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Motivation. Membrane proteins play essential roles in cellular processes of organisms. Photosynthesis, transport of ions and small
molecules, signal transduction, and light harvesting are examples of processes which are realised by membrane proteins and
contribute to a cell’s specificity and functionality. The analysis of membrane proteins has shown to be an important part in the
understanding of complex biological processes. Genome-wide investigations of membrane proteins have revealed a large number
of short, distinct sequence motifs. Results. The in silico analysis of 32 membrane protein families with domains of unknown
functions discussed in this study led to a novel approach which describes the separation of motifs by residue-specific distributions.
Based on these distributions, the topology structure of the majority of motifs in hypothesised membrane proteins with unknown
topology can be predicted. Conclusion. We hypothesise that short sequence motifs can be separated into structure-forming motifs
on the one hand, as such motifs show high prediction accuracy in all investigated protein families. This points to their general
importance in 𝛼-helical membrane protein structure formation and interaction mediation. On the other hand, motifs which show
high prediction accuracies only in certain families can be classified as functionally important and relevant for family-specific
functional characteristics.

1. Introduction

Membrane proteins are essential for many fundamental bio-
logical processes within organisms. Active nutrient transport,
signal and energy transduction, and ion flow are only a few
of the numerous functions enabled by membrane proteins
[1]. Membrane proteins obtain their specific functionality
by individual folding and interactions with the hydropho-
bic membrane environment as well as, in many cases, by
oligomeric complex formation and protein-protein interac-
tions [1, 2]. The identification of such complexes and interac-
tions is valuable, since, on the one hand, detailed information
of the function of an unknown membrane protein can be
obtained by analysing its interactions with proteins of known
function. On the other hand, biological processes can be
comprehended as a dynamically fluctuating system, whereby
the biological role of the unknown membrane protein can
be defined more precisely [3, 4]. Accordingly, destabilisation

of the three-dimensional structure of a membrane protein
caused by mutations or ligand interactions are triggers for
numerous diseases, for example, diabetes insipidus, cystic
fibrosis, hereditary deafness and retinitis pigmentosa [5–7].

Although 20%–30%of all open reading frames of a typical
genome are encoding membrane proteins [5, 8, 9] and 60%
of all drug targets are membrane proteins [2], membrane
proteomics is still an experimentally challenging field due
to poor protein solubility, wide intracellular concentration
range, and thus, inaccessibility to many proteomics method-
ologies [10]. Hence, the number of known three-dimensional
structures is relatively small, with 394 nonredundant mem-
brane protein chains currently available [11–13]. Therefore,
there is a necessity for approaches that allow to predict
structural and functional features of unknown membrane
proteins. A variety of methods have been developed to
predict structural features from sequence, such as 𝛼-helical
membrane-spanning helices and extra/intracellular domains
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(i.e., TMHMM [14], PHDhtm [15], MEMSAT3 [16]) as well
as membrane-spanning beta-strands of transmembrane 𝛽-
barrel proteins (i.e., BOCTOPUS [17]). Furthermore, in
genome-wide membrane protein sequence analyses, numer-
ous short conserved sequence motifs were identified [18].
As an example, the most widely discussed GxxxG motif has
been shown to be significantly present in transmembrane 𝛼-
helices. With both glycines resting on one side of the helix as
spatially neighbouring residues and by that forming a smooth
helix membrane surface, structural studies confirmed that
the GxxxG motif plays an important part in mediating
helix-helix interactions [18–22]. In general, short conserved
membrane protein motifs are considered to be significantly
relevant formembrane protein folding and structural stability
as well as being involved in defining a protein’s function.
Hence, sequence motif analyses and resulting insights can
support the understanding of protein dynamics. Information
can be derived which may contribute to study the dynamics
of mutant proteins and the effects of mutagens [23–25].
Additionally, as addressed in [26], the analysis of sequence
motifs in proteins with similar function or structure might
help to identify essential functional sites and locations which
contribute to structural stability.

In this work, we focused on previous studies and results
that have been reported by Liu and colleagues [18]. In the
process, various integral membrane protein families with
polytopic membrane domains had been obtained from Pfam
database [27]. As part of their studies, locations of the least
conserved residues (glycine, proline, and tyrosine) in 𝛼-
helical transmembrane regions had been investigated. As
a result, short motifs consisting of pairs of small residues
(glycine, alanine, and serine) surrounding single or multiple
variable positions had been identified in conserved sequences
and Pfam-classified families. Based on these results, we have
developed a prediction approach to allocate the topological
state of a sequence motif in the protein structure based
on sequence information. We have used cross-validation to
verify the prediction accuracy. However, prediction accuracy
has been found to be variable for certain motifs with regard
to the investigated protein families. According to this, we
hypothesise that short sequence motifs can be separated
into structure-forming motifs on the one hand, as such
motifs show high prediction accuracy in all investigated
protein families. This points to their general importance
in 𝛼-helical membrane protein structure formation and
interactionmediation. On the other hand,motifs which show
high prediction accuracies only in certain families can be
classified as functionally important and relevant for family-
specific functional characteristics.

2. Materials and Methods

2.1. Used Membrane Protein Families. As the first step of
our analysis, 32 membrane protein families with domains
of unknown functions (DUF) were obtained from the Pfam
database [27] using extended keyword searching. All 7051
sequences were retrieved for statistical analysis. The full list
of employed membrane protein families is given in Table 1.

Table 1: Thirty-two membrane protein families were derived from
Pfam database [28] and employed for statistical analysis.

Accession Family
PF09767 DUF2053
PF09834 DUF2061
PF09842 DUF2069
PF09843 DUF2070
PF09852 DUF2079
PF09858 DUF2085
PF09874 DUF2101
PF09877 DUF2104
PF09878 DUF2105
PF09879 DUF2106
PF09880 DUF2107
PF09881 DUF2108
PF09882 DUF2109
PF09900 DUF2127
PF09913 DUF2142
PF09925 DUF2157
PF09945 DUF2177
PF09946 DUF2178
PF09971 DUF2206
PF09972 DUF2207
PF09973 DUF2208
PF09980 DUF2214
PF09990 DUF2231
PF09991 DUF2232
PF09997 DUF2238
PF10002 DUF2243
PF10011 DUF2254
PF10067 DUF2306
PF10080 DUF2318
PF10081 DUF2319
PF10097 DUF2335
PF10101 DUF2339

Subsequently, 50 sequence motifs, identified by Liu and
colleagues [18], were localised in the obtained set of families.

2.2. Programs and Tools. To avoid generating misguiding
statistics by including identical or highly similar sequences,
a set of nonredundant sequences was generated. Here, we
defined the sequence redundancy threshold at 25% sequence
identity. In the first step of sequence processing, CD-HIT [29]
was applied for first clustering. However, CD-HIT accepts
only nonredundancy thresholds of >40%. This limitation is
caused by the internal word-length filtering approach and
statistical presets. Hence, to ensure clustering sensitivity, a
60% nonredundancy threshold, which corresponds to tetra-
peptide word filtering used by the program, was applied. In
the second step, sequence clustering using the 25% redun-
dancy threshold was obtained by means of utilising BLAST-
Clust [30]. The representative sequences of all clusters were
extracted, leading to a set of 2511 nonredundant sequences.
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Subsequently, the determination of membrane and non-
membrane associated sequence regions was derived using
by the TMHMM Server v. 2.0 [14]. Basically, TMHMM
performs a prediction of intra/extracellular regions and
integral membrane helices based on sequence. Additionally,
the probability of the prediction is given for each residue
as well. According to the obtained results from TMHMM,
a topological state was assigned to each residue. A residue
was assigned as “TM” if the posterior prediction probability
of this residue being a part of a membrane helix has been
found to be greater than 90%. If the posterior prediction
probability of the residue has been found to be greater 90%
for extra/intracellular prediction, the residue was assigned as
“nTM.”

2.3. Used Motifs. The short sequence motifs analysed in our
work have been reported in [18]. In this study, Liu et al. anal-
ysed consensus sequences of 168 Pfam-A families to identify
significant amino acid pairmotifs. By the comparison of their
results in earlier published findings (see [20]), a list of 50
significant motifs has been derived which we used in our
work (for original data see [18], Table 1, List 3): GG4, GL3,
GG7, GL1, AG7, GA7, AG4, PL2, AS4, AL6, LP1, PG9, GA4,
FG1, SL1, SG4, PL1, AA7, AG5, LF8, IA1, GV1, AI1, AA2, GL2,
AA3, SL2, PG5, PG6, IL4, GS5, VL4, GV2, IG1, PG10, LY6,
LF10, SA6, LG5, SA3, PF1, GS4, IV4, LS1, GY8, IG2, LF9, VF8,
VG6, GN4.

Intuitively, the reported short sequence motifs can be
written in a generalised, regular expression-like form of XYn,
where X and Y correspond to amino acids separated by 𝑛 − 1
highly variable positions. However, in the process of analysis
we found that short motifs with a relatively small number
of variable positions (more precisely, if 𝑛 is found to be <3)
do not contain enough information to be investigated by
our approach. Thus, these motifs have been discarded in the
process, which resulted in a final set of 33 sequence motifs.
In our nonredundant sequence set, almost 250,000 single
motif occurrences were identified. As an example of motifs
located in a membrane protein structure, Figure 1 illustrates
seven motifs which can be found in the structure of the
bacteriorhodopsin (PDB-Id: 1brr).

2.4. Information Extraction and Clustering. In this work, a
novel approach is elucidated which predicts the topology
state of a short sequence motif in membrane proteins. The
following steps were completed to realise this approach.

At first, all single motif occurrences were identified in
the nonredundant sequence set. Including TMHMM pre-
dictions, each motif occurrence was assigned to a topology
state as elucidated in Section 2.2. Additional to the defined
topology states “TM” and “nTM,” a further state has been
defined for this study. Each motif, where the beginning
and the end has been located in the different topology
states “TM” and “nTM,” has been assigned with the “trans”
state. Subsequently, all variable positions within each motif
occurrence were examined more closely. Ultimately for each
variable position, the relative occurrence of each amino acid
at the specified position of each motif was calculated.
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Figure 1: In the bacteriorhodopsin trimer (PDB-Id: 1brr), seven of
33 sequence motifs which were analysed in this study are present.
Each motif can be written in a regular expression like XYn, where
X and Y are amino acids separated by 𝑛 − 1 highly variable
positions. For example, the LG5 motif occurrence (highlighted in
red) corresponds to a pair of leucine and glycine residues which are
separated by four amino acids.

To define a separation rule for the investigated motifs, an
information-based approach was applied. Formally, a motif
𝑀, for instance LG5, can be interpreted as a set of variable
strings with a length of 𝑛. Intuitively, in case of LG5 𝑛 equals 4.
To include themembership information of the three topology
states, we separated𝑀 into three motif subsets𝑀TM,𝑀nTM
and 𝑀trans according to the topology state 𝑆 in which each
single motif occurrence 𝑚 ∈ 𝑀 is located. Furthermore,
in each motif 𝑀𝑆 each position pos

𝑖
with 𝑖 ∈ [1, 𝑛] can be

investigated concerning its amino acid distribution. To this
end, interpreting 𝑀

𝑆
as a set of strings 𝑚

1
, 𝑚
2
, . . . , 𝑚

𝑘
(all

identifiedmotif occurrences found in topology state 𝑆) allows
formulating the relative probability 𝑃(𝑎 | pos

𝑖
| 𝑀
𝑆
):

𝑃 (𝑎 | pos
𝑖
| 𝑀
𝑆
) =

∑
𝑘
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𝑘

,
(1)

with
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𝑖,𝑚𝑗
, 𝑎) = {

1 pos
𝑖,𝑚𝑗

equals 𝑎
0 else,

(2)

where 𝑎 corresponds to one of the 20 canonical amino acids.
To weight the significance of each probability 𝑃(𝑎 | pos

𝑖
|

𝑀𝑆), the probability 𝑃(𝑎 | Nature) is applied in a log-odd
formula:

𝑓 (𝑎 | pos
𝑖
| 𝑀
𝑆
) = log(

𝑃 (𝑎 | pos
𝑖
| 𝑀
𝑆
)

𝑃 (𝑎 | Nature)
) . (3)

The amino acid distribution 𝑃(𝑎 | Nature) used to test
the significance of the observed relative probability at each
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motif position was computed from the NCBI nonredun-
dant protein sequence set [32] (ftp://ftp.ncbi.nih.gov/blast/
db/FASTA/nr.gz).

Using these log-odd values, visualisation, clustering, and
information extraction can be performed. To this end, we
transformed each position pos

𝑖
into a vector consisting of log-

odd values which we refer to as log-odd profile LOP (pos
𝑖
|

𝑀𝑆) and which is defined as

LOP (pos
𝑖
| 𝑀
𝑆
) = (

𝑓 (Ala | pos
𝑖
| 𝑀
𝑆
)

𝑓 (Arg | pos
𝑖
| 𝑀
𝑆
)

⋅ ⋅ ⋅

𝑓 (Val | pos
𝑖
| 𝑀
𝑆
)

) . (4)

Clustering all resulting LOP (pos
𝑖
| 𝑀
𝑆
) was finally ensured

by implementing the following distance𝐷 formula:

𝐷(LOP (pos
𝑖
| 𝑀
𝑆
) , LOP (pos

𝑗
| 𝑀
𝑆
))

= 1 − 𝜌 (LOP (pos
𝑖
| 𝑀
𝑆
) , LOP (pos

𝑗
| 𝑀
𝑆
)) ,

(5)

where 𝜌 (LOP (pos
𝑖
| 𝑀𝑆), LOP (pos𝑗 | 𝑀𝑆)) corresponds

to the Spearman’s rank correlation coefficient. Clustering
methods were applied to the LOPs to derive characteristics
in motifs which determine the protein’s structural and func-
tional features.

Furthermore, with these values at hand, the algorithm
for predicting the topology state 𝑆 based on a single motif
occurrence 𝑚 was implemented. At this, the precalculated
LOPs of the corresponding motif 𝑀 are employed as look-
up values to compute a straight-forward winner-takes-it-all
formula:

𝑆 = arg max
∀𝑆∈{TM,nTM,trans}

𝑛

∑

𝑖=1

𝑓 (𝑎
𝑚𝑖
| 𝑚
𝑖
| 𝑀
𝑆
) . (6)

The assessment of topology state prediction was performed
by means of cross-validating and F-measure calculation.

By utilising clustering methods, differences and similari-
ties of all LOPs can be visualised and analysed in detail.

For dimensionality reduction and finally data clustering
of the 20-dimensional LOP data, we used the unweighted pair
group method with arithmetic mean (UPGMA) [33] and the
exploratory observation machine (XOM) [34]. This analysis
is helpful to understand the correspondences of physico-
chemical properties observed in LOPs and topology states.
Furthermore, this analysis enforces the found predictability
of topology states. We chose the UPGMA as visualisation
approach, since it is a widely used bottom-up clustering
method that can be understood intuitively.

The XOM algorithm is relatively new for dimensionality
reduction. A great advantage lies in its visualisation capa-
bilities, since it can transform neighbourhood or distance
relations embedded in multidimensional data into human-
intelligible spaces, such as intoR2. In the literature, this prop-
erty is referred to as topology-preserving mapping. However,
the degree of topology-preserving mapping achieved by the
XOM depends on the given problem (mainly influenced by
the structure of data and applied distance measure), and

thus the XOM output can be insufficient for analysis. In
application to LOP data, however, it has shown to perform
more than satisfying. Further, visualisations were obtained by
generating heat maps.

3. Results and Discussion

3.1. Identification of Topology-Discriminative Positions. The
identification of topology-discriminative positions in motifs
is crucial for drawing meaningful correlations between
physicochemical properties plus structural and functional
features. A straight-forward approach to address this task
is the utilisation of a method to determine the residue
conservation at each variable motif position. WebLogo [31],
for instance, is a widely used method to address such
problems. However, WebLogo does not include any amino-
acid-specific background information in deriving residue
conservation, since natural amino acid frequencies are not
taken into account. To circumvent this problem, we used
LOPs for visualisation instead,which, as shown in (4), include
natural amino-acid-specific background probabilities. Essen-
tially, this approach is quite similar to the methods recently
described in [36]. Single LOPs can be visualised as heat maps
[37] (see Figure 3), and amino-acid-specific propensities at
each variable position in eachmotif can be extracted and thus
information can be gained.

3.2. LOP Visualisation and Classification. The LOP heat map
depicted in Figure 3 exemplary shows the apparent amino-
acid-specific propensities according to the three topology
states. Here, increasing amino acid propensities defined
in (3) are illustrated by increasing red colour content. In
comparison to the WebLogos (Figure 2), distinct amino
acid propensities become obvious. For instance, glycine
is observed more frequently in all LG5 motifs which are
located in transmembrane regions. In nontransmembrane
regions, the propensity of glycine is found to be reduced
distinctly. As a second example, the LG5 motif found in
transmembrane regions, leucine is observed more frequently
at the third variable position as at other positions. This
sequence constellation results into two spatially adjacent
leucine residues that form a bulky helix surface. In general,
relations of topology states and the amino-acid-specific
propensities can be derived. This emphasises the predictabil-
ity of topology states based on single motif occurrences. The
full LOP heat map generated by this approach consists of
471 motif positions. To visualise LOP-wide correspondences,
we applied UPGMA hierarchical clustering as well as the
XOM algorithm. Distance measurement between LOPs was
realised by utilising (5). Since 471 variable motif positions
were investigated, the UPGMA-tree generated by the first
approach consists of 471 nodes. To ease the analysis of the tree,
the nodes were coloured according to the topological state in
which the corresponding motif is located. Due to the huge
number of nodes, we depicted the tree only as a schematically
representation which represents the observed general tree
topology and identified memberships (see Figure 4). As
shown, a distinct clustering, more precisely a formation of
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L-[ALS]-[RAE]-[LAR]-[LAP]-G

(a)

L-[LAY]-[LAY]-[LVA]-[LAI]-G

(b)

L-[LAR]-[LRA]-[LRA]-[LAR]-G

(c)

Figure 2: WebLogos [31] of the LG5 motif in the order of three topology states “TM” (a), “nTM” (b), and “trans” (c). However, the symbol
height in each logo reflect only the relative occurrence of the corresponding amino acid. Additionally, background amino-acid-specific
frequencies are not taken into account which decreases the sensitivity of this method. Compared to the heat map generated from LOPs
(see Figure 3), less information can be gained. By applying WebLogo, residue propensities, with regard to the topology states, cannot be
derived or identified. For instance, the leucine amino acid in “TM” (WebLogo A) cannot be observed as more frequently at the third variable
position as at other positions.

A C D E F G H I K L M N P Q R S T V W Y
LG5 1 TM
LG5 2 TM
LG5 3 TM
LG5 4 TM
LY6 1 TM
LY6 2 TM
LY6 3 TM
LY6 4 TM

LG5 1 Transition
LG5 2 Transition
LG5 3 Transition
LG5 4 Transition
LY6 1 Transition
LY6 2 Transition
LY6 3 Transition
LY6 4 Transition
LY6 5 Transition

LG5 1 nTM
LG5 2 nTM
LG5 3 nTM
LG5 4 nTM
LY6 1 nTM
LY6 2 nTM
LY6 3 nTM
LY6 4 nTM

LY6 5 TM

LY6 5 nTM

High propensity Low propensityP(a ∣ Nature)

Figure 3: LOP heat maps of the LG5 and LY6 motif. LOP heat
maps reflect the propensities of each amino acid relative to natural
amino-acid-specific frequencies. Increasing amino acid propensities
are illustrated by an increased red colour content. The below
listed colour scale represents the colour assigning to each amino
acid propensities. This visualisation allows a sensitive approach to
analyse amino acid propensities of each variable position of a motif
according to topology states. Here, the LOP heat map is separated
by topology states, so that amino acid propensities become obvious.
For example, cysteine can be observedmore frequently at the second
variable position of transmembrane-located LY6 motif. This results
in two spatially adjacent cysteine residues which form a bulky
surface in transmembrane helices. Such a bulky helix surface might
be important in mediating helix-helix interactions, as knob-to-hole
helix packing has been reported as a key folding process in many
studies (e.g., [1, 35]).

three distinct subtrees, according to the topology states is
obvious. The cluster arrangement correlates to the physico-
chemical properties found in membrane and nonmembrane
located regions, since greater LOP distances are mainly
dictated by the propensities of hydrophobic, hydrophilic, and
polar amino acids. The sub-tree mainly consisting of motifs
located in “trans” regions is arranged in between, which

Transmembrane
Nontransmembrane
Transition

Motif XYn
Position i

· · ·

· · ·
· · ·

· · ·· · ·

· · ·

· · ·

· · · · · ·

· · · · · · · · ·

· · ·

· · · · · ·

· · ·

· · ·· · ·

Figure 4: Schematic UPGMA-tree derived from LOP clustering:
the 471 LOPs of all variable motif positions were clustered using
UPGMA hierarchical clustering [33] by utilising the LOP distance
measure defined in (5). Due to the original size, the resulting
UPGMA-tree is only depicted schematically. However, the tree
shows three separated, distinct subtrees which correlate to the
topology states in which the corresponding motifs are located. The
cluster arrangement corresponds to amino acid propensities and
thus to physicochemical properties observed in motifs. This tree
proves that the topological location of short sequencemotifs are well
separable and especially predictable from their amino acid sequence
in the variable positions.

points to intermediate physicochemical motif compositions
and equally distributed amino acid compositions. Similar to
these findings, the XOM output (see Figure 5) shows three
main clusters which correspond to the topology states too.
Additionally, the cluster arrangement is found to be equal
to the arrangement observed in the UPGMA-tree, where the
causes of cluster formation are analogue as well. The distinct
cluster formation observed by the output of both methods
points to a good separability of the variable motif positions.

A possible approach to predict the topology state of a
motif from the amino acid sequence alone was implemented
as elucidated in Section 2.4. In this calculation, for eachmotif,
the three log-odd sums of all variable positions are computed
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Table 2: Statistical analyses of the motifs in the protein families with domains of unknown functions (EDS1). The results are split into three
subtables. The “TMHMM prediction,” the “Prediction on log-odds,” and the “F-measures”-table. Thereby the “TMHMM prediction”-table
represents the absolute occurrences of a motif in all investigated protein families with domains of unknown functions. The “Prediction on
log-odds”-table represents the topology state winners (see (6)) followed by the “F-measures”-table which indicates how good or bad a motif
can be separated and assigned to a topology state.

Motif TMHMM prediction Prediction on log-odds F-measures
TM nTM Trans TM nTM Trans TM nTM Trans

PG10 430 1556 900 429 1556 901 0.997 1.0 0.998
LF10 2838 1535 2860 2840 1536 2857 0.998 0.998 0.999
PG9 572 1596 896 577 1590 897 0.99 0.998 0.995
LF9 3271 1392 2425 3272 1392 2424 0.998 0.997 0.999
VF8 1936 1065 1116 1933 1065 1119 0.998 0.999 0.996
LF8 3589 1446 2185 3583 1447 2190 0.998 0.998 0.997
GY8 775 863 685 771 860 692 0.995 0.998 0.995
GA7 3035 2907 1943 3047 2889 1949 0.996 0.996 0.993
AG7 3009 2939 2104 3016 2926 2110 0.995 0.997 0.992
AA7 5100 4623 2883 5124 4592 2890 0.993 0.995 0.99
GG7 2380 3171 1463 2373 3175 1466 0.99 0.997 0.987
LY6 1861 1315 1263 1873 1305 1261 0.993 0.995 0.989
VG6 2518 2331 1317 2536 2324 1306 0.987 0.993 0.981
SA6 1747 2683 1269 1757 2674 1268 0.987 0.997 0.985
PG6 566 1756 681 583 1745 675 0.983 0.997 0.982
AL6 6974 3789 2931 7155 3680 2859 0.981 0.98 0.969
PG5 640 1576 696 682 1542 688 0.955 0.989 0.957
GS5 1041 2161 763 1115 2097 753 0.951 0.98 0.959
LG5 4775 3050 1959 5071 2879 1834 0.951 0.952 0.919
AG5 3464 3092 1433 3761 2895 1333 0.942 0.958 0.908
GN4 228 952 271 276 891 284 0.869 0.96 0.919
IV4 3285 1562 723 3568 1339 663 0.905 0.861 0.765
IL4 5700 2244 1282 6209 1889 1128 0.879 0.773 0.699
GS4 1080 2356 651 1381 2063 643 0.807 0.905 0.791
GG4 2302 3822 893 2758 3387 872 0.814 0.89 0.714
SG4 1125 2542 723 1457 2228 705 0.796 0.908 0.789
VL4 6680 3046 1592 7202 2498 1618 0.847 0.737 0.634
AS4 1903 2807 946 2423 2311 922 0.795 0.854 0.769
GA4 3769 3300 1253 4463 2664 1195 0.823 0.807 0.698
AG4 3594 3456 1214 4381 2661 1222 0.813 0.795 0.695
SA3 2005 2965 728 2603 1901 1194 0.65 0.674 0.452
AA3 6719 5358 1327 7855 3199 2350 0.747 0.596 0.386
GL3 5758 3252 1343 6026 2066 2261 0.767 0.597 0.452

with respect to the three topology states. The highest log-
odd sum leads to the topology state winner (see (6)). Cross-
validation was performed by excluding the evaluation set
of motifs from the training motif set, which was used to
generate the look-up log-odd values. In the process, each
topology state winner has been assessed by F-measure. The
corresponding F-measures for each investigated sequence
motif are listed in the given result Tables 1, 2, and 3. It is
apparent from these tables that there are motifs with high
and rather small F-measures. Each representative F-measure
value indicates how good or bad amotif can be separated and
assigned to the respective topology state. For example, the

LY6motif with an F-measure >0.8 in all result tables says that
this motif is well assignable (by (6)) to each topology state.

3.3. Evaluation of the Prediction Accuracy. To evaluate the
prediction accuracy, our new approach has been applied
to three datasets. The first dataset (EDS1) consists of
DUF-families sequence information described in previous
Section 2.1. The second dataset (EDS2) consists of 2254
membrane protein sequences with 55 known structures of
the bacteriorhodopsin-like protein (PF01036) family. EDS2
was also obtained from Pfam database [27]. EDS1 and EDS2
include the topology specific recorded statistically occurrence
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Table 3: Statistical analyses of the motifs in the bacteriorhodopsin-like protein families (EDS2).The results are split into three subtables.The
“TMHMM prediction,” the “Prediction on log-odds,” and the “F-measures”-table. Thereby the “TMHMM prediction”-table represents the
absolute occurrences of a motif in all investigated bacteriorhodopsin-like protein families. The “Prediction on log-odds”-table represents the
topology state winners (see (6)) followed by the “F-measures”-table witch indicates how good or bad a motif can be separated and assigned
to a topology state.

Motif TMHMM prediction Prediction on log-odds F-measures
TM nTM Trans TM nTM Trans TM nTM Trans

PG10 105 17 464 103 17 466 0.942 1.0 0.987
LF10 1900 131 1165 2147 214 835 0.864 0.655 0.782
PG9 187 61 395 223 63 357 0.893 0.952 0.944
LF9 1278 164 565 1170 307 530 0.852 0.586 0.842
VF8 739 118 623 796 104 580 0.945 0.928 0.943
LF8 654 168 362 625 209 350 0.916 0.78 0.966
GY8 715 185 1450 881 186 1283 0.876 0.981 0.928
GA7 1581 2013 1963 1618 1877 2062 0.889 0.95 0.935
AG7 1737 722 1347 1653 782 1371 0.919 0.92 0.924
AA7 1887 1618 1455 1936 1530 1494 0.922 0.923 0.907
GG7 1837 562 1939 1760 506 2072 0.946 0.944 0.955
LY6 1868 189 639 1579 333 784 0.823 0.456 0.704
VG6 1642 199 1011 1562 175 1115 0.956 0.898 0.938
SA6 503 1030 579 614 925 573 0.843 0.926 0.92
PG6 316 56 242 301 54 259 0.94 0.982 0.93
AL6 1969 975 1525 1954 982 1533 0.909 0.908 0.917
PG5 247 39 78 284 37 43 0.904 0.974 0.595
GS5 208 302 574 248 272 564 0.899 0.944 0.965
LG5 2287 949 854 2254 805 1031 0.913 0.796 0.858
AG5 1228 766 746 1222 656 862 0.934 0.878 0.889
GN4 34 222 108 33 179 152 0.925 0.878 0.815
IV4 2612 484 532 2066 821 741 0.811 0.651 0.654
IL4 3586 648 611 2735 1153 957 0.817 0.499 0.681
GS4 136 643 497 193 612 471 0.76 0.969 0.915
GG4 2057 768 945 1972 568 1230 0.95 0.814 0.818
SG4 397 836 365 405 783 410 0.895 0.956 0.88
VL4 2621 619 775 1840 1264 911 0.759 0.579 0.81
AS4 378 1584 943 447 1441 1017 0.815 0.95 0.884
GA4 911 1411 1298 869 1372 1379 0.828 0.934 0.9
AG4 1418 1013 1258 1413 833 1443 0.875 0.813 0.826
SA3 522 1301 359 625 1125 432 0.806 0.893 0.781
AA3 2125 3004 1010 2652 1874 1613 0.695 0.687 0.455
GL3 851 528 435 829 339 646 0.751 0.646 0.614

for each motif generated from TMHMM information. These
statistics are listed under the “TMHMM prediction”-table
heading and the right of it followed by our predicted (see
(6)) information.The prediction quality is determined by the
respective F-values. The comparison evidence of the number
of statistical determinedmotifswith the predicted ones shows
how well our approach for the most motifs works. For all
proteins from DUF families and for the bacteriorhodopsin-
like protein families, our approach works well and can be
stated for the majority motifs. Deviations can be traced
back to motifs with different functions. Furthermore, our
approach has been transferred to all common known struc-
tures. EDS3 as third evaluation dataset consists of all known

alpha helical membrane proteins with structures obtained
from PDBTM [13]. It is important to note that results from
EDS3 only include PDBTMprotein information.Thatmeans,
each found motif has been annotated with one of three
given topology states “H,” “Side1,” and “Side2,” in which “H”
stands for alpha-helix structure and both Side states refer to
the outside or inside of the membrane. Here, “H” can be
equated with “TM” because “H” includes only alpha-helical
information referring to the interior of the cell membrane.
Both Side states can be equated with “nTM.”The “trans” state
is not included at this point by less membrane information.
Thismeans that we have separated amotif𝑀 into threemotif
subsets 𝑀H, 𝑀Side1, and 𝑀Side2 according to the topology
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Table 4: Statistical analyses of the motifs in all known PDBTM protein structures (EDS3). The results are split into three subtables. The
“PDBTM prediction,” the “Prediction on log-odds,” and the “F-measures”-table. Thereby the “PDBTM prediction”-table represents the
absolute occurrences of a motif in all investigated PDBTM protein structures. The “Prediction on log-odds”-table represents the topology
state winners (see (6)) followed by the “F-measures”-table witch indicates how good or bad a motif can be separated and assigned to a
topology state.

Motif PDBTM prediction Prediction on log-odds F-measures
𝛼-helical Side1 Side2 𝛼-helical Side1 Side2 𝛼-helical Side1 Side2

PG10 382 1719 1780 382 1297 2202 1.0 0.86 0.894
LF10 2084 1248 1381 2092 1007 1614 0.998 0.893 0.918
PG9 473 1559 1583 474 1158 1983 0.999 0.852 0.887
LF9 2206 1103 1202 2207 962 1342 0.999 0.93 0.945
VF8 1891 1006 1120 1907 787 1323 0.996 0.878 0.905
LF8 3638 1450 1346 3637 1067 1730 0.998 0.845 0.873
GY8 393 1228 1186 392 930 1485 0.999 0.862 0.888
GA7 2614 2516 2914 2607 1775 3662 0.993 0.817 0.881
AG7 3443 2411 2937 3469 1739 3583 0.995 0.836 0.895
AA7 2870 3288 3650 2870 2280 4658 0.991 0.811 0.873
GG7 2899 2982 3285 2917 2132 4117 0.997 0.834 0.883
LY6 1326 1127 1066 1345 901 1273 0.992 0.888 0.904
VG6 2962 2230 2588 2961 1723 3096 0.996 0.869 0.907
SA6 1499 1984 1947 1497 1551 2382 0.998 0.875 0.899
PG6 347 1697 1558 348 1356 1898 0.999 0.888 0.901
AL6 6110 2672 2947 6140 1951 3638 0.996 0.844 0.889
PG5 971 1651 2095 991 1334 2392 0.985 0.893 0.923
GS5 1101 1609 1708 1154 1131 2133 0.976 0.826 0.874
LG5 5049 3013 3411 5083 2124 4266 0.993 0.826 0.879
AG5 3601 3012 3278 3623 2177 4091 0.986 0.833 0.879
GN4 427 1700 1898 453 1281 2291 0.964 0.857 0.894
IV4 4596 1717 1855 4914 1317 1937 0.947 0.838 0.822
IL4 6972 1827 2344 6956 1299 2888 0.964 0.752 0.842
GS4 1298 1773 1858 1425 1331 2173 0.936 0.854 0.879
GG4 3656 2463 2738 3897 1653 3307 0.93 0.784 0.84
SG4 1493 2141 2419 1629 1349 3075 0.948 0.771 0.86
VL4 6840 2363 3081 7067 1757 3460 0.963 0.821 0.873
AS4 2172 2066 2498 2267 1399 3070 0.934 0.807 0.859
GA4 4397 2954 3845 4685 1883 4628 0.933 0.756 0.85
AG4 3668 3402 3838 3950 2376 4582 0.937 0.807 0.856
SA3 2204 2198 2292 2936 1357 2401 0.773 0.678 0.758
AA3 5085 3463 4144 6342 1865 4485 0.798 0.646 0.733
GL3 5730 3075 3552 6026 2147 4184 0.789 0.591 0.723

state in which each single motif occurrence was located.
Further calculations are described in Section 2.4 based on
these motif subsets. All results from Table 4 show that our
approach can be applied on known structures. The topology
specific recorded statistically motif occurrence is listed in
the “PDBTM prediction”-table heading and the right of it
followed by our predicted information.

4. Conclusion

In this work, 33 short sequence motifs reported in [18]
were investigated in 32 polytopic membrane protein families

with domains of unknown functions. Transmembrane and
nontransmembrane sequence regions were predicted using
the TMHMM method [38] and topology states were anno-
tated to all detected sequencemotif occurrences.These amino
acid propensities were derived and employed to define log-
odd profiles (LOP) of all variable sequence positions in the
investigated motifs. Propensity tendencies according to the
topology states were identified using UPGMA and XOM
clustering. Both methods pointed to good separability and
predictability of the topology state of a motif from its amino
acid sequence. An information-based prediction algorithm
was implemented and assessed using cross-validation and F-
measure evaluation. Motifs showing high F-measures over
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Transmembrane
Nontransmembrane
Transition

Figure 5: Output of the XOM clustering: XOM [34] is a rela-
tively new approach for dimensionality reduction and clustering
of multidimensional data. We used this approach to visualise the
distance relations of the 471 investigated variable motif positions
by employing the distance measure defined in (5). Here, XOM
delivers a two-dimensional mapping of the distance relations of
all LOPs. Coloured according to the topology state in which
the corresponding motif is located, three well separable clusters
can be seen. The LOP distances which contribute to the cluster
formation are mainly dictated by the propensities of hydrophilic,
hydrophobic, and polar residues. Thus, the XOM output reflects
physicochemical correspondences which also applies for the general
cluster arrangement, with the cluster of LOPs mainly observed in
“trans” topology states (which corresponds basically to helix caps)
located between the other two clusters. Similar to the UPGMA-tree
depicted in Figure 4, the XOM output points to a good separability
and predictability of topology states of short sequence motifs from
their amino acid sequence in variable motif positions.

all or only in certain investigated protein families were
identified. From this insight, we postulate that short sequence
motifs can be divided in general, structure-forming elements,
which are present in numerous protein families and highly
specific to their topology location. But they are probably less
important for functional properties. Finally, motifs showing
high F-measures only in certain membrane protein families
may be important elements in establishing the individual
properties which are necessary for the function of an entire
protein family.

Also, the information of the spatial structure and the fold-
ing of proteins to be explored can be evaluated by affinities,
because the spatial structure of proteins has been stronger
conserved in evolution than the sequential composition of
the folded protein chains. These are individual motifs or

characteristic sequence parts which expose a certain bio-
chemical function of proteins. Why does the nature pursue
the principle of structure and function separation? Residues,
which support a stable domain folding, are separated from
those that induce a specific function.This procedure is a very
efficient strategy of evolution. Two areas were simultaneously
optimised [39]:

(i) the stability of the protein backbone in a given folding
pattern,

(ii) the design of the amino acid sequence according to a
specific function.

Based on this information, further work will discuss and deal
with how the evolution has spawned motifs in their function
as structure building blocks. In addition, motifs originated
by evolution and spatially interacting with other should be
determined as structure stabilizing.
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