfer-
roni correction (multiple testing correction for compari-
sons among the three groups). Hippocampal subfield
volumes that were found to be statistically significant in
group comparisons were included in linear regression
analyses to evaluate the correlation between cognitive
variables and subfield volumes in patients with MSA.
Cognitive variables (FAB, total, and subscale ACE-III
scores and five memory domains extracted from WMS-R
results) were used as independent variables with adjust-
ment for sex, age, disease duration, UMSARS part 2 scores,
SDS, and educational background. The significance level
was set at P <0.05.

3. Results

3.1. Participants’ Clinical Characteristics. The clinical char-
acteristics of study participants are summarized in Table 1.
Compared to MSA-CP and MSA-CI groups, the HC group
had a higher proportion of women. Age at an MRI scan was
significantly higher in the MSA-CI group than that in the
MSA-CP and HC groups. The HC group’s educational
background was significantly longer than that of the

MSA-CI group. Neuropsychological test results demon-
strated significantly lower FAB, total, and subscale ACE-III
scores and WMS-R indices in the MSA-CP and MSA-CI
groups than those in the MSA-CI group.

3.2. Comparison of Hippocampal Subfield Volumes among the
HC, MSA-CP, and MSA-CI Groups. Compared with the HC
group, the right CA2/3 volume was significantly lower in the
MSA-CI group (215.6+30.1 vs. 209.8+32.5, P =0.029)
whereas that of the left fimbria was significantly higher in the
MSA-CP group (64.6+20.1 vs. 83.0+27.1, P = 0.046) (Ta-
ble 2 and Figure 2). No significant difference was observed in
the hippocampal subfield volume between the MSA-CI and
MSA-CP groups.

3.3. Comparison of Hippocampal Subfield Volumes among the
HC, MSA-MP, and MSA-MI Groups. No significant differ-
ence was observed in the hippocampal subfield volume
among the HC, MSA-MP, and MSA-MI groups.

3.4. Comparison of Hippocampal Subfield Volumes among the
HC, MSA-C, and MSA-P Groups. The left fimbria in the
MSA-CP group was significantly higher than that in the HC
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FiGure 2: Comparisons of hippocampal subfield volume among the
healthy control (HC), cognitively preserved multiple system at-
rophy (MSA-CP), and cognitively impaired multiple system at-
rophy (MSA-CI) groups. Error bars represent standard deviation.
CA, cornu ammonis.

group (64.6 +20.1 vs. 80.2 £28.8, P = 0.012). Moreover, the
hippocampal subfield volume showed no significant dif-
ference between the MSA-C and MSA-P groups.

3.5. Association between Neuropsychological Test Results and
Hippocampal Subfield Volumes. The results of linear re-
gression analysis showed that the right CA2/3 volume was
significantly correlated with the FAB score (adjusted
R*=0.282, $=0.227, and P = 0.041) and not correlated with
the total/subscale ACE-III scores or WMS-R indices in
patients with MSA. The left fimbria volume was not cor-
related with the FAB and total/subscale ACE-III scores or
WMS-R indices.

4, Discussion

The current study included patients with MSA at the early
disease stage, with an average disease duration of <2 years, and
quantitatively compared hippocampal subfield volume changes
in the MSA-CI, MSA-CP, and HC groups. Our findings
showed that the right CA2/3 volume in MSA-CI was smaller
than that in HCs and that the left fimbria volume in MSA-CP
was larger than that in HCs. Moreover, the FAB score was
associated with the right CA2/3 volume in patients with MSA.
When MSA was divided into MSA-MI and MSA-MP based on
WMS-R results, no significant differences were observed in
hippocampal subfield volumes among groups.
Neurodegeneration in limbic structures including CA2/3
is associated with cognitive impairment of MSA. The current
study showed a lower right CA2/3 volume in patients with
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MSA-CI than in HCs. Furthermore, the right CA2/3 volume
significantly correlated with the FAB score. Previous clini-
copathological studies have repeatedly demonstrated that
the NCI burden in limbic regions contributes to the oc-
currence of cognitive impairment in MSA [5-10, 19]. Several
studies with a semiquantitative detailed assessment of
pathological findings in the medial temporal region have
demonstrated severe NCI burden in the hippocampal
subregions, including CA2/3 [7, 9, 10]. In another study
using automated segmentation of hippocampal subfield
techniques, volume reduction was detected in a larger
number of hippocampal subfields, including CA2/3, in
patients with MSA with mild cognitive impairment [13]. The
wider range of detecting volume reduction of hippocampal
subfields than in the present study may be due to the in-
clusion of an MSA cohort with an average disease duration
of 4 years, which is longer than that of the MSA cohort in this
study. Conversely, globular NCIs in the neocortex were
associated with cognitive impairment [20]. Furthermore,
especially at the early disease stages, previous imaging and
morphological data have suggested that deafferentation
from subcortical structures and cortical pathology may play
a role in cognitive dysfunction [4]. An MRI examination
using voxel-based morphometry and diffusion tensor im-
aging has shown that patients with MSA with cognitive
impairment exhibited a significant widespread microstruc-
tural cerebral white matter involvement in contrast to re-
duced cerebral gray matter volume [21]. Recent studies that
performed resting-state functional MRI to characterize
cognition-related network alterations in patients with MSA
have demonstrated that disruptions of the dorsolateral
prefrontal cortex (DLPFC)-default mode network, DLPFC-
insula network, and cerebello-cerebral networks were as-
sociated with cognitive impairment in patients with MSA
[22-24]. The idea that these network disruptions are the
substrate for cognitive dysfunction is consistent with a study
that found no pathological differences in the cortical or
limbic regions between patients with MSA with and without
cognitive dysfunction [25]. Therefore, intrinsic limbic
structure degeneration appears to be one of several sub-
strates, rather than the only substrate, for cognitive dys-
function in MSA.

Memory impairment due to focal hippocampal de-
generation may not be the predominant substrate of cog-
nitive dysfunction in MSA. Although memory and
visuospatial domains are sometimes impaired, executive
functions and fluency are most commonly affected in pa-
tients with MSA [4]. In the current study, memory im-
pairment was also observed in the group with cognitive
impairment classified based on FAB results; however, no
association was detected between memory scores and the
hippocampal subfield volume, which decreased in the group
with cognitive impairment. Moreover, no significant volume
reduction in hippocampal subfields was observed in
MSA-MI classified based on WMS-R results. Another
hippocampal subfield study found an association between
language, abstract function, visuospatial/executive function,
and hippocampal subfield volume, which decreased in pa-
tients with MSA with mild cognitive impairment [13].
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Previous pathological studies revealed that a subset of pa-
tients with MSA with cognitive impairment showed abun-
dant NCIs in the frontotemporal lobes, including medial
temporal regions with and without frontotemporal
dementia-like clinical characteristics [5-7, 10]. These find-
ings suggest that hippocampal degeneration in MSA may be
accompanied by frontal cortical degeneration and does not
appear to be solely associated with memory impairment.
Conversely, a pathological study with a larger cohort of
patients with MSA showed that the NCI burden in the
hippocampus and parahippocampus was associated with the
occurrence of memory impairment in MSA [9]. However,
despite the presence of unavoidable limitation of a retro-
spective postmortem study, not all patients underwent
formal and systematic cognitive assessment, and the interval
between cognitive assessment and autopsy widely varied in
this previous study. Moreover, two-thirds of patients with
MSA with impaired memory in the previous study had
frontal-subcortical dysfunction, such as executive dysfunc-
tion, impaired processing speed, personality change, dis-
inhibition, and stereotypy, in addition to impaired memory.
Interregional correlations for a load of neural inclusion
pathology have been reported in the hippocampus and basal
forebrain/hypothalamus [20], and the association between
global cognitive scores and cerebello-amygdaloid/para-
hippocampal networks has been reported [22]. Therefore,
although a small number of MSA patients may present with
pure memory deficits due to localized hippocampal de-
generation, the hippocampus may be associated with cog-
nitive dysfunction in MSA through multihit degeneration in
the hippocampus and other cortical regions, including the
frontal lobe, and network abnormalities between the hip-
pocampus and other regions, including the cerebellum.

The fimbria is in direct continuity with the fornix and is
occasionally described as a fornix component [26]. In the
present study, we hypothesized that increased fimbria vol-
ume in MSA-CP or MSA-C is a compensatory mechanism
similar to that reported in the fornix. A study using diffusion
tensor imaging showed local increases of fractional an-
isotropy in the fornix in nonpsychotic relatives compared to
patients with schizophrenia and HCs, and this finding was
postulated to be a compensatory mechanism to protect
against psychosis among relatives [27]. Another study using
diffusion tensor imaging in cognitively normal participants
divided into amyloid positive, amyloid intermediate, and
amyloid negative groups based on results of amyloid pos-
itron emission tomography showed higher fraction an-
isotropy in the fornix in amyloid positive participants than
in amyloid negative participants [28]. This finding could be
interpreted as a compensatory mechanism in Alzheimer’s
disease before a cognitive decline. However, no significant
association between fimbria volume and cognitive function
was found in the current study, and further studies with
a large cohort of patients with MSA are needed to confirm
our speculation.

Limitations of our study are as follows: First, patients
with MSA were clinically diagnosed without postmortem
confirmation; therefore, some of these patients may be
misdiagnosed. Second, the same detailed cognitive

assessment performed in patients with MSA was not per-
formed in HCs. Finally, there is no multiple comparison
correction for comparisons of all subfield numbers, so type 1
errors cannot be ruled out.

5. Conclusions

In this study, the hippocampal subfield volume is decreased
in patients with MSA-CI even at the early disease stages. The
hippocampal subfield region with decreased volume was
detected in patients with MSA-CI and was associated with
cognitive function assessed by FAB. These findings indicate
that specific structural changes in the hippocampus might be
associated with cognitive deficits in MSA.
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