
Research Article
Clinical Characterization of Data-Driven Diabetes Clusters of
Pediatric Type 2 Diabetes

Mahsan Abbasi ,1 Mustafa Tosur,2,3 Marcela Astudillo,2 Ahmad Refaey,2

Ashutosh Sabharwal,1 and Maria J. Redondo2

1Electrical and Computer Engineering, Rice University, Houston, TX, USA
2Department of Pediatrics, Division of Diabetes and Endocrinology, Baylor College of Medicine, Texas Children’s Hospital,
Houston, TX, USA
3Children’s Nutrition Research Center, USDA/ARS, Houston, TX, USA

Correspondence should be addressed to Mahsan Abbasi; mahsan.abbasi@rice.edu

Received 20 October 2022; Revised 2 May 2023; Accepted 24 May 2023; Published 18 July 2023

Academic Editor: Maria E. Craig

Copyright© 2023 Mahsan Abbasi et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Pediatric Type 2 diabetes (T2D) is highly heterogeneous. Previous reports on adult-onset diabetes demonstrated the
existence of diabetes clusters. Therefore, we set out to identify unique diabetes subgroups with distinct characteristics among youth
with T2D using commonly available demographic, clinical, and biochemical data. Methods. We performed data-driven cluster
analysis (K-prototypes clustering) to characterize diabetes subtypes in pediatrics using a dataset with 722 children and adolescents
with autoantibody-negative T2D. The six variables included in our analysis were sex, race/ethnicity, age, BMI Z-score and
hemoglobin A1c at the time of diagnosis, and non-HDL cholesterol within first year of diagnosis. Results. We identified five
distinct clusters of pediatric T2D, with different features, treatment regimens and risk of diabetes complications: Cluster 1 was
characterized by higher A1c; Cluster 2, by higher non-HDL; Cluster 3, by lower age at diagnosis and lower A1c; Cluster 4, by lower
BMI and higher A1c; and Cluster 5, by lower A1c and higher age. Youth in Cluster 1 had the highest rate of diabetic ketoacidosis
(DKA) (p ¼ 0:0001) and were most prescribed metformin (p ¼ 0:06). Those in Cluster 2 were most prone to polycystic ovarian
syndrome (p ¼ 0:001). Younger individuals with lowest family history of diabetes were least frequently diagnosed with diabetic
ketoacidosis (p ¼ 0:001) and microalbuminuria (p ¼ 0:06). Low-BMI individuals with higher A1c had the lowest prevalence of
acanthosis nigricans (p ¼ 0:0003) and hypertension (p ¼ 0:03). Conclusions. Utilizing clinical measures gathered at the time of
diabetes diagnosis can be used to identify subgroups of pediatric T2D with prognostic value. Consequently, this advancement
contributes to the progression and wider implementation of precision medicine in diabetes management.

1. Introduction

Type 2 diabetes (T2D) is the most common form of diabetes
in adults. More than 37million Americans have diabetes
(about 1 in 10), and approximately 90%–95% of them have
T2D [1]. The apparent clinical and genetic complexity of
patients with T2D suggest a tremendous pathophysiological
heterogeneity [2]. Not all individuals with T2D fit easily into
a single class and the current traditional symptom-based
definition of T2D can be refined into additional subclassifi-
cations [3–10]. Further classifying T2D into subgroups may
permit us to understand differences in etiology and patho-
genesis, observe differential risk for complications, and

improve existing treatment regimens to be more targeted
to the characteristics in each individual.

Several recent studies have attempted to deconstruct the
heterogeneity of T2D using biomarkers and phenotypic data
to identify T2D subgroups. A Swedish cohort identified five
replicable clusters of adults with diabetes with different patient
characteristics and risk of diabetic complications [3]. Several
studies demonstrated improved assessment of cardiovascular
risks when subgrouping adults with T2D [9, 10]. These clusters
have been replicated in many other adult populations [4–6].
The addition of genetic information allowed further refine-
ment of the clusters [7, 8]. A variety of approaches have been
used for an optimal subclassification in different settings (e.g.,
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clinical practice versus research and rich versus limited
resources).

However, it remains unknown whether phenotypic data
and clustering approaches used previously in adult-onset dia-
betes can be applied to pediatrics. Pediatric T2D is increasing
at a rapid pace particularly among racial and ethnicminorities
[11, 12]. A disease previously considered to occur only in
adult age is now observed in adolescents and even prepubertal
children [13]. T2D has worse clinical course and health out-
comes in youth than in adults. Youth with T2D have higher
rate of complications and more frequent comorbidities than
adults with T2D [14]. Moreover, compared with adolescents
and young adults with Type 1 diabetes (T1D), youth with
T2D have increased risk for cardiovascular complications
including macrovascular disease, with resultant decreased
life expectancy [15, 16]. Dissecting the heterogeneity of T2D
in youth may help tailor treatments and ultimately improve
prognosis.

We hypothesized that a data-driven analysis of clinical
data in a pediatric population with T2D could identify dis-
tinct T2D subtypes. Therefore, we set out to perform data-
driven cluster analysis to identify unique diabetes subgroups
with distinct characteristics among youth with T2D. By iden-
tifying a more precise characterization of recently diagnosed
pediatric T2D, this will bring us closer to the goal of tailoring
treatment strategies to the individual and mitigating the risk
of diabetes complications.

2. Methods

2.1. Study Population. Our dataset includes 722 children and
adolescents (<19 years of age) with a clinical diagnosis of
autoantibody-negative T2D treated at Texas Children Hos-
pital between July 2016 and July 2019. We collected compre-
hensive data encompassing demographics, anthropometric
measures, as well as clinical and laboratory information.
The latter included hemoglobin A1c (A1c) levels and non-
fasting, simultaneous measurements of serum glucose and
C-peptide at the time of diagnosis, as well as lipid profile
measures obtained within a year after diagnosis. We also
collected BMI at diagnosis and sexual maturation (Tanner)
staging documented by a pediatric endocrinologist within
3 months of the diabetes diagnosis when available. The pres-
ence of complications until their last follow-up visit (with
mean follow-up duration of 2.7 years) was recorded. This
study was approved, and informed consent requirement
was waived by the Baylor College of Medicine Institutional
Review Board.

2.2. Statistical Analysis. Since our goal was to identify clusters
that have clinical relevance and reflect the underlying path-
ogenesis of T2D, we selected variables based on (i) wide-
spread availability at the time of diagnosis or, for lipid
panel, within the first year of diagnosis; (ii) previously
reported prognostic value in predicting T2D development
and/or progression; (iii) feature importance calculated by
the random forest algorithm to find the variables which
most drive the cluster assignment (see Figure S1 for details).
Based on the above three driving characteristics, the resulting

variables were age, sex, race/ethnicity, A1c, BMI Z-score at
diagnosis, and non-HDL cholesterol. Age, BMI, sex, race/
ethnicity, and A1c are well-known T2D predictors and prog-
nostic factors, and modify clinical presentation [13, 17–20].
A1c is routinely measured in the clinical setting and outper-
forms fasting glucose for prediction of complications [21].
We chose non-HDL cholesterol to be included in the model
since it is considered to be an important cardiovascular dis-
ease risk predictor in patients with diabetes [22] and is reliable
when measured in both fasting and nonfasting states [23].

We usedmultivariate iterative imputationmethod [24–26]
to estimate 12% missing values of incomplete features (BMI
at diagnosis and non-HDL) by modeling them as a function
of other features such as BMI at Visit 1, LDL, and triglyceride.

Since the selected features consisted of both numerical
and categorical variables, we used K-prototypes clustering to
accommodate for all features. This algorithm offers the
advantage of working with mixed data types. It measures
distance between numerical features using Euclidean dis-
tance (like K-means) but also measures the distance between
categorical features using the number of matching categories
[27, 28]. Cluster analysis was performed on values scaled to a
mean value of 0 and a standard deviation (SD) of 1. The
silhouette analysis indicated that there are five clusters.

Continuous values are expressed asmedian (first quartile–
third quartile) because all the variables are nonparametric.
We applied Mann–Whitney U test to compare continuous
characteristics and factors between two groups (e.g., sex)
and Kruskal–Wallis test for comparing among multiple
groups (e.g., between diabetes subgroups). Chi-Square (χ2)
test was used to assess distribution of categorical outcomes
(e.g., diabetes complications) among clusters. Statistical anal-
ysis was considered significant if two-sided p-values were
<0.05. All analyses were conducted using Python.

3. Results

Of 722 patients in our dataset, 62.4% were females and 73.5%
were obese. Median age at diagnosis was 13.7 years. The
racial/ethnic distribution was 58.3% Hispanic, 29.4% non-
Hispanic Black, 9.2% non-Hispanic White, 3% Asian, and
0.1% other races. The remaining characteristics are summa-
rized in Table 1.

In clustering analysis, of the 722 individuals with diabe-
tes, we excluded 273 participants missing many clinical mea-
sures and laboratory data.

Since BMI at diagnosis and BMI at Visit 1 were highly
correlated (r= 0.93, p ¼ 0:0001), and we had 12.4% of BMI
values missing at diagnosis, we imputed the missing values
for BMI at diagnosis using the collected BMI measures at
Visit 1. Similarly, because of the higher proportion of missing
values for non-HDL (11.8%), we modeled it as a function of
other variables (LDL, HDL, and triglyceride) and estimated
the missing values using the multivariate iterative imputation
algorithm [24–26].

Eventually, we included 449 children with all six T2D-
associated selected variables available based on the prerequi-
site of the clustering model.
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3.1. Cluster Distribution and Characteristics at Baseline.Using
K-prototypes clustering, five subgroups were identified. The
frequency and distribution of the five clusters obtained by
K-prototypes clustering are shown in Table 2 and Figure 1. We
labeled the clusters based on their most distinctive characteristics.

We used feature importance (Figure S2) to understand
the characteristics of each cluster. Using feature importance
analysis, we labeled the clusters based on the most prominent
features contributing to forming that cluster and the distri-
bution of those features (see Figure S1 for details). Each
cluster is described below:

(1) Cluster 1 (n= 102 individuals) was characterized by
higher A1c (>10%)

(2) Cluster 2, (n= 48 individuals) was characterized by
higher non-HDL (>160mg/dL)

(3) Cluster 3, (n= 131 individuals) was characterized by
lower age (<14 years), lower A1c (<10%)

(4) Cluster 4, (n= 49 individuals) was characterized by
lower BMI (Z-score <2), higher A1c (>10%)

(5) Cluster 5, (n= 119 individuals) was characterized by
higher age at diagnosis (>14 years), and lower A1c
(<10%).

3.2. Diabetes Complications and Treatments in Clusters. After
identifying the five diabetes subgroups, we assessed whether
they were differentially associated with race/ethnicity, levels
of systolic and diastolic blood pressures, and prevalence of
microalbuminuria, acanthosis nigricans (AN), diabetic ketoa-
cidosis (DKA), chronic kidney disease (CKD), nonalcoholic
fatty liver disease (NAFLD), polycystic ovarian syndrome
(PCOS), hypertension, thyroid disease, retinopathy, and pre-
scription of insulin and metformin.

We observed different risks for complications in each
group based on our clustering model (Figure 2) and exam-
ined the associations between clusters with certain traits and
prevalence of complications in those clusters.

In support of the clustering, we further explored different
distribution of sex, treatment regimens, race/ethnicity, and
family history of diabetes among subgroups (Figure 3).

TABLE 2: Baseline characteristics of clustering-based subgroups.

Characteristic
Cluster 1:
higher A1c

Cluster 2: higher
non-HDL

Cluster 3: lower A1c,
lower age

Cluster 4: lower BMI,
higher A1c

Cluster 5: higher age,
lower A1c

p-Value

N (%) 102 (22.7%) 48 (10.7%) 131 (29.2%) 49 (10.9%) 119 (26.5%)
N female (%) 47 (58.8%) 23 (57.5%) 16 (41%) 32 (32.6%) 23 (23.2%)
Age at diagnosis,
years

13.4
(12.0–14.8)

13.8 (12.6–15.1) 12.1 (11.0–12.9) 14.3 (13.3–15.8) 15.9 (15.1–17.1) <0.001

BMI Z-score at
diagnosis

2.2 (2.1–2.5) 2.5 (2.2–2.6) 2.5 (2.3–2.6) 1.4 (1.2–1.6) 2.4 (2.2–2.6) <0.001

A1c at diagnosis, % 12.8
(11.7–13.6)

10.0 (7.4–11.4) 7.4 (6.8–8.6) 11.9 (10.5–13.5) 8.0 (7.0–9.5) <0.001

Non-HDL
cholesterol, mg/dL

124.1
(104.2–142.5)

197.5
(181.2–217.2)

131.0 (115.0–153.5) 136.0 (111.0–160.0) 125.0 (102.0–146.1) <0.001

Note: Numbers in all tables are median (first quartile–third quartile).

TABLE 1: Baseline demographic, clinical, and biochemical characteristics of children with T2D.

N (total number of participants with
available data)

Median (first quartile to third quartile) or
n (percent)

Age at diagnosis, years 722 13.7 (12–15.5)

Female, n (%) 722 451 (62.5%)

Race/ethnicity, n (%) 708

65 (9.2%) non-Hispanic White
413 (58.3%) Hispanic

208 (29.4%) non-Hispanic Black
21 (3%) Asian
1 (0.1%) Other

BMI (Z-score) at diagnosis 544 2.32 (2.0–2.6)

A1c at diagnosis, % 631 9.5 (7.2–11.8)

Non-HDL cholesterol, mg/dL 466 131 (109–158)

HDL cholesterol, mg/dL 466 37 (31–44)

C-peptide, ng/mL 470 3.0 (1.83–4.9)

Note: Numbers in all tables are median (first quartile–third quartile).

Pediatric Diabetes 3



Overall, we found that individuals in Cluster 1 (i.e., those
with higher A1c) had the highest risk of DKA (p<0:0001)
and were most likely to get prescribed metformin (96% pre-
scribed, p ¼ 0:06).

Conversely, individuals with higher non-HDL levels (100%
positive dyslipidemia in Cluster 2, p ¼ 0:04) were more prone
to PCOS (p ¼ 0:001).

One out of eight individuals in Cluster 3 (12.5%) did not
have any relative diagnosed with diabetes mellitus (p ¼ 0:01),
and they were not prone to DKA (p ¼ 0:001) and microalbu-
minuria (p ¼ 0:06). Furthermore, almost one in three indivi-
duals (30%) in Cluster 4, with lower BMI and higher A1c, did
not have AN documented in their chart within 3 months of
T2D diagnosis (p ¼ 0:0003) and they were least frequently
diagnosed with hypertension (p ¼ 0:03).

Furthermore, Cluster 2 mostly consist of males at birth
(p ¼ 0:01) compared to Cluster 3 with mostly female
(p<0:0001).

We observed that several other ethnic trends were statis-
tically significant and merit further analysis with larger data-
sets. For example, while we observed that the cluster with
higher A1c (Cluster 1) was the least common subgroup
assignment for Hispanics and the most common subgroup
assignment for African Americans (p ¼ 0:02). Cluster 5 with
lower A1c and higher age was the most common subgroup
for non-Hispanic Whites (p ¼ 0:01).

In our secondary analysis, we verified the stability of the
clustered subgroups and their features by excluding non-HDL
from the clustering variables and conducting the analysis on
540 individuals with the available data at the time of diagnosis
(A1c, age, BMI at diagnosis, and sex). Using K-prototypes
clustering, four clusters were detected with the same charac-
teristics as described above except for the higher non-HDL
cluster.

(1) Cluster 1 (n= 149 individuals) was characterized by
higher A1c with higher risk of DKA (p<0:0001). All
individuals in this cluster had A1c above 10%.

(2) Cluster 2, (n= 78 individuals) was characterized by
lower BMI with the lowest rate of AN (p ¼ 0:0006)
and hypertension (p ¼ 0:009). All individuals in this
clusters had BMI Z-score under Cluster 2.

(3) Cluster 3, (n= 160 individuals) was characterized by
higher age at diagnosis and lower A1c. All individuals
in this cluster were older than 14 years of age at
diagnosis and had A1c under 11%.

(4) Cluster 4, (n= 153 individuals) was characterized by
lower age at diagnosis, and lower A1c with least fre-
quent DKA diagnosis (p ¼ 0:001) and lowest history
of diabetes in family (0.0007). All individuals in this
cluster had A1c under 11% and were younger than
14 years old at diagnosis.
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FIGURE 1: The distribution of numerical variables in the clusters.
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4. Discussion

In this study, we discovered five distinct phenotypic clusters
of pediatric T2D using widely available variables at the time
of diabetes diagnosis. Furthermore, our findings show that
the prevalence of complications and treatment strategies can
differ even at the time of diabetes diagnosis based on a more
precise subclassification of pediatric T2D.

To our knowledge, this is the first study that defines
clusters in pediatric T2D. A recent study in adults identified

five unique diabetes subgroups qualitatively grouped by pres-
ence of autoimmune antibodies, insulin deficient, insulin
resistant, obesity related, and age-related diabetes [3]. They
found associations between the clusters and disease progres-
sion and some risks of diabetes complications. These results
have been replicated in many other adult populations with
diabetes and they all demonstrated improved assessment of
cardiovascular risks when subgrouping adults with T2D.
Consistent with those studies, we found that in pediatric
T2D, it is also possible to define distinct clusters with
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different characteristics. T2D is commonly recognized as a
heterogeneous disease with different disease-causing path-
ways and disorders of the insulin resistance syndrome [29],
suggesting that it requires unique treatment strategies. Thus,
subclassification may improve diabetes management.

In an effort to characterize unique subgroups of pediatric
T2D, we applied a data-driven approach to identify five dis-
tinct phenotypes based on six widely available characteristics
and then assessed whether the subgroups are differentially
associated with risk factors for diabetes complications, asso-
ciated conditions, and treatment strategies.

All individuals in some subgroups shared certain char-
acteristics. For example, Cluster 2 consisted of individuals
with non-HDL levels of 160mg/dL or higher (with median of
197.5mg/dL) and was labeled as the higher non-HDL group
relative to the other clusters (with median of 128mg/dL).
Conversely, some subgroups were differentiated based on
the most prominent characteristic shared by more than
95% of the individuals in that group. For instance, Cluster
4 primarily comprised individuals 14 years or older with A1c
levels less than 10% (labeled as the higher age, lower A1c
cluster), had only a few exceptions of 17-year-olds with the
A1c level of 10.9mg/dL. Same for Cluster 5, which consist of
95% individuals younger than 14 years of age with A1c levels
less than 10% and thus, was labeled as the lower age, lower
A1c cluster.

Assigning labels to the subgroups is a crucial step in
comparing disease progression, treatment, and development
of diabetic complications among clusters with certain traits.

In our analysis, youth in Cluster 1, with higher A1c and
lower non-HDL, had the highest rate of DKA. This is in line
with previous studies demonstrating that individuals with
T2D and high A1c levels face greater risk for DKA, and
thus, A1c could be a potential marker of DKA risk in
T2D [30–32].

Additionally, the individuals in Cluster 1 had the highest
rate of being prescribed metformin (p ¼ 0:06) which is reli-
able evidence as to the widespread use of metformin to
reduce A1c in T2D population [33] even among children.
Of note, metformin may have a role in the development of
lactic acidosis (LA) and hyperlactemia [34] in patients
admitted with DKA. These findings generate the question
of whether metformin, which continues to be widely pre-
scribed as a first-line therapy for the treatment of diabetes
[35], is the optimal treatment for youth in this cluster.

Cluster 2 was characterized by having higher non-HDL
levels. This cluster had the highest rate of PCOS diagnosis
which is supported by previous studies associating elevated
non-HDL with PCOS women [36].

Another important finding in our study was a significant
difference in the distribution of AN and hypertension diag-
nosis among clusters. The prevalence of AN was lowest
among individuals with lower BMI and higher A1c (Cluster 4),
suggesting that AN is closely associated with obesity as a
manifestation of cutaneous insulin resistance [37–39], while
it may also develop prior to the onset of obesity [40]. The
higher levels of A1c in this subgroup brings up the hypothesis
that AN might not be directly associated with A1c [41] and

BMI might be a more important factor in developing this
complication.

Moreover, the same cluster had the lowest rate of hyper-
tension, similar to the findings of previous cross-sectional
studies conducted on adults with T2D, reinforcing an asso-
ciation between hypertension and obesity in T2D [42, 43].

The prevalence of DKA and diagnosis of microalbumi-
nuria was lowest among younger individuals with low A1c,
which is the same subgroup with least frequent family history
of diabetes. This finding suggests the hypothesis that having
relatives with diabetes play an important role in the individ-
ual risks of developing some diabetes complications [44].

However, the association between genetic predisposi-
tions and the development of some diabetes-related disorders
is still largely unknown [45]. Thus, further investigations are
needed to illustrate the role of genetic susceptibility in diabe-
tes complications and to provide important insight into the
etiology of T2D.

Our study has several strengths. First, this is the applica-
tion of a clustering algorithm that also works with categorical
variables (sex, race, and ethnicity) to accommodate for those
characteristics in our subclassification. In addition, we used a
parsimonious number of clinical tests and biological infor-
mation needed to categorize individuals into diabetes sub-
groups at the time of diabetes diagnosis.

Limitations of this study include a retrospective design
and a relatively small sample size. Nevertheless, this is a
single-center cohort of youth with T2D cared for at the larg-
est pediatric hospital in the United States, in an area with
elevated prevalence of obesity and rich racial and ethnic
diversity. We used of a limited number of variables from
demographic, clinical, and laboratory characteristics in the
clustering model. However, this is the trade off of our goal to
use variables that are typically available in youth with recent
onset T2D in the clinical setting. Moreover, data for cluster-
ing characteristics, cardiovascular risk factors, and diabetes
complications may be subject to change, dependent on dia-
betes duration. However, the fact that different clustering
analysis led to similar results with the same subgroup char-
acteristics, suggests that the clusters are stable at a given time.
In addition, it is important to note that the variables used for
clustering in this study were carefully selected from a wide
range of available variables using feature importance analy-
sis. This suggests that our model and its results are highly
reliable. It is possible that future studies with larger sample
sizes and the inclusion of additional data, such as genetics,
could allow for many novel aspects, including finer classifi-
cation of diabetes subgroups and potential sex and racial/
ethnic differences among pediatric subgroups. Furthermore,
describing the changes in the characteristics of clusters as
diabetes duration increases will require longitudinal studies.
In last, although the clusters that we describe may suggest
new hypothesizes for distinct pathophysiological mechan-
isms, further studies are needed to understand etiology of
subgroups.

In conclusion, the treatment regimens and risk stratifica-
tions can differ even at the time of diabetes diagnosis based on
amore precise characterization of pediatric T2D. Intervention
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trials and novel treatment regimens tailored to subgroups
may improve cardiovascular outcomes in children with T2D.

Data Availability

The dataset used to support the findings of this study are
available from the lead PI, Maria Jose Redondo (redon-
do@bcm.edu) upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

Mahsan A. contributed in analyzing the data, methodology,
and writing original draft. M.R., M.T., and A.S. contributed
in designing the research study, conceptualization, review,
and editing. Marcela A., and A.R. contributed in data cura-
tion, review, and editing. All authors have read and approved
the final manuscript.

Acknowledgments

M.T. is supported by NIH-NIDDK (K23-DK129821).

Supplementary Materials

Figure S1: SHAP analysis showing the impact of the selected
variables on the model. Figure S2: feature importance analy-
sis showing the contribution of features on each cluster
assignment. (Supplementary Materials)

References

[1] Center for Disease Control and Prevention, December 2022,
https://www.cdc.gov/diabetes/basics/type2.html.

[2] American Diabetes Association, “Diagnosis and classification
of diabetes mellitus,”Diabetes Care, vol. 33, no. Supplement_1,
pp. S62–S69, 2010.

[3] E. Ahlqvist, P. Storm, A. Käräjämäki et al., “Novel subgroups
of adult-onset diabetes and their association with outcomes: a
data-driven cluster analysis of six variables,”The Lancet Diabetes
& Endocrinology, vol. 6, no. 5, pp. 361–369, 2018.

[4] O. P. Zaharia, K. Strassburger, A. Strom et al., “Risk of
diabetes-associated diseases in subgroups of patients with
recent-onset diabetes: a 5-year follow-up study,” The Lancet
Diabetes & Endocrinology, vol. 7, no. 9, pp. 684–694, 2019.

[5] E. Ahlqvist, R. B. Prasad, and L. Groop, “Subtypes of type 2
diabetes determined from clinical parameters,”Diabetes, vol. 69,
no. 10, pp. 2086–2093, 2020.

[6] M. Pigeyre, S. Hess, M. F. Gomez et al., “Validation of the
classification for type 2 diabetes into five subgroups: a report
from the ORIGIN trial,” Diabetologia, vol. 65, pp. 206–215,
2022.

[7] M. P. Bancks, R. Casanova, E. W. Gregg, and A. G. Bertoni,
“Epidemiology of diabetes phenotypes and prevalent cardiovas-
cular risk factors and diabetes complications in the National
Health andNutrition Examination Survey 2003–2014,”Diabetes
Research and Clinical Practice, vol. 158, Article ID 107915,
2019.

[8] M. S. Udler, J. Kim, M. von Grotthuss et al., “Type 2 diabetes
genetic loci informed by multi-trait associations point to
disease mechanisms and subtypes: a soft clustering analysis,”
PLOS Medicine, vol. 15, no. 9, Article ID e1002654, 2018.

[9] K. Færch, D. R. Witte, A. G. Tabák et al., “Trajectories of
cardiometabolic risk factors before diagnosis of three subtypes
of type 2 diabetes: a post-hoc analysis of the longitudinal
Whitehall II cohort study,” The Lancet Diabetes & Endocrinol-
ogy, vol. 1, no. 1, pp. 43–51, 2013.

[10] M. P. Bancks, M. Carnethon, H. Chen et al., “Diabetes
subgroups and risk for complications: the multi-ethnic study of
atherosclerosis (MESA),” Journal of Diabetes and its Complica-
tions, vol. 35, no. 6, Article ID 107915, 2021.

[11] E. J. Mayer-Davis, D. Dabelea, and J. M. Lawrence, “Incidence
trends of type 1 and type 2 diabetes among youths, 2002–2012,”
New England Journal of Medicine, vol. 377, Article ID 301,
2017.

[12] J. M. Lawrence, J. Divers, S. Isom et al., “Trends in prevalence
of type 1 and type 2 diabetes in children and adolescents in the
US, 2001–2017,” JAMA, vol. 326, no. 8, pp. 717–727, 2021.

[13] M. Astudillo, M. Tosur, B. Castillo et al., “Type 2 diabetes in
prepubertal children,” Pediatric Diabetes, vol. 22, no. 7, pp. 946–
950, 2021.

[14] J. B. Tryggestad and S. M. Willi, “Complications and
comorbidities of T2DM in adolescents: findings from the
TODAY clinical trial,” Journal of Diabetes and its Complica-
tions, vol. 29, no. 2, pp. 307–312, 2015.

[15] J. Hutchins, R. A. Barajas, D. Hale, E. Escaname, and J. Lynch,
“Type 2 diabetes in a 5-year-old and single center experience
of type 2 diabetes in youth under 10,” Pediatric Diabetes,
vol. 18, no. 7, pp. 674–677, 2017.

[16] G. J. Klingensmith, C. G. Connor, K. J. Ruedy et al., “Presenta-
tion of youth with type 2 diabetes in the Pediatric Diabetes
Consortium,” Pediatr Diabetes, vol. 17, no. 4, pp. 266–273,
2016.

[17] T. Hu, D. R. Jacobs Jr, A. R. Sinaiko et al., “Childhood BMI
and fasting glucose and insulin predict adult type 2 diabetes:
the International Childhood Cardiovascular Cohort (i3C)
Consortium,” Diabetes Care, vol. 43, no. 11, pp. 2821–2829,
2020.

[18] A. Leong, N. Daya, B. Porneala et al., “Prediction of type 2
diabetes by hemoglobin A1c in two community-based
cohorts,” Diabetes Care, vol. 41, no. 1, pp. 60–68, 2018.

[19] V. Calcaterra, D. Larizza, A. De Silvestri et al., “Gender-based
differences in the clustering of metabolic syndrome factors in
children and adolescents,” Journal of Pediatric Endocrinology
and Metabolism, vol. 33, no. 2, pp. 279–288, 2020.

[20] P. Kumar, S. Srivastava, P. S. Mishra, and E. T. Krishnan
Mooss, “Prevalence of pre-diabetes/type 2 diabetes among
adolescents (10–19 years) and its association with different
measures of overweight/obesity in India: a gendered perspec-
tive,” BMC Endocrine Disorders, vol. 21, Article ID 146, 2021.

[21] E. Selvin, M. W. Steffes, H. Zhu et al., “Glycated hemoglobin,
diabetes, and cardiovascular risk in nondiabetic adults,” The
New England journal of medicine, vol. 362, no. 9, pp. 800–811,
2010.

[22] A. L. Peters, “Clinical relevance of non-HDL cholesterol in
patients with diabetes,” Clinical Diabetes, vol. 26, no. 1, pp. 3–
7, 2008.

[23] “Third report of the national cholesterol education program
(ncep) expert panel on detection, evaluation, and treatment of
high blood cholesterol in adults (adult treatment panel III)

8 Pediatric Diabetes

https://downloads.hindawi.com/journals/pedi/2023/6955723.f1.docx
https://www.cdc.gov/diabetes/basics/type2.html
https://www.cdc.gov/diabetes/basics/type2.html
https://www.cdc.gov/diabetes/basics/type2.html
https://www.cdc.gov/diabetes/basics/type2.html


final report,” Circulation, vol. 106, no. 25, pp. 3143–3421,
2002.

[24] R. J. A. Little and D. B. Rubin, Statistical Analysis with
Missing Data, John Wiley & Sons Inc, Hoboken, NJ, USA,
2002.

[25] S. Van Buuren and K. Groothuis-Oudshoorn, “mice: multivari-
ate imputation by chained equations in R,” Journal of Statistical
Software, vol. 45, no. 3, pp. 1–67, 2011.

[26] F. Pedregosa, G. Varoquaux, A. Gramfort et al., “Scikit-learn:
machine learning in python,” Journal of Machine Learning
Research, vol. 12, pp. 2825–2830, 2011.

[27] Z. Huang, “Extensions to the k-means algorithm for clustering
large data sets with categorical values,” Data Mining and
Knowledge Discovery, vol. 2, pp. 283–304, 1998.

[28] F. Cao, J. Liang, and L. Bai, “A new initialization method for
categorical data clustering,” Expert Systems with Applications,
vol. 36, no. 7, pp. 10223–10228, 2009.

[29] J. Miller, J. H. Silverstein, and A. L. Rosenbloom, “Type 2
diabetes in the child and adolescent,” in Pediatric Endocrinol-
ogy, F. Lifshitz, Ed., pp. 169–188, Marcel Dekker, New York,
2007.

[30] R. S. Weinstock, D. Xing, D. M. Maahs et al., “Severe
hypoglycemia and diabetic ketoacidosis in adults with type 1
diabetes: results from the T1D Exchange clinic registry,” The
Journal of Clinical Endocrinology&Metabolism, vol. 98, no. 8,
pp. 3411–3419, 2013.

[31] S. Butalia, J. A. Johnson, W. A. Ghali, and D. M. Rabi,
“Clinical and socio-demographic factors associated with
diabetic ketoacidosis hospitalization in adults with Type 1
diabetes,” Diabetic Medicine, vol. 30, no. 5, pp. 567–573,
2013.

[32] J. Li, D. Yang, J. Yan et al., “Secondary diabetic ketoacidosis
and severe hypoglycaemia in patients with established type 1
diabetes mellitus in China: a multicentre registration study,”
Diabetes/Metabolism Research and Reviews, vol. 30, no. 6,
pp. 497–504, 2014.

[33] N. M. Maruthur, E. Tseng, S. Hutfless et al., “Diabetes
medications as monotherapy or metformin-based combina-
tion therapy for type 2 diabetes: a systematic review and meta-
analysis,” Annals of Internal Medicine, vol. 164, pp. 740–751,
2016.

[34] Y. Kularathne, S. Goh, and S. Pothiawala, “A rare case report
of combined metformin-associated lactic acidosis and diabetic
ketoacidosis,” The Egyptian Journal of Internal Medicine,
vol. 34, Article ID 73, 2022.

[35] N. A. ElSayed, G. Aleppo, V. R. Aroda et al., “9. Pharmaco-
logic approaches to glycemic treatment: standards of care in
diabetes—2023,” Diabetes Care, vol. 46, no. Supplement_1,
pp. S140–S157, 2023.

[36] R. A. Wild, M. Rizzo, S. Clifton, and E. Carmina, “Lipid levels
in polycystic ovary syndrome: systematic review and meta-
analysis,” Fertility and Sterility, vol. 95, no. 3, pp. 1073–1079.
E11, 2011.

[37] J. C. Lopez-Alvarenga, G. Chittoor, S. F. D. Paul et al.,
“Acanthosis nigricans as a composite marker of cardiometa-
bolic risk and its complex association with obesity and insulin
resistance in Mexican American children,” PLOS ONE,
vol. 15, no. 10, Article ID e0240467, 2020.

[38] T. Guran, S. Turan, T. Akcay, and A. Bereket, “Significance of
acanthosis nigricans in childhood obesity,” Journal of Paediatrics
and Child Health, vol. 44, no. 6, pp. 338–341, 2008.

[39] V. Hirschler, C. Aranda, A. Oneto, C. Gonzalez, and
M. Jadzinsky, “Is acanthosis nigricans a marker of insulin

resistance in obese children?” Diabetes Care, vol. 25, no. 12,
Article ID 2353, 2002.

[40] C.-H. Wang, W.-D. Lin, D.-T. Bau, I.-C. Chou, C.-H. Tsai, and
F.-J. Tsai, “Appearance of acanthosis nigricans may precede
obesity: an involvement of the insulin/IGF receptor signaling
pathway,” BioMedicine, vol. 3, no. 2, pp. 82–87, 2013.

[41] S. C. Barrett, F. G. Huffman, P. Johnson, A. Campa,
M. Magnus, and D. Ragoobirsingh, “Acanthosis nigricans:
relation to risk of Type 2 diabetes and cardiovascular diseases
among Jamaican adolescents,” Integrative Food, Nutrition and
Metabolism, vol. 3, 2016.

[42] G. M. D. Chaudhary, A. Tameez Ud Din, F. M. D. Chaudhary
et al., “Association of obesity indicators with hypertension
in type 2 diabetes mellitus patients,” Cureus, vol. 11, no. 7,
Article ID e5050, 2019.

[43] R. Anari, R. Amani, S. M. Latifi, M. Veissi, and H. Shahbazian,
“Association of obesity with hypertension and dyslipidemia in
type 2 diabetes mellitus subjects,” Diabetes & Metabolic
Syndrome: Clinical Research & Reviews, vol. 11, no. 1, pp. 37–
41, 2017.

[44] C.-H. Lin, F.-S. Lo, Y.-Y. Huang et al., “Evaluation of disease
complications among adults with type 1 diabetes and a family
history of type 2 diabetes in Taiwan,” JAMA Network Open,
vol. 4, no. 12, Article ID e2138775, 2021.

[45] The InterAct Consortium, “The link between family history
and risk of type 2 diabetes is not explained by anthropometric,
lifestyle or genetic risk factors: the EPIC-InterAct study,”
Diabetologia, vol. 56, pp. 60–69, 2013.

Pediatric Diabetes 9




