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This paper addresses gaps identified in pedagogical studies of how misunderstanding of De Broglie waves affects later coursework
and presents a heuristic for understanding the De Broglie frequency of composite. De Broglie’s little known derivation is reviewed
with a new illustration based on his description. Simple techniques for reference frame independent analysis of a moving double
slit electron interference experiment are not previously found in any literature and cement the concepts. Points of similarity and
difference between De Broglie and Schrödinger waves are explained.The necessity of momentum, energy, and wavelength changes
in the electrons in order for them to be vertically displaced in their own reference frame is shown to be required to make the
double slit analysis work. A relativistic kinematic analysis of De Broglie frequency is provided showing how the higher De Broglie
frequency ofmoving particles is consistent with Special Relativity and time dilation and that it demonstrates a natural systemwhich
obeys Einstein’s clock synchronization convention of simultaneity and no other. Students will be better prepared to identify practical
approaches to solving problems and to think about fundamental questions.

1. Introduction

At some point the undergraduate physics student and many
engineering or chemistry students as well will take a one
semester course in quantum mechanics (QM). When the
student encounters things like De Broglie wavelengths and
double slit experiments, no mention is made of how to
analyze the problem from any other reference frame, not even
with a simple Galilean transformation relationship. Yet any
student that actually looks at and thinks about 𝜆 = ℎ/𝜌 will
feel puzzled. How can a wavelength that varies in that way
with momentum and thus velocity be a real physical thing?
How could one analyze it from another reference frame?
The wavelength has an inverse dependence on velocity and
becomes infinite in the particle’s own reference frame.

Studies of the wave-particle knowledge of university
students completing a modern physics course suggest that
only the most insightful students will get as far as sug-
gested above, to become puzzled. Many bring incorrect ideas
from misunderstanding optics to bear on electrons, such as
thinking photons “bend at the slit edges” in diffraction, and
compound their misunderstanding by “failure to recognize

the De Broglie wave is not an inherent property of an electron
but varies with momentum,” thinking that “diffraction and
interference are independent of velocity,” and believing that
“equations that apply to the wavelength of light apply to De
Broglie wavelength” [1].

An experienced instructor doubtless will feel that, in an
already crowded syllabus, it is best to solve each problem
in the simplest reference frame. For the case of electron
interference or diffraction, this is the frame of the slit(s). But
the instructor is already clear on the concepts and with a
junior or senior class by now skilled in memorizing formulae
and passing exams, the misconceptions from earlier courses
may persist. This paper attempts to show that, in the case
of De Broglie wavelength, a short excursion into another
reference frame may be precisely the exercise that will allow
students to identify and correct misconceptions quickly and
effectively.

Actually De Broglie struggled with relativity while devel-
oping his theory [2]. But De Broglie started with fre-
quency and the idea of a nonpropagating wave that had
the same phase everywhere. The problem was that this was
incompatible with Special Relativity, and to fix the problem
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Figure 1: Double slit moving through electron cloud.

he applied the Lorentz transform and found that, in frames
other than the particle’s frame, a phase wave and associated
wavelength appear as a result. It is similar in some ways to the
idea that themagnetic field is due to the effects of relativity on
the electrostatic field, which has been known for more than
a century [3] and taught to undergraduates for nearly half a
century, popularized in Purcell’s 1963 textbook [4].

For a simple example of the puzzle of applying De Broglie
waves in certain reference frames, consider a double slit
experiment from the point of view of the electrons as shown
in Figure 1.The resulting patternwill be the same regardless of
who ismoving. But how can this be if thewavelength becomes
infinite?

In the whirlwind of new information and possibly per-
sistent misconceptions from prior courses, students may not
even verbalize the puzzle and if they do, instructors may
find themselves surprised and unsure how to answer. In this
way a vague sense of mystery is unnecessarily passed to the
next generation, and occasionally discussions about how to
apply the Lorentz transform to a De Broglie wavelength crop
up on physics discussion forums [5]. Such discussions never
mention that De Broglie derived the wavelength as an artifact
of the Lorentz transformation of a wave of simultaneity,
resulting in the desynchronization of clocks seen by relatively
moving observers, because this historical derivation is not
one of the minimal sets captured by and repeated in QM
textbooks,most of which seem to follow very similar outlines.
In fact there are no less than three recent papers claiming to
have “discovered” that De Broglie waves were such an artifact
of the Lorentz transform (LT) [6–8].

The correct thing to transform is of coursemomentum, or
the particle’s momentum vector, not the wavelength, which is
simply recomputed after transformation of the momentum
vector. Or one can use the wave 4-vector which is related
to momentum k = 𝜌/ℏ. This works fine until the velocities
become low, and finally in the rest frame of the particles
k = 𝜌 = 0 for which interference is impossible as
the wave is in-phase everywhere, and one is faced with
solving scattering problems to recover a situation where

there are finite wavelengths, problems which did not need
to be considered in other reference frames. (Note that De
Broglie wavelength which causes interference and diffraction
among like particles, or a particle itself, is distinct from
the Compton wavelength which is never zero and explains
photon scattering from particles.)

For the benefit of those whomay go on to study relativity,
it will be demonstrated that since the wavelength is depen-
dent on the LT, the interference pattern is dependent on the
underlying clock synchronization convention suggested by
Einstein and confirms it as a property of a natural system.

A modern student is additionally confronted with De
Broglie-style interference not only for electrons [9], but even
for multiparticle objects, such as C

60
[10]. This can bring

up questions such as how the individual particle frequencies
“add up,” or even whether the De Broglie wave is a particle
or amass concept [11]. The limited theoretical work on this is
analyzed and a simple heuristic developed which provides a
satisfactory answer to first order.

2. Origin of the De Broglie Wavelength

De Broglie recounts his thought process in his 1929 Nobel
Lecture [12]:

In the “intrinsic” system of the corpuscle in the
sense of the relativity theory. . . the wave will be
stationary since the corpuscle is immobile: its
phase will be the same at every point. (emphasis
added)

An illustration of how the De Broglie wavelength arises
from the Lorentz transformation is shown in Figures 2(a) and
2(b). A point of constant phase on the De Broglie wave is a
point of simultaneity in the reference frame of the particle.
This is shown by a row of synchronized clocks in Figure 2(a),
in which time 𝑡 is the vertical axis and one of the spatial
dimensions, 𝑥, is the horizontal axis.This wave is propagating
in time but not in space. It represents the simultaneous
probability wave of the particle in its rest frame. It may have a
spatial shape representing different probabilities in different
spatial regions, but the phase points of this shape will not
be moving. Dashed lines show points of constant phase and
therefore constant time.Three clocks also in the rest frame of
the particle emphasize the constant time of a particular phase.

In Figure 2(b), the particle and associated wave and
reference frame clocks are viewed by an observer traveling
to the left. The illustration is in the frame of the observer so
the clocks of the particle frame appear skewed with leading
clocks lagging as shown. This means that some particular
phase point has not yet arrived at the leading clocks (on the
right) but has already passed clocks on the left which are later
in time. We will derive the De Broglie wavelength from this
illustration in the next section.
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Figure 2: (a) De Broglie waves in rest frame of particle. (b) De Broglie waves seen from another inertial frame.

3. Derivation of De Broglie
Wavelength and Phase Velocity

De Broglie first postulated a vibration associated with parti-
cles and used the quantum mechanical formulation recently
discovered by Planck to assert [13]

𝐸 = ℎ𝑓 (alternately 𝑓 = 𝐸
ℎ

or 𝑓 =
𝛾𝑚𝑐
2

ℎ
) . (1)

𝐸 is the total relativistic particle energy, ℎ is Planck’s constant,
𝑓 is frequency, and 𝜆 is the Lorentz gamma factor (1 −
V2/𝑐2)−1/2. Some textbooks mention this in one sentence and
then proceed with a much longer discussion of wavelength,
without any derivation, as the more important focus for
understanding and solving problems [14].

To obtain the De Broglie wavelength, we calculate 𝜆 in
Figure 2(b) as the Lorentz clock skewmatching the oscillation
period 1/𝑓 as follows:

Use Lorentz coordinate time transformation: 𝑡 =
𝛾(𝑡 − V𝑥/𝑐2).
Solve for time skew equal to the period 1/𝑓 = 𝑡 − 𝑡.
Use 𝑡 = 0 without losing generality.
Find 𝑥 which gives 1/𝑓 = 𝑡 using time transforma-
tion⇒ 1/𝑓 = 𝛾(V𝑥/𝑐2) ⇒ 𝑥 = 𝑐2/𝑓V𝛾.

Using (1) we have 𝑥 = ℎ𝑐2/𝛾𝑚𝑐2𝛾V = ℎ/𝛾𝑚𝛾V.
Since 𝑥 is in the unprimed (particle) frame, use
coordinate transformation: 𝑥 = 𝛾(𝑥 − V𝑡).
For 𝑡 = 0, 𝑥 = 𝛾𝑥 = ℎ/𝛾𝑚V = ℎ/𝜌.

Since 𝑥 is the distance between adjacent points of
constant phase 𝑥 = 𝜆, we have

𝜆 =
ℎ

𝜌
. (2)

De Broglie then associated this wavelength with a super-
luminal wave with phase velocity propagating at Vph greater
than the velocity of light. The author would prefer not to use
the terminology “superluminal wave” since in the reference
frame of the particle the wave is not propagating at all. Points
of constant phase are only appearing to move due to Lorentz
clock skew, and we can easily calculate this apparent velocity
as the ratio of the 𝑥 distance we just derived (𝜆) to the period
1/𝑓 and find that

Vph = 𝜆𝑓 =
ℎ𝐸

ℎ𝜌
=
𝐸

𝜌
=
𝑐
2

V
. (3)

This superluminal velocity nonetheless bothered De
Broglie very much. Based on work done by Marcel Brillouin,
father of De Broglie’s girlfriend, he solved this problem
by creating a wave packet in which the group velocity Vgr
corresponds to the particle velocity V, and substituting Vgr for
V in (3) immediately gives the relation:

VgrVph = 𝑐
2
. (4)

IntroductoryQM textbooks for one semester coursesmay
immediately proceed to derive a plane wave example for
which Vph = Vgr/2 and that may be the last quantitative
mention of phase velocity. Probably this is because authors
feel it is more important to move students quickly into the
Schrödinger equation. This is not the group-phase velocity
relation for a true De Broglie wave. It is the correct phase
velocity for a solution to the Schrödinger equation. It may
be mentioned later in a text that phase velocity is an
artifact of the choice of energy zero point and not otherwise
meaningful, but in the meantime confusion may reign.

Most presentations imply that De Broglie waves will be
the basis for what is to come, but it appears more correct to
say they were the inspiration. And problems like the double
slit can be worked only in one reference frame if this is all the
information given. The offending wavelength which cannot
be transformed as an ordinary length, even in nonrelativistic
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Galilean transformations, is associated with the superluminal
phase velocity. Upon seeing De Broglie’s derivation of this
length from the Lorentz transform, it is obvious that it is not a
physical length but a “phase length,” an artifact of the Lorentz
transform itself, and not something to be transformed but to
be rederived in the new frame.

Traditionally, that is, for light, sound, or water waves,
we think of differences in the path lengths as causing
interference. In that case, if one is analyzing the frame of
the particles themselves, the De Broglie wavelength is infinite
and at first glance there would be no interference. How does
the interference pattern remain the same for all observers, as
it must, when each differently moving observer perceives a
different wavelength? What we will see is that the electrons
do not remain nonmoving in their own initially comoving
reference frame.

4. De Broglie’s Visualization

De Broglie’s concept is still the simplest for describing free
particles and is adequate for calculating interference patterns.
His derivation is not widely read for two reasons. It is only
the first few pages of a 73-page paper, most of which was
an ad hoc attempt to apply the concept to various systems
of bound particles. The following year it was superseded
by the more successful Schrödinger equation, an elegant
formulation suited to the bound mechanics of atoms and
molecules [15]. Second, it was nearly 80 years before an
English translation ofDe Broglie’s paper appeared (Ibid. [13]).

The complex number aspect of Schrödinger’s equation,
its probability interpretation, and artificial zero energy point
which ignores rest mass together obscure that the wave-
lengths are relativistic artifacts. One of the first things
students learn about Schrödinger’s equation is in fact that
it is not applicable to relativistic motion. But even the
smallest motion of a particle produces a wavelength through
relativistic effects. De Broglie gave his own visualization,
without a figure, described in words:

Our theorem teaches us, moreover, that this wave
represents a special distribution of phase, that is
to say, it is a “phase wave.” To make the last point
more precise, consider a mechanical comparison,
perhaps a bit crude, but that speaks to one’s
imagination. Consider a large, horizontal circular
disk, from which identical weights are suspended
on springs. Let the number of such systems per
unit area, i.e., their density, diminish rapidly as
one moves out from the centre of the disk, so that
there is a high concentration at the centre. All the
weights on springs have the same period; let us
set them in motion with identical amplitudes and
phases. The surface passing through the centre of
gravity of the weights would be a plane oscillating
up and down. This ensemble of systems is a crude
analogue to a parcel of energy as we imagine it to
be (Ibid. [13]).

Figure 3 provides this paper’s interpretation of De
Broglie’s “mechanical comparison,” simplified still further.

Stationary

(a)

Movingv

Phase velocity

(b)

Figure 3: Stationary (a) and moving (b) De Broglie mechanical
analogies.
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Figure 4: Moving double slit general setup.

In Figure 3(a), the rest frame of a particle (the large disc)
is shown, and the imaginary suspended weights go up and
down in phase. Each weight is shown as a clock, and, at the
time-snapshot of the illustration, all clocks read the same,
indicating that all points of the wave are in phase.

Figure 3(b) shows how this mechanical analogy would
appear to a relatively moving inertial observer, represented
by the rocket ship. In the rocket’s frame, the clocks are
not synchronized. Leading clocks lag, and all points do not
appear to be in phase, though of course they still are in the
particle’s frame. See http://mc1soft.com/papers/deBroglie/ for
an animated version illustrating the phase velocity (dotted
wave) moving much faster than the particle.

5. Setting up the Moving Double Slit Problem

Consider a moving double slit approaching an electron wave
packet, illustrated in Figure 4.

Velocities and distances labeled “1” at the right are in the
frame of the slits and detector apparatus. In the frame of the
observer, the slits are moving with velocity V to the left. The
solid lines show the position of the slit apparatus when an
electron wave packet passes the slits, and the dashed lines
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show the position of the slit apparatus when that particular
packet is detected. The travel path after electrons pass the slit
is shortened in this reference frame, as the detection screen
moves tomeet them, and the velocity of the electrons is lower.
The length of the path to the point of detection is labeled
𝐿
1
for the slits frame and 𝐿

2
for the observer frame. Other

lengths, angles, and velocities are labeled similarly.
Notice that electron velocity is never zero if the electrons

are deflected and must move vertically. Even in a frame ini-
tially comoving with the electrons only those detected at the
center (not deflected) can be said to have had approximately
zero velocity, and otherswill appear in that frame to have been
scattered backward. The pair of faintly dotted semicircles 𝜒
show the scattering pattern for electron velocity V

𝑒
= 0.

It is interesting that we find the notion of scattering of
“particle” trajectories a necessary adjunct to understanding
the “wave” property of interference, confirming again “wave-
particle duality” and suggesting that student intuition about
particles being “bent” as they pass slits and edges is at least
half right. There are interference experiments in which only
one electron at a time passes through a slit or slits, and yet the
interference pattern is due to a sum over possible paths.

In the frame of the slits, where the slit velocity is zero,
the electron velocities will be unchanged by scattering due
to conservation of momentum. This velocity is shown as V

𝑒1

and determines the time 𝑡 between passage of the slits and
detection as the electron travels along length 𝐿

1
; therefore,

V
𝑒1
=
𝐿
1

𝑡
. (5)

6. Demonstrating Equivalence of All Frames

It is known that phase differences are a relativistic invariant
quantity, though from time to time there is discussion of
it [16]. What we will do here, for pedagogical purposes,
is prove that, for the case of the moving double slit, the
phase difference and thus the interference pattern are the
same as for a stationary slit and moving electrons. First,
we will consider a nonrelativistic Galilean reference frame
transformation (later to be extended), which is usual in the
case of a moving apparatus in an interference experiment
[17], so that the time interval 𝑡 is the same in all frames. The
subscript “𝑥” can be either “1” or “2”:

V
𝑒𝑥
=
𝐿
𝑥

𝑡
. (6)

We will proceed by showing that any off-center point of
maximum intensity (in phasewave arrival) at a height𝐻 from
center will remain the same in all frames. For convenience we
assume that the slit spacing 𝑠 is small compared to 𝐿 or𝐻 so
that the angles 𝜙 can be treated as right angles and all other
angles as either 𝜃 or 𝜋/2 − 𝜃. The path from the lower slit to
an upper intensity maximum will be an integral multiple of
wavelengths longer, shown by Δ𝐿. We do not care what the
value is, only that the number of wavelengths in this interval
remains the same.

Notice that for either 𝐿 we have

𝐿
𝑥
=
𝐻

sin (𝜃
𝑥
)
. (7)

We can then write the De Broglie wavelength for both
cases:

𝜆
𝑥
=
ℎ

𝑚
𝑒
V
𝑒𝑥

= (
ℎ

𝑚
𝑒

)(
𝑡

𝐿
𝑥

) = (
ℎ

𝑚
𝑒

)(
𝑡 sin (𝜃

𝑥
)

𝐻
) . (8)

Now we find the Δ𝐿 for both cases:

Δ𝐿
𝑥
= 𝑠 sin (𝜃

𝑥
) . (9)

Finally, we investigate whether the ratio of change of Δ𝐿
is the same as the change in wavelength:

Δ𝐿
2

Δ𝐿
1

=
𝑠 sin (𝜃

2
)

𝑠 sin (𝜃
1
)
=
sin (𝜃
2
)

sin (𝜃
1
)
,

𝜆
2

𝜆
1

=
(ℎ/𝑚
𝑒
) (𝑡 sin (𝜃

2
) /𝐻)

(ℎ/𝑚
𝑒
) (𝑡 sin (𝜃

1
) /𝐻)
=
sin (𝜃
2
)

sin (𝜃
1
)
.

(10)

Since (10) are the same, the exact same number of
wavelengths will fit in Δ𝐿 in both cases, and we have shown
that, as we knew it must, the interference pattern is the same
in all frames of reference. The proof was almost trivial. The
difficulty was in properly understanding how to set up the
problem.

7. The Relativistic Case

To simplify the case of relativistic motion, a comparison
will be made only between the frame of the electrons and
the frame of the slits, to show that these two give the same
interference pattern for highly relativistic particles. At first,
we assume𝐻 ≪ 𝑑

1
so that lateral dispersive velocities remain

nonrelativistic in both frames, which is a constraint that we
will remove later.

In the frame of the slits, for particles moving close to
the speed of light, the time of transit may shift very little.
In that case the primary factor in a shift in the interference
pattern as the particle energy increases is that the relativistic
mass increases by the Lorentz factor 𝛾 and the wavelength
decreases by that factor, constricting the entire interference
pattern by 𝛾 in the transverse direction.

In the frame of the electrons, they are not moving
relativistically but the slit apparatus is, and the distance from
the slits to the screen is length-contracted by the factor
𝛾, thus reducing the travel time by that amount. To reach
any given point on the screen at lateral displacement 𝐻, an
electron would have had to travel laterally faster by the factor
𝛾 and thus would have a lateral wavelength reduced by 𝛾.
Since this is exactly the same degree of wavelength reduction
found in the frame of the slits (though not the same absolute
wavelength), we conclude the interference pattern must be
laterally constricted by the same amount 𝛾.

Note that just as the Lorentz transform may be per-
formed orthogonally in spatial direction, also the De Broglie
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wavelength can be computed independently in orthogonal
directions.

Now we will remove the restriction on lateral velocity so
it can be considered relativistic and introduce 𝛾

𝐿
, the Lorentz

factor in the lateral direction. In the original reference frame
of the particles, before scattering off of the slits, the lateral
wavelengths and thus the interference pattern are contracted
by 𝛾
𝐿
due to mass increase. But in the reference frame of the

slits, the lateral velocity is the same and there too the same
lateral factor 𝛾

𝐿
applies with the same result.

Though in each case the mass of an electron appears
different before scattering, we already established conformity
of the interference pattern and only the relative change due
to relativistic lateral motion needs be established to complete
the argument.

8. Transforming the De Broglie Frequency

TheInternet is full of speculation about some sort of “conflict”
between De Broglie’s concepts and Special Relativity. Most
of this has to do with trying to transform the wavelength,
which we have thoroughly examined. But there is also the
matter of the De Broglie frequency, which being dependent
on energy increases with relative velocity, rather than dilating
(decreasing) as we normally think of time doing in a relatively
moving reference frame.

The clocks in Figure 2(b), numbered for convenient ref-
erence, can be used to easily dismiss this concern also. Notice
that the observer is using only one clock. An Einstein mea-
surement of time in another reference framemust use at least
two clocks of its own to examine a single clock in the target
reference frame. This is because the changes in simultaneity
with relative motion make remote measurements unreliable.
If an observer’s clocks are synchronized as Einstein specified,
then as each of two of them passes a target clock, they can
make a local measurement without simultaneity issues. For
example, in the frame of the particle in Figure 2(b), clocks
2 and 3 can be compared with the observer’s clock 0 as it
passes, and a ratio of their delta time to the delta time from
the observer’s clock will show it to be running slow.

We have shown that a De Broglie wave is a wave of
simultaneity in its rest frame, and so a constant phase point
on that wave represents a synchronized clock time. The wave
can be taken as an array of clocks. Counting the oscillations
of a De Broglie wave is like the observer looking out of the
window of a spaceship and reading the time from clocks in
the particle frame as he passes them. This is not an Einstein
2-clocks-on-1 measurement. It is just the reverse, a 1-clock-
on-2 measurement. In fact, the spaceship observer’s locally
determined readings as he passes clocks 2 and 3 must be
exactly the same numbers that the observer in the frame of
the particle recorded for the exact same local events. But the
spaceship observer will form the inverse of the ratio and will
see time advancing more rapidly rather than dilating.

This should be stated in another way for clarity. Notice
that clock 3 reads an earlier time than clock 2 in the simul-
taneity of the observer’s reference frame. So as the observer
travels from clock 3 to clock 2, the reading reflects not only
the elapsed time, but also the fixed time displacement (in the

B

A

B4

A1

B3 B2 B1

A2 A3 A4 A5

B’s view of the universe. . .

Figure 5: Twins paradox illustrated from traveler’s viewpoint with
full clock grids.

observer’s frame) between these two clocks. It is like crossing
time zones in a passenger jet flying east.

The 2-on-1 and 1-on-2 measurement principles can be
used to explain the so-called Twins paradox [18]. Figure 5
shows the universe fromB’s (the traveler’s) point of view. Twin
A stays behind on earth. A’s clock grid is skewed for B, with
clocks on the left reading earlier times. If B uses two clocks,
say B3 and B4, to measure the speed of clock A1 as they pass,
then B concludes that A’s time is slower. But if B uses only the
B1 clock and compares with A1, A2, and so forth as they are
passed, the progression of less-lagging clocks makes it appear
that time runs faster in A’s frame.The A clocks, synchronized
in A’s frame, give the valid current time in A’s frame. If B plans
to finally end up in A’s frame, then to read time from the
nearest A clock indeed gives the time B will experience if B
stops and reenters the A frame at that point. This in no way
limits the possible variations of simultaneity inherent in the
problem. If B stops far away and A moves to catch up with B,
then the final answer shifts.

The synchronized clocks in the A frame all tick at once, in
the A frame. Looking at them is like looking at the De Broglie
wave of a particle in the A frame, which pulses everywhere in
unison in that frame. If the observer in Figure 2(b) uses two
clocks and measures the De Broglie phase at a constant point
in the particle’s reference frame (like B using multiple clocks
tomeasure the clock at A1), rather than a constant point in the
observer frame, then the expected time dilationwill be found.
This is possible, but unusual, in the case of De Broglie waves.
An interference pattern measures the simultaneous phase of
the wave over a range of spatial points, akin to looking at all
the A clocks with their accumulated skew.

De Broglie frequencies are quite high to literally count
and the particle does not have a clock dial saying how many
have elapsed, so it is difficult to measure a particle as it
passes two lab clocks in the traditional way. One possible
solution is to use a beam of coherent particles all vibrating
in sync. For example, in the frame of the particle, a beam
of two slightly different particle energies could be used and
mixed to form a beat frequency that would function as the
ticking of a clock. If this is done across a broad area, say
a projection screen parallel to the relative motion, it would
have the same simultaneous and nonpropagating property
as the De Broglie wave of the original particle(s). It has just
been made visible at a more convenient frequency by the
beat frequency technique. The spaceship observer will find
that if he simply looks at the nearest part of the screen, the
frequency will appear higher, but if he uses multiple clocks to
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time a single point on the screen, Lorentz time dilation will
be confirmed.

9. Composite Mass

One of the most puzzling aspects of De Broglie frequency is
that though it was developed as a theory of matter waves for
particles whichmight be thought of as a single energy packet,
it is apparently a property of mass as it applies quite well
to atoms and even large molecules (Ibid. [10]). Wignall has
even proposed the use of De Broglie frequency as a standard
of mass which requires no special mass units and suggests
that quantum mechanics provides the means to demonstrate
that the frequency of a bound group of particles will be
proportional to the total mass (particle mass less binding
energy) but is unable to cite a reference where this is actually
shown [19]. So it appears that this remains an unsolved
problem. In a much earlier work, Wignall hypothesizes that
there may be nonlinear components of interaction of bound
particles in which an additive frequency term appears and
gives the analogy of amplitude radio modulation sideband
frequencies [20]. For pedagogical purposes such a speculative
approach is not very satisfying.

There is an obvious heuristic, however, which provides
the needed frequency sum to a good approximation. We
need only assume that, like Schrödinger waves, De Broglie
waves are related to the probability of finding a particle.
Let 𝑝(A) be the probability of finding A and 𝑝(B) the
probability of finding B, and assume that these meanings
continue to hold if A and B are bound together. One of
the interesting aspects of De Broglie’s paper (actually his
thesis, which was printed in a journal) is a section treating
bound particles where both are considered to be moving
(Ibid. [12]). By contrast, when using Schrödinger’s analysis,
stationary confinement boundaries and potentials are used
(which would be associated with particles, e.g., a stationary
nucleus, that have infinite De Broglie wavelength). Since
we are only able to find the bound pair AB if we find
both A and B, then the probability of finding AB must
be 𝑝(AB) = 𝑝(A)𝑝(B). If “𝑝” is a sinusoidal function,
then indeed the product of two such functions reduces by
a common trig identity to a term involving the sum of the
frequencies of 𝑝(A) and 𝑝(B) and a term involving their
difference.

The sum frequency corresponds perfectly to the fre-
quency of the sum of the masses of A and B. The only
problem is what to dowith the difference frequency.Wignall’s
methodwas speculative, andwe cannot use it anyway because
he was not using probability, but complex valued functions.
However, as an approximation we can observe two things.
First, in the case of common nuclear particles, whether
we treat them as hadrons (protons, neutrons), or quarks,
the masses are approximately the same and the difference
frequencies are therefore approximately zero. Second, in the
case of the binding of electrons to a nucleus, the electronmass
is to a good approximation negligible.

It would be good to also have a more thorough analysis
of this effect from the standpoint of theoretical physics, and
perhaps this discussion will provoke it.

10. Demonstration of the Natural
Convention of Simultaneity

In Special Relativity, Einstein describes a convention for
synchronizing remote clocks based on time-tagged commu-
nications at the speed of light and the setting of clocks based
on one half the round trip travel time. In the second half of the
20th century a line of thought arose that this was not the only
possible convention, and of course that is true. Reichenbach
proposed a notation 𝑡

2
= 𝑡
1
+ 𝜀(𝑡
3
− 𝑡
1
), where the numbered

𝑡’s are recorded times of signal transmit from A, receive and
retransmit at B, and receive back at A again, and 0 < 𝜀 < 1
[21]. The Einstein convention is 𝜀 = 1/2. Several investigators
have pointed out that such things as the time difference in the
aging of twins in a complete two-way voyage do not depend
on the convention of simultaneity, and for those purposes it is
“just a convention” [22]. The one-way description of relative
clock rates is of course dependent on it.

Short of measuring the one-way speed of light, which
is very problematic, there is a phenomenon which can be
measured to demonstrate what convention is used, at least
in one case, by nature. The De Broglie wavelength, as seen
in Figures 2(b) and 3(b), is directly associated with clock-like
oscillations that define the phase of the wave, and the length
of the wave is a direct result of the Lorentz transform, which
implements the Einstein convention. For another convention,
De Broglie wavelengths would be different, and maxima and
minima in interference patterns would fall at different places.
This is about as likely as that they would fall at different places
because the double slit is moving instead of the electrons, in
other words, not likely at all. So for De Broglie waves, and we
suspect therefore for quantum systems generally, the Einstein
convention is natural. Not only is it natural, but also it is auto-
matic. Swann pointed out in 1960 that whereas macroscopic
clocks had to be manually resynchronized after acceleration,
quantum systems automatically come into synchronization as
Einstein reference frames [23].

11. Conclusion

Retracing De Broglie’s derivation of the phase velocity and
associated wave, with visualizations, gives important insight
into the meaning of De Broglie waves that will help students
analyze and set up problems and avoid traps like trying to do
Lorentz transforms of the De Broglie wavelength. Certainly
we would expect to see fewer papers claiming to have
rediscovered the relation between De Broglie waves and the
Lorentz transformor deriving the Lorentz transform fromDe
Broglie waves (circular). There is an opportunity, if desired,
to demystify the variation of the De Broglie frequency which
increases rather than dilates with motion.The particle always
vibrates at the same rate in its own frame like any other clock.

Continuing on to analyze themoving double slit does two
useful things. It provides continuity with Special Relativity,
avoiding the impression that there is anything special about
the frame of the measurement apparatus. And it guides the
students as to how to set up a variety of related interference
problems.
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More advanced students may be interested in the heuris-
tic approach to understanding how the frequency of a sum of
masses is the sum of frequencies, and perhaps one of them
will eventually produce Wignall’s hoped-for satisfactorily
complete theoretical analysis. For those going on to specialize
in relativity, understanding that De Broglie waves particularly
and quantum systems generally follow the laws of relativity
automatically, whereas macroscopic clocks might require
adjustment after acceleration, may provide a basis for future
insight into the nature of space-time.

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

References

[1] B. S. Ambrose, P. S. Shaffer, R. N. Steinberg, and L. C. McDer-
mott, “An investigation of student understanding of single-slit
diffraction and double-slit interference,” American Journal of
Physics, vol. 67, no. 2, pp. 146–155, 1999.

[2] R. Martins, “Louis de Broglie’s Struggle with the Wave-Particle
Dualism, 1923–1925,” in HQ-1 Conference, Quantum History
Project, Jointly: Fritz Haber Institute, Max Planck Society, Max
Planck Institute for the History of Science, 2007.

[3] H. Vries, “The simplest, and the full derivation of Magnetism
as a Relativistic side effect of ElectroStatics,” in Understand-
ing Relativistic Quantum Field Theory, Physics Quest, 2008,
http://www.chip-architect.com/physics/.

[4] E. M. Purcell, Electricity and Magnetism, vol. 2 of Berkeley
Physics Course, McGraw Hill, 2nd edition, 1984.

[5] T. Mattson, “Lorentz transformation of the de broglie relation,”
Physics Forums, Article ID 76060, 2005.

[6] W. E. Baylls, “De Broglie waves as an effect of clock desynchro-
nization,” Canadian Journal of Physics, vol. 85, no. 12, pp. 1317–
1323, 2007.

[7] R. Dogra, “A new proposal combining quantummechanics and
the special theory of relativity,” Apeiron, vol. 9, no. 2, 2002.

[8] H. Ylmaz, “Lorentz transformations and wave-particle unity,”
Physics Essays, vol. 23, no. 2, pp. 334–336, 2010.

[9] C. Davisson and L. H. Germer, “Diffraction of electrons by a
crystal of nickel,” Physical Review, vol. 30, no. 6, pp. 705–741,
1927.

[10] O. Nairz, M. Arndt, and A. Zeilinger, “Quantum interference
experiments with large molecules,”American Journal of Physics,
vol. 71, no. 4, pp. 319–325, 2003.

[11] C. Bruce, “Is de Broglie matter wave a mass or a particle
hypothesis?” Physics Stack Exchange, 213677, March 2015,
http://physics.stackexchange.com/questions/173696/is-de-bro-
glie-matter-wave-a-mass-or-a-particle-hypothesis.

[12] L. De Broglie, “The wave nature of the electron,” Nobel Lecture,
1929.

[13] L. De Broglie, “Recherches sur la théorie des quanta,” Annales
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