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Te acoustic emission (AE) technique has been widely investigated for its ability to locate damage in structures. However, the
selection of the arrival point of AE signals and the existence of nonhomologous AE signals can signifcantly afect the location
accuracy of damages. Te synchrosqueezed wavelet transform (SWT) was used in our previous research to pick the accurate
arrival point, but the existence of the nonhomologous signals was neglected in the picking process. To address this limitation, the
synchrosqueezed wavelet transform coherence (SWTC) method is proposed to improve the accuracy by recognizing homologous
signals and suppressing the spectral leakage in this paper. Compared with the wavelet transform coherence (WTC) method
previously used, the SWTC method using the squeezing wavelet coefcients obtained by the SWT can constitute a more explicit
coherence graph of AE signals. Tis clear coherence graph can help reduce the efect of subjective factors in observing the
coherence and improve the recognition accuracy of homologous signals. Te efectiveness of the proposed method is experi-
mentally verifed on a steel pipe and a concrete beam.Te results demonstrate that the SWTC accurately identifes homologous AE
signals and efectively improves the localization accuracy across diferent signal densities, localization distances, and materials.

1. Introduction

Structural health monitoring (SHM) has been advancing
rapidly in recent years to address the impacts of common
adverse factors, such as corrosion [1], vibration and fatigue
[2], and excessive loads [3], on structures across diferent
engineering felds. Various SHMmethods, including vision-
based [4], ultrasonic wave-based [5], modal-based [6], and
vibration-based [7] methods, have been developed with the
goal of rapidly and accurately detecting damage. Among
these nondestructive testing approaches, the acoustic
emission (AE) technique [8, 9], which is a passive moni-
toring technique that measures the elastic wave released by
deformation or fracture of the materials under stress [10], is
more sensitive to damage and suitable for continuous health
monitoring in real time [11]. Tese advantages make the AE

technique widely applied in mechanical engineering [12, 13],
civil engineering [14, 15], mining engineering [16], and other
felds [17, 18]. Since the AE signals are generated when the
materials become damaged, the AE signals can not only
contain much information about the damage but can also be
used to locate the damage [19, 20]. However, the AE-based
localization method faces challenges in accurately picking
the arrival point of AE signals and recognizing the ho-
mologous AE signals. Our previous research [21] proposed
the synchrosqueezed wavelet transform (SWT) to accurately
pick the arrival point, but the recognition of homologous AE
signals is a yet unsolved problem. Te homologous AE
signals are emitted by the same source of damage.Terefore,
by analyzing the homologous signals collected by AE sen-
sors, it is possible to accurately determine the location of the
damage source. However, the collected AE signals usually
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contain the homologous and nonhomologous signals. Tese
nonhomologous signals infuence the localization accuracy
by interfering with the time diference of arrival (TDOA) of
signals [22]. Hence, the accurate identifcation of the ho-
mologous signals is benefcial to improve localization
accuracy.

Many methods have been proposed for identifying
homologous signals in the AE, speech, and volcanic tremor.
Chen et al. [22] proposed the assumption that homologous
signals should have similar characteristics (such as wave-
form), and they used concrete thermal-cracking experiments
to demonstrate the validity of the assumption. Multiple
algorithms, such as Pearson’s correlation coefcient [23], the
longest common subsequence algorithm [24], and edit
distance on the real sequence [25], are available for in-
vestigating the similarity of a time series. Among such al-
gorithms, dynamic time wrapping (DTW) [26, 27], which
fnds the minimum space distance between two time series
by providing nonlinear alignments based on the standard of
dynamic time warping [28], is one of the most popular
algorithms used to calculate the Euclidean distance (ED)
between time series. Te ED between two time series is
commonly used to evaluate their similarity degree, with
smaller ED denoting higher similarity [29, 30].Te wrapping
process allows the DTW to evaluate the similarity of non-
equal-length time series [31]. Sakoe and Chiba [32] leveraged
this wrapping process to identify continuous speech. Sharma
et al. [33] proposed a new road surface monitoring system
based on the DTW to identify road irregularities. Besides the
ED, the area between time series is also an often-used metric
to evaluate similarity. Te normalized cross-correlation
(NCC) [34], which calculates the inner product between
two diferent signals, is a widely used area-based similarity
recognition algorithm [35]. It has been widely used in
electrocardiogram (ECG) signal processing [36], audio/
speech signal processing [37–39], and big data analysis [40].
Klausen and Robbersmyr [41] applied the NCC to calculate
the cross-correlation between a whitened vibration signal
and its envelope to analyze bearing faults. Nguyen et al. [42]
used the cross-correlation image to identify the defects in
pipelines. Te convolution operation in the NCC helps
determine the time-based shift between two signals [40],
which can be used to calculate the time delay of signals used
for localization [43, 44]. Permana et al. [45] used the
characteristic of the NCC to locate a volcanic tremor source.
However, the convolution causes the NCC to become overly
sensitive towards minor distortions in the time axis [46] and
also causes the recognition accuracy to become vulnerable to
noise and frequency dispersion.

However, the above similarity recognition algorithms
are operated in the time domain, which precludes their usage
in the time-frequency domain. In general, time-frequency
analysis more comprehensively refects the intrinsic char-
acteristics of signals than with time domain analysis [47].
Terefore, the time-frequency analysis has played a crucial
role in SHM [48], and many time-frequency analysis al-
gorithms, including fast Fourier transform (FFT), wavelet
transform (WT), and Hilbert–Huang transform (HHT),
have served as the foundation for developing methods to

analyze damage signals. Katunin and Sun et al. combined the
vibration-based method and wavelet transform (WT) to
detect the damage of sandwich composites [49, 50].
Chakraborty et al. utilized wavelet transform to identify the
corresponding mode shapes from the transient response of
the system under ambient vibration conditions [51] and
proposed an online time-varying stifness monitoring sys-
tem [52]. Furthermore, they combined time-frequency-
based signal processing methods with clustering algorithms
to efciently identify modal parameters [53]. For analyzing
the similarity in the time-frequency domain, Torrence and
Compo [54] proposed the wavelet transform coherence
(WTC), which is a time-frequency similarity recognition
algorithm. Tis algorithm converts the time domain signals
to time-frequency matrices through wavelet transform and
evaluates the similarity by calculating the coherence between
time-frequency matrices. As a result, the coherence graph
shows the similarity between signals in the time and fre-
quency axes. Gao et al. [55] applied the WTC and AE
analysis to study the relationship between the pure metal
burn signals and grinding burn signals. Grinsted et al. [56]
applied WTC to study the Arctic Oscillation index and the
Baltic maximum sea ice extent record. Kramer et al. [57]
used the WTC to distinguish tremor types between organic
and functional types efectively.

Despite a large volume of research for WTC, there are
still some crucial problems yet to be solved. First, the point-
to-point coherency process [58] shows that the WTC is very
sensitive to the energy distribution change in the time-
frequency domain. Terefore, precise and clear energy
distribution in the time-frequency domain is crucial for
accurate coherency analysis. However, the spectrum leakage
using continuous wavelet transform (CWT) causes the
distribution of instantaneous amplitudes in the time-
frequency matrix to be blurred [59], suggesting that the
WTC based on the CWT cannot accurately refect the
similarity between AE signals. Second, the accuracy in
recognizing homologous signals through the coherence
graph is susceptible to subjective factors, and thus, an ob-
jective quantitative coefcient for analyzing a coherence
graph is necessary. Finally, it will take much computing time
to sequentially obtain the coherence graphs of every two
signals in a larger amount of data. Te defects mentioned
previously can cause the low recognition accuracy of existing
methods of recognizing homologous signals.

In this paper, the synchrosqueezed wavelet transform
coherence (SWTC) recognition method is proposed to
improve the recognition accuracy of homologous AE signals.
Te proposed method uses the SWT to replace the CWT,
thereby improving the clarity degree of coherence graphs by
suppressing the spectrum leakage. Meanwhile, the SWTC
coefcient is used to gauge the similarity degree of the
coherence graph, reducing the infuence of subjective factors
in observing the coherence graph. In addition, the proposed
method also improves computational efciency by com-
bining the time-order approach. Te pencil lead fracture
(PLF) experiments on a steel pipe and a concrete beam were
conducted to verify the efectiveness of the proposed
method.
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2. Synchrosqueezed Wavelet Transform
Coherence-Based Recognition of
Homologous AE Signals

2.1. Flowchart of the Novel Method. Tis paper proposes the
SWTC method to improve the accuracy in recognizing ho-
mologous signals, and a detailed fowchart of this method is
presented in Figure 1. Te collected AE signals are frst di-
vided into diferent localization groups by the time-order
method, which can preliminarily identify the homologous
signals by the arrival time of AE signals. Each localization
group is composed of the localization pair and velocity
measurement pair. Te localization pair is used to locate the
damage source, and the velocitymeasurement pair at a known
distance is used to determine the wave velocity of AE signals.
Ten, the SWTC coefcients of these pairs are computed to
refect the similarity degree of AE signals. When the SWTC
coefcients of the localization pair and velocity measurement
pair in the localization groups are higher than the mean value
of all SWTC coefcients, the localization groups are used to
compute the accurate localization values.Te detailed process
is described in the following section.

2.2. Detailed Process of the Novel Method. A large amount of
AE signals can be collected in an experiment (as shown in
Figure 2). Te traditional similarity recognition methods,
which sequentially compute the coherence value between the
selected signals and other signals, require much computing
time. To solve this problem, the time-order method [21] is
used to flter out the interference signals and divide the
potential homologous AE signals into diferent localization
groups ( g1, g2, · · · , gn ) with less computation time.
However, the localization groups are composed of the ho-
mologous AE signals and the nonhomologous AE signals,
and thus the localization groups need to be further fltered.

For a random localization group gi from g1, g2, · · · , gn ,
it contains four AE signals x1, x2, x3, x4 . Te AE signals
x2, x3  collected from sensors s2 and s3 (as shown in
Figure 2) are the localization pair pl, and the AE signals
x1, x2  (or x3, x4 ) collected from sensors s1 and s2 (or s3
and s4) are the velocity measurement pair pv. For the AE
signal x1 from the velocity measurement pair pv, the wavelet
coefcient can be expressed as follows:

W1(a, b) �〈x1,ψa,b〉 � 
∞

−∞
x1(t)

1
a
ψ

t − b

a
 dt, (1)

where a is the scale variable, which controls the dilation of
the mother wavelet function ψa,b, and b is the time variable,
which controls the translation of the mother wavelet
function [60]. Considering that the analyzed signals are AE
signals, the complex Morlet wavelet is chosen as the wavelet
basis [61]. According to reference [62], the candidate’s in-
stantaneous frequency ω1(a, b) of the AE signal x1 is de-
scribed as follows:

ω1(a, b) �
zW1(a, b)/zb

2πiW1(a, b)
. (2)

Te wavelet coefcients (the red circle in Figure 3) with
frequency for which the distance away from ω1(a, b) is ξ in
the frequency domain will be squeezed and reassigned
around the candidate’s instantaneous frequency ω1(a, b):

T1(ξ, b) � 
a:W1(a,b)≠0{ }

W1(a, b)δ ω1(a, b) − ξ( 
da

a
, (3)

where ξ is the frequency variable, δ is the Dirac delta
function, and T1(ξ, b) is the quantity transformed from
CWT W1(a, b) on the time-frequency plane [60]. Te
squeezing and reassigning process is defned as the syn-
chrosqueezed wavelet transform, and T1(ξ, b) is the syn-
chrosqueezed wavelet coefcient. Trough squeezing and
reassigning the scale variable of the CWT into a candidate
instantaneous frequency variable during the wavelet
transform [63], the spectral leakage caused by CWT can be
suppressed. Xue et al. [64] compared the performances of
the SWT and CWT in monitoring wind turbine blades and
found that the SWT can efectively suppress the spectral
leakage caused by WT. Hence, the SWT is introduced to
replace the CWT in the wavelet transform coherence

Perform time-order method for {s1, s2, … , sn} to divide the AE
signals into different localization groups {g1, g2, … gi, … , gn}

Calculate the SWTC coefficients gl = {cl,1, cl,2, … , cl,i, … , cl,n}
of localization pairs and gv = {cv,1, cv,2, … , cv,i, … , cv,n}

of velocity measurement pairs in these localization groups.

Calculate the mean value meanl of gl and the mean value meanv of gv

If any gi from {g1, g2, … gi, … , gn} satisfies Cl,i ≥ meanl and
Cv,i ≥ meanv , the gi is regarded as the homologous signals group

Calculate the localization value of the homologous signals group

Collect AE signals {s1, s2, … , sn}

Figure 1: Te fowchart of the SWTC recognition method.

S1

Damage

S2 S3 S4

Figure 2: Te distribution of AE sensors in the time-order fltering
algorithm.

Structural Control and Health Monitoring 3



recognition method, and the detailed process is described as
follows.

Based on the SWT, the autospectrum of the syn-
chrosqueezed wavelet coefcient of the AE signal x1 can be
expressed as follows:

T1,1(η, b) � T1(η, b)∗T1(η, b)
∗
, (4)

where ∗ is the complex conjugate, and the synchrosqueezed
wavelet power of the AE signal x1 is defned as
|T1,1(η, b)| [55].

Te cross-wavelet transform accurately describes the
coherency of two signals in the time-frequency domain [65].
Specifcally, for the velocity measurement pair x1, x2 , the
cross synchrosqueezed wavelet transform (XSWT) is defned
as follows [55]:

T1,2(η, b) � T1(η, b)∗T2(η, b)
∗
. (5)

Te synchrosqueezed wavelet power of the XSWT is
|T1,2(η, b)|. Ten, the SWTC matrix Rv of the velocity
measurement pair can be obtained by normalizing and
smoothing |T1,2(η, b)| [58]:

Rv �
S η− 1

T1,2(η, b) 




S η−1
T1,1(η, b)


  · S η−1

T2,2(η, b)


 



, (6)

where S is the smoothing function that prevents Rv � 1 at all
scales and times and η− 1 is the factor to convert the wavelet
power to energy density [65]. Te smoothing function S is
expressed as follows:

S(W) � Sscale Stime(W)( , (7)

where Sscale and Stime are smoothing operations along the
wavelet scale axis and time axis, respectively. Te smoothing
functions Sscale and Stime should have a similar footprint as
used by the wavelet; therefore, Sscale and Stime used in the
Morlet wavelet are defned as follows [55]:

Stime(T(η, b))|η � (T(η, b)∗ e
− t21/2η

2 η
, (8)

Sscale(T(η, b))|b � (T(η, b)∗Π(cb)), (9)

where t1 denotes the smoothing range. Considering the
length of AE signals (1024 signal points), the smoothing
range is set to [−30, 30], which can keep a good balance
between frequency resolution and signifcance [55]; c is the

scale decorrelation length for the Morlet wavelet, and it is
set to 0.6 [54]; Π is the rectangle function. Equations
(4)–(9) are similar to the equations of theWTC recognition
method [55, 58], but the coefcients T, T1, and T2 in the
above equations are obtained by the SWT. By suppressing
the spectral leakage, the coherence matrix Rv obtained by
the SWTC can more accurately characterize the similarity
of the velocity measurement pair than the WTC. Te
improved ability to characterize similarity will be verifed
by an AE localization experiment described in the Section
“Recognition Accuracy of the SWTC Recognition
Method.”

In order to reduce the infuence of subjective factors in
observing the coherence graphs, the SWTC coefcient of the
coherence matrix Rv is proposed. Te element Ri,j

v indicates
the similarity of the AE signals x1 and x2 at the ith line and jth

column in the coherence matrix Rv. Te line and column of
the coherence matrix Rv correspond to the frequency and
time, and thus Ri,j

v is a gauge for the similarity in the time-
frequency domain. Hence, the average value of the co-
herence matrix RSWTC

v can also refect the similarity of the
velocity measurement pair x1, x2  in the time-frequency
domain:

cv � 
M

i�1

N

j�1
R

i,j
v (ξ, b)

M∗N

, (10)

where M and N are the total numbers of lines and columns
of the coherence matrix Rv, respectively. cv is denoted as the
SWTC coefcient of the velocity measurement pair. Simi-
larly, the SWTC coefcient cl of the localization pair can be
obtained in the same way. According to the Schwartz in-
equality [66], the range of the SWTC matrix is between
[0, 1]; thus, the range of cv and cl are also between [0, 1]. In
this range, 0 means low coherency and 1 means high co-
herency, with higher coherency of signals denoting higher
similarity.

Terefore, the SWTC coefcients of g1, g2, · · · , gn  can
be expressed as follows:

gl � cl,1, cl,2, · · · , cl,n , (11)

gv � cv,1, cv,2, · · · , cv,n . (12)

Te mean values of gl and gv are defned as follows:

squeezing and reassigning

a

b b

a1

a2

b1 b1

1/ω1
ω1

ω

ξ
ξ

Figure 3: Te process of squeezing and reassigning.
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meanl � mean gl  � mean cl,1, cl,2, · · · , cl,n , (13)

meanv � mean gv  � mean cv,1, cv,2, · · · , cv,n . (14)

If a localization group satisfes the following:

cl,i ≥meanl, (15)

cv,i ≥meanv, (16)

the localization group will be regarded as the homologous
signal group. Ten, the time diference ∆t among the ho-
mologous signal group is calculated by the SWT picker
method [21], and the damage location can be obtained by the
following equation:

xi − x( 
2

+ yi − y( 
2

+ zi − z( 
2

� v
2∆t

2
, (17)

where x, y, and z are each the damage location; xi, yi, and zi
are each the sensor location; and v is the wave velocity of the
AE signal. Terefore, localization accuracy can be improved
by recognizing the localization groups composed of the
homologous signals. Furthermore, since the noise is
a nonhomologous signal, this recognition process can also
flter out the noise.

To sum up, the SWTC recognition method can improve
the accuracy in recognizing homologous signals and lo-
calization accuracy by suppressing the spectral leakage and
quantifying the coherencymatrix. In addition, by combining
the time-order method, the SWTC recognition method can
also improve computational efciency. An AE localization
experiment is used to test the proposed method in the
following section.

3. AE Localization Experiment

3.1. Experimental Setup. A steel pipe and a concrete beam
served as test specimens. As shown in Figures 4 and 5(a), the
inside and the outer diameter of the steel pipe are 78.9 and
88.9mm, respectively, and the length is 3000mm. Te
possible locations of AE sources (the red dots in Figure 4) are
assumed to be distributed near the center of the pipe and are
separated from each other by 20mm. Te AE signals gen-
erated from the AE sources propagate along the steel pipe
and are received by the AE sensors (the red rectangles in
Figure 4). Five localization distances, including 330mm,
550mm, 770mm, 1210mm, and 2130mm, are selected for
testing in the experiment.

Te size of the concrete beam is 900 × 115 × 80mm, as
shown in Figures 5(b) and 6. Te strength of the concrete is
graded at C60 with its detailed composition listed in Table 1.
Te locations of manual AE sources (the red dots in Figure 6)
are also distributed near the center of the concrete beam and
are separated from each other by 20mm. Te possible lo-
cations of AE sources (the red dots in Figure 6) are assumed
to be distributed along the concrete beam and are separated
from each other by 20mm. Due to the size limitation of the
concrete beam, only two localization distances, including
330mm and 550mm, are tested in the experiment.

A PCI-2 8-channel AE system (Physical Acoustic Cor-
poration) interrogated four R6a AE sensors (Physical
Acoustic Corporation) is shown in Figure 5. Te AE sensors
have a 35–100 kHz frequency band and a resonance fre-
quency of 55 kHz. Since the approximate range of damage
sources can be preliminarily determined, the distributions of
sensors are shown in Figure 5, and the detailed information
is shown in Figures 4 and 6. According to the authors of
[21, 67], the preamplifer is type 2/4/6 (Physical Acoustic
Corporation), and its gain and threshold are set to 40 dB and
45 dB, respectively.

As the damage in the specimen grows, the density of
collected AE signals gradually increases. However, pencil
lead fracture (PLF) [68], a standardmethod of simulating AE
signals, has long interval times and thus only acts on low-
density AE signals. To solve this problem, the authors of
[21, 69] proposed ball dropping and wrench knocking to
simulate the high-density AE signals. In this experiment,
PLF is used to simulate low-density AE signals, and wrench
knocking (for the steel pipe) and ball dropping (for the
concrete beam) are used to simulate high-density AE signals.

Te main valuable components of signals are preserved
to maintain higher recognition accuracy, while noise
components are fltered out. Figure 7 shows the waveform
and spectrogram of an AE signal, and it can be found that the
energy is concentrated in the 7–70 kHz. Hence, in the fre-
quency domain, the SWTC coefcient and the WTC co-
efcient are calculated in the range of 7–70 kHz (horizontal
red diamond-dashed lines in Figure 7(b)) and thereby avoid
noise. In the time domain, the starting point (vertical black
triangle-dashed line in Figure 7) is identifed by the double-
AIC method. Te endpoint (vertical orange x-dashed line in
Figure 7) corresponds to 0.000556 s.Te selection of the area
within these points can help minimize the interference of
refected and refracted waves. As illustrated in Figure 7, the
computing intervals of the NCC and DTW are between the
vertical black triangle-dashed line and orange x-dashed line
in Figure 7(a); the computing intervals of the WTC rec-
ognition and SWTC recognition methods are the rectangles
enclosed by the above four lines in Figure 7(b). For this
signal, four methods use the same computing interval of
0.00031 s. In practical engineering, the parameters of
computing intervals can be easily obtained from the pre-
experiment in the laboratory. Furthermore, the central
frequency of the complex Morlet wavelet is 0.955Hz which
can provide a good balance between the time and frequency
localization [61].

In the following section, the experimental results are
sequentially used to test the recognition accuracy and the
localization accuracy of the SWTC recognition method,
respectively. Te localization error gauges the recognition
accuracy of the SWTC recognition method, where a lower
localization error denotes higher recognition accuracy. Te
results of the proposed method are compared with those of
three other similarity recognition methods (i.e., the NCC
recognition method, the DTW recognition method, and the
WTC recognition method). A part of collected AE signals is
used to compare the computing time between the traditional
recognition methods and the SWTC recognition method.

Structural Control and Health Monitoring 5
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Figure 4: Detailed dimensions of the steel pipe (unit: mm).
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Figure 5: Photographs of the experiments and the AE devices: (a) steel pipe experiment and (b) concrete beam experiment.
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Figure 6: Detailed dimension of the concrete beam (unit: mm).

Table 1: Te components of C60 concrete.

Components Water (%) Cement (%) Granite (%) Sand (%) Fly ash
(%) Superplasticizer (%)

Rate 5.88 15.83 49.82 25.63 2.48 0.36
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3.2. Recognition Accuracy of the SWTC Recognition Method.
For verifying the recognition accuracy of the SWTC rec-
ognition method, fve testing groups are selected from the
above experiment. Each testing group contains 20 pairs of
homologous AE signals, which are randomly selected from
the sensors s2 and s3, as shown in Figures 4 and 6. Te 20
pairs of homologous AE signals are divided into two groups:

group1 � s1,1, s2,1, · · · , sm,1 , (18)

group2 � s1,2, s2,2, · · · , sm,2 , (19)

where si,1 and si,2 are a pair of homologous AE signals, which
indicate high similarity, and m � 20.

Ten, by sequentially computing the similarity values
simj between the AE signals sj,1 from group1 and all AE
signals from group2, the results can be expressed as follows:

simj � r1,j, r2,j, · · · , rm,j  � rk,j, (20)

where j � 1, 2 · · · m{ } and k � 1, 2 · · · m{ }. Tis similarity
computing process is called the jth match. If the maximum
value rmax

k,j of simj satisfes k � j in the jth match, the match
will be regarded as a successful match. However, when using
DTW to calculate the similarity values, it should choose the
minimal value rmin

k,j of simj to check whether the value satisfes
k � j in the jth match. Te rate of successful matches is

rate �
n

N
, (21)

where n is the number of successful matches and N is the
total number of matches. In the following sections, the
results of the SWTC recognition method are compared with
those of other similarity recognition methods, including the
NCC, DTW, and WTC recognition methods.

Te results are shown in Figure 8, and the detailed
information is listed in Table 2. Te NCC and DTW
recognition methods have similar successful match rates,
which are around 50%. Te low successful match rates
suggest that the two time domain similarity recognition
methods are unsuitable for identifying homologous AE
signals. Compared with the NCC and DTW recognition
methods, the WTC recognition method has better suc-
cessful match rates (around 70%) because the WTC
recognition method extends the analysis domain from the
time domain to the time-frequency domain. Te SWTC
recognition method further improves the successful math
rate to be around 80%.

Te observed diference in successful match rates
among the WTC and SWTC recognition methods can be
attributed to the spectrum leakage, which blurs the time-
frequency graph in the WTC recognition method. As
shown in Figure 9(a), two AE signals are selected from
the above experiment, and the computing intervals of
SWTC and WTC coefcients are identical (as shown in
Figure 7). Te two AE signals are nonhomologous, which
means the coherence value between the two signals
should be low. Figure 9(b) shows the time-frequency
graph transformed by WTC. Te fgure shows that the
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Figure 7: Te computing interval of the four recognition methods: (a) time domain and (b) time-frequency domain.
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spectrum leakage causes the wavelet energy to be vaguely
distributed across 10–100 kHz.Te vague time-frequency
graph further causes the coherency coefcient to difuse
in the coherency graph (as shown in Figure 9(c)), which
in turn causes the WTC coefcient of the two AE signals
to be high (0.58). Figure 10 shows the results obtained by
the SWTC recognition method. Compared with the re-
sults of WTC (as shown in Figure 9), the SWTC efec-
tively improves the clarity of the time-frequency graphs
by concentrating the wavelet energy to central frequency.
Meanwhile, the clear time-frequency graph further en-
hances the accuracy of the coherence graph (as shown in
Figure 10(b)). Te SWTC coefcient of the two AE
signals is 0.19, which indicates low similarity. Terefore,
the SWTC recognition method is demonstrated to have
higher accuracy than the WTC recognition method in
determining the similarity of AE signals.

Te above results verify that the SWTC recognition
method yields higher accuracy than other methods in rec-
ognizing homologous signals. Hence, the SWTC recognition
method should have better localization accuracy than other
recognition methods (i.e., the NCC recognition method,
DTW recognition method, and WTC recognition method).
Te localization accuracy will be demonstrated in the fol-
lowing section.

4. Localization Accuracy of the SWTC
Recognition Method

4.1. Diferent Signal Densities. In this section, the above four
recognition methods (SWTC recognition method, NCC
recognition method, DTW recognition method, and WTC
recognition method) are applied to obtain the homologous
signals set from the collected signals. Ten, the SWT lo-
calization method is used to obtain the fltered location
values from the homologous signals set. Meanwhile, the
unfltered location values are obtained from the collected
signals.

Te mean absolute errors (MAE) of the localization
values in the low signal density experiments are shown in
Figure 11, and the improvement rates (IR) of the localization
values are listed in Table 3. Te MAE and IR are defned as
follows:

MAE �


N
i�1 lmea,i − ltrue,i




N
, (22)

IR �
MAEunfiltered − MAEfiltered

MAEunfiltered
, (23)

where lmea,i is the calculated localization value; ltrue,i is the
accurate localization value; N is the number of localization
values; MAEunfiltered is the MAE of unfltered location values,
and MAEfiltered is the MAE of fltered location values.
Trough observing equations (22) and (23), it can be found
that lower MAE indicates higher localization accuracy and
higher IR indicates higher recognition accuracy.

TeMAE (31.74mm) of the DTW recognition method is
close to the original MAE (32.21mm), which causes the IR of
the DTW recognition method to be only 1.48%. Te NCC
recognition method, which operates in the time domain,
demonstrated a better performance by improving the MAE
and IR to 29.59mm and 8.13%, respectively. However, the
time-frequency similarity recognition methods have higher
IR and lower MAE than the time domain similarity rec-
ognition methods.TeMAE and IR of theWTC recognition
method are 17.17mm and 46.69%, respectively. Te SWTC
recognition method has the lowest MAE (10.67mm) and the
highest IR (66.86%) out of the four recognition methods,
demonstrating that the SWTC has superior recognition
accuracy.

Te same conclusion can also be obtained from the high
signal density experiment (as shown in Figure 11 and
Table 3). Te SWTC recognition method has the best
recognition accuracy by providing the lowest MAE
(13.77mm) and highest IR (56.28%). However, in the
SWTC recognition method, the IR (56.28%) of the high
signal density experiment is lower than that of the one of
the low signal density experiment (66.86%). To assist in
understanding this problem, the SWTC recognition
method results obtained from the steel pipe experiment and
concrete beam experiment are listed in Tables 4 and 5,
respectively. Te mean amplitudes for low and high signal
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Group 2 Group 3 Group 4 Group 5Group 1
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Figure 8: Te successful match rates of the fve tested groups.

Table 2: Te successful match rates of the fve tested groups.

Test groups NCC (%) DTW (%) WTC (%) SWTC (%)
Group 1 50 50 65 75
Group 2 60 60 75 80
Group 3 50 60 65 75
Group 4 45 45 65 75
Group 5 60 60 75 85
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Figure 9: Te results of the WTC method: (a) waveforms of two AE signals, (b) WTC time-frequency graphs, and (c) WTC coherency
spectrogram.
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Figure 10: Te results of the SWTC method: (a) SWTC time-frequency graphs and (b) SWTC coherency spectrogram.
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densities in the steel pipe experiment and concrete ex-
periment are also listed in Tables 4 and 5, respectively. Te
tables show that the mean amplitudes of the steel pipe
experiment are similar (around 84 dB) regardless of signal
density, and the IRs are also similar (around 67%). In
contrast, in the concrete beam experiment, the IR (41.63%)
and mean amplitude (87.71 dB) of the low signal density
experiment are larger than those of the high signal density
experiment (26.2% and 77.17 dB). Te lower amplitude of
signals means more severe attenuation in transmission,
which is not benefcial to the identifcation of homologous
signals. Hence, the problem can be attributed to the low
mean amplitudes of the high signal density in the concrete
beam experiment. In summary, the SWTC recognition

method is better than other recognition methods in im-
proving the localization accuracy across diferent signal
densities by efectively fltering out nonhomologous
signals.

4.2. Diferent Location Distances. Figure 12 shows the
MAEs of four recognition methods in diferent locali-
zation distances, and the detailed information is listed in
Table 6. Since the concrete beam experiment only has two
localization distances (0.33 and 0.55 m), the data in the
frst two localization distances (0.33 and 0.55 m) contain
the results from the steel pipe experiment and the
concrete beam experiment. Furthermore, the data in the
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Figure 11: Te MAEs of the four recognition methods in diferent densities.

Table 3: Te MAEs and IRs of the four recognition methods for low and high densities.

Densities
MAE (mm) IR (%)

Original NCC DTW WTC SWTC NCC DTW WTC SWTC
Low density 32.21 29.59 31.74 17.17 10.67 8.13 1.48 46.69 66.86
High density 31.49 19.96 30.09 18.00 13.77 36.61 4.44 42.82 56.28

Table 4: Te MAEs and IRs of diferent densities in the steel pipe experiment.

Densities
MAE (mm) IR (%) Amplitude (dB)

Original SWTC SWTC
Low density 40.18 12.51 68.87 84.44
High density 38.77 13.16 66.06 83.97

Table 5: Te MAEs and IRs of diferent densities in concrete beam experiment.

Densities
MAE (mm) IR (%) Amplitude (dB)

Original SWTC SWTC
Low density 10.19 5.95 41.63 87.71
High density 20.46 15.10 26.20 77.17
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later three localization distances (0.77, 1.21, and 2.13 m)
only contain the results from the steel pipe experiment.

With the increase in localization distances, the MAEs of
the SWTC recognition method are always the lowest
among the four recognition methods. Te SWTC IR curve,
as shown in Figure 12(b), is also almost above 50%. Par-
ticularly, in the steel pipe experiment, as shown in Figure 13
and Table 7, the SWTC MAEs reduced signifcantly in the
frst two localization distances compared to the results of
Table 6, and the IR curve, as shown in Figure 13(b), is
almost above 60% in fve localization distances. Te reason
for such performance is discussed in the following section.
Compared with other recognition methods, the DTW

recognition method has the highest MAEs in the later four
localization distances, and the IR curve is below 10% in all
localization distances. Particularly at 2.13m, the IR of the
DTW recognition method is negative, which means that
the DTW enlarges the localization errors. Te same situ-
ation also occurred for the NCC recognition method at
0.33m. Tese results indicate that the DTW recognition
method and NCC recognition method cannot efectively
recognize the homologous signals. Te above discussion
shows that the time-frequency similarity recognition
methods outperform the time domain similarity recogni-
tion methods in the fve localization distances. For the
diferent localization distances, the SWTC recognition

Table 6: Te MAEs and IRs of the four recognition methods in diferent localization distances.

Distance
(m)

MAE (mm) IR (%)
Original NCC DTW WTC SWTC NCC DTW WTC SWTC

0.33 17.90 18.36 16.41 12.99 9.30 −2.53 8.34 27.44 48.06
0.55 24.34 22.32 23.36 14.67 10.65 8.31 4.03 39.71 56.24
0.77 30.73 17.47 28.61 14.16 10.06 43.15 6.91 53.93 67.25
1.21 46.99 32.62 42.06 30.39 19.59 30.58 10.48 35.33 58.31
2.13 49.70 31.28 52.55 28.79 20.55 37.06 −5.74 42.07 58.66
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Figure 12:Te results of diferent localization distances: (a) theMAE histogram of the four recognition methods and (b) the IR curves of the
four recognition methods.

Table 7: Te MAEs and IRs of diferent localization distances in the steel pipe experiment.

Distance
(mm)

MAE (mm) IR (%)
Original NCC DTW WTC SWTC NCC DTW WTC SWTC

0.33 16.22 17.36 14.64 8.88 5.83 −7.01 9.79 45.29 60.04
0.55 35.26 30.60 33.98 13.59 8.23 13.20 3.61 61.45 76.65
0.77 30.73 17.47 28.61 14.16 10.06 43.15 6.91 53.93 67.25
1.21 46.99 32.62 42.06 30.39 19.59 30.58 10.48 35.33 58.31
2.13 49.70 31.28 52.55 28.79 20.55 37.06 −5.74 42.07 58.66
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Figure 13: Te results of diferent localization distances in the steel pipe experiment. (a) Te MAEs histogram of the four recognition
methods and (b) the IRs curves of the four recognition methods.
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Figure 14: Te MAEs of the four recognition methods in the steel pipe and concrete beam.

Table 8: Te MAEs and IRs of the four recognition methods in the steel pipe and concrete beam.

Material
MAE (mm) IR (%)

Original NCC DTW WTC SWTC NCC DTW WTC SWTC
Steel pipe 39.29 24.97 37.63 18.75 12.89 36.45 4.22 52.29 67.19
Concrete beam 17.98 18.42 16.33 15.8 12.82 −2.42 9.19 12.12 28.68
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method efectively reduces localization errors by fltering
out the nonhomologous signals, thus indicating the
method can accurately identify homologous signals.

4.3. Diferent Materials. Te experimental results from the
steel pipe and concrete beam are shown in Figure 14, and the
detailed information is listed in Table 8. Compared with
other recognition methods, the SWTC recognition method
has demonstrated its superior recognition accuracy by
providing the lowest MAEs and highest IRs in the two tested
material specimens. However, the IR of the SWTC recog-
nition method in the steel pipe experiment is larger than that
in the concrete beam experiment, and the same situation also
occurred for the NCC and WTC recognition methods. Te
reason can be attributed to the inhomogeneity of concrete.
Inhomogeneity in the material can cause severe frequency
dispersion and severe attenuation when the stress wave
propagates through the material. Te dispersion and at-
tenuation can unpredictably modulate the energy distri-
bution in the time-frequency matrix and cause the coherent
matrix to be inaccurate. Te IRs of the DTW recognition
method are below 10% in both the steel pipe and concrete
beam, which means that this method cannot accurately
identify the homologous signals. In summary, the SWTC
recognition method efectively improves the localization
accuracy by fltering out the nonhomologous signals for both
tested materials, including one that is inhomogeneous.

5. Discussion

Te analysis of the above results shows that the DTW and
NCC recognitionmethods have highMAEs and low IRs, and
they fail to identify the homologous signals accurately and
cannot improve the localization accuracy. Te WTC rec-
ognition method ofered improved recognition than the
above two recognition methods. However, the proposed
SWTC recognitionmethod has the lowest MAEs and highest
IRs regardless of signal density, location distance, and
material. Tus, this method has the best recognition accu-
racy of homologous signals and localization accuracy among
the four tested recognition methods. Te conclusion of the
section is consistent with the Section “Recognition Accuracy
of the SWTC Recognition Method.”

To verify the computational efciency of the proposed
SWTC recognition method, 40 AE signals are randomly
selected from the above AE localization experiment. Te
computer CPU is an Intel Core i5-6402P, and the computing
software is Matlab R2018a (MathWorks). Te computing
time taken by the traditional algorithm is 515.74 s, and that
of the SWTC recognition method is only 10.19 s. Terefore,
the SWTC recognition method efectively reduces the
computing time.

6. Conclusion

In this study, a novel SWTC recognition method is proposed
to improve the recognition accuracy of homologous AE
signals. Te spectral analysis of AE signals shows that the
proposed recognition method can obtain the explicit

coherence graph of AE signals by efectively suppressing the
spectral leakage in the time-frequency graph. Ten, the
SWTC coefcient obtained from the explicit coherence
graph can reduce the infuence of subjective factors. Two AE
localization experiments were implemented on a steel pipe
and a concrete beam to test the proposed recognition
method.Te results demonstrate that the SWTC recognition
method has the best recognition accuracy among the four
tested recognition methods and further improves the AE
localization accuracy across diferent materials, signal
densities, and localization distances by fltering out non-
homologous signals. In particular, for the steel pipe ex-
periment, the improving rate ofered by the SWTC
recognition method is above 60%, which is much higher
than that of the other recognition methods. Hence, the
SWTC recognition method can improve localization accu-
racy by accurately fltering out the nonhomologous AE
signals.

However, the proposed method also has some limita-
tions. Te selection of the frequency bands for fltering and
calculation range requires prior information about the
structure and its boundary conditions; the damage size and
shape could not be identifed. In future research, there are
plans to combine the clustering technique and active de-
tection technique with the SWTC recognition method. Tis
integration aims to automatically search for the appropriate
calculation range in the scalogram and assess the shape of
the damage. To validate the efectiveness of the proposed
method, extensive experiments will be conducted on large-
scale specimens. Furthermore, the accurate damage source
and AE parameters will be used to convert the time-
frequency domain to the wavenumber-frequency domain,
which can show more information about the damage. Te
types and degree of damage will be easily identifed in the
wavenumber-frequency domain.
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