Research Article

Bcl-xL Genetic Modification Enhanced the Therapeutic Efficacy of Mesenchymal Stem Cell Transplantation in the Treatment of Heart Infarction

Xiaodong Xue,1 Yu Liu,1,2 Jian Zhang,1 Tao Liu,1 Zhonglu Yang,1 and Huishan Wang1

1 Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, Shenyang Northern Hospital, Wenhua Road No. 83, Shenhe District, Shenyang 110016, China
2 Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032, China

Correspondence should be addressed to Huishan Wang; huishanw@126.com

Received 19 August 2014; Revised 4 November 2014; Accepted 11 November 2014

Academic Editor: Sadia Mohsin

Copyright © 2015 Xiaodong Xue et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Objectives. Low survival rate of mesenchymal stem cells (MSCs) severely limited the therapeutic efficacy of cell therapy in the treatment of myocardial infarction (MI). Bcl-xL genetic modification might enhance MSC survival after transplantation. Methods. Adult rat bone marrow MSCs were modified with human Bcl-xL gene (hBcl-xL-MSCs) or empty vector (vector-MSCs). MSC apoptosis and paracrine secretions were characterized using flow cytometry, TUNEL, and ELISA in vitro. In vivo, randomized adult rats with MI received myocardial injections of one of the three reagents: hBcl-xL-MSCs, vector-MSCs, or culture medium. Histology, TUNEL, and echocardiography were carried out to evaluate cell engraftment, apoptosis, angiogenesis, scar formation, and cardiac functional recovery. Results. In vitro, cell apoptosis decreased 43%, and vascular endothelial growth factor (VEGF), insulin-like growth factor-1 (IGF-1), and plate-derived growth factor (PDGF) increased 1.5-, 0.7-, and 1.2-fold, respectively, in hBcl-xL-MSCs versus wild type and vector-MSCs. In vivo, cell apoptosis decreased 40% and 26% in hBcl-xL-MSC group versus medium and vector-MSC group, respectively. Similar results were observed in cell engraftment, angiogenesis, scar formation, and cardiac functional recovery. Conclusions. Genetic modification of MSCs with hBcl-xL gene could be an intriguing strategy to improve the therapeutic efficacy of cell therapy in the treatment of heart infarction.

1. Introduction

Cell transplantation has emerged as a promising therapeutic approach for the restoration of heart function after myocardial infarction. Bone marrow mesenchymal stem cells (MSCs) are self-renewing, multipotent precursors of non-hematopoietic stromal tissues. Under appropriate conditions, MSCs can be induced to differentiate into multiple cell lines, which includes osteoblasts, chondrocytes, adipocytes [1], skeletal muscle cells [2], cardiomyocytes [3], hepatocytes [4], and neural cells [5]. MSCs were demonstrated to be able to promote angiogenesis and the survival of ischemic cardiomyocytes through the paracrine production of various cytokines [6, 7]. Furthermore, it was shown that MSCs are immunosuppressive favoring the inhibition of inflammatory responses and the future fibrosis of the injured heart tissue [8, 9]. MSCs can be easily isolated from the bone marrow or adipose tissue and expanded in vitro based on their ability to adhere to culture dishes. Therefore, MSCs appear to be an appealing cell source for transplantation therapy in myocardial infarction.

However, within the first few days after transplantation, the low survival rate of MSCs incurred from the deleterious microenvironment of ischemia, inflammatory response, and proapoptotic factors severely holds back the therapeutic effects on the cardiomyocytes restoration [3, 10]. Thus, it is necessary to reinforce MSCs to improve the efficacy of cell therapy. Evidences have demonstrated that genetic modification of MSCs with survival [11] or antiapoptotic [12] genes can improve the viability of the transplanted MSCs and results in a better homing of MSCs into the ischemic microenvironment, thus enhancing the cardiac functional recovery after acute myocardial infarction.
Bcl-xL and Bcl-2 are important regulators of cell apoptosis, both of which belong to the Bcl-2 protein family. It was demonstrated that the adenoviral mediated expression of human Bcl-xL (hBcl-xL) gene in rat heart can inhibit the apoptosis of ischemic cardiomyocytes after myocardial infarction and can prolong the cold preservation time period for cardiac transplants [13, 14]. And, also, it was reported that infarction and can prolong the cold preservation time period for cardiactransplants [13, 14]. And, also, it was reported that infarction and can prolong the cold preservation time period after myocardial infarction. We proposed that genetic modification of MSCs with hBcl-xL gene could help to improve the viability of MSCs after transplantation into the ischemic heart and thereby lead to a better therapeutic effect on acute myocardial infarction.

2. Materials and Methods

2.1. Recombinant Lentivirus Construction. To construct the lentiviral expression vector pLenti6.3-IRES2-EGFP, the coding sequence of internal ribosome entry site- (IRES-) enhanced green fluorescent protein (EGFP) was inserted into the XhoI site downstream to the multiclonal site (MCS) region of pLenti6.3 CMV/VS DEST (Invitrogen, Carlsbad, CA, USA). To generate the expression vector pLenti6.3-hBcl-xL-IRES2-EGFP, the 703bp PCR product of hBcl-xL cDNA flanked with an AscI and a Pmel restriction site at the 5′ and the 3′ end, respectively, was inserted in frame into the equivalently cut vector pLenti6.3-IRES2-EGFP under the control of the human cytomegalovirus (CMV) promoter. A Kozak consensus translation initiation site was added immediately before the start codon of hBcl-xL coding sequence to further increase the translation efficiency in eucaryotic cells. In this vector, the coding region for IRES could lead to the individual expression of EGFP together with the expression of hBcl-xL in the transduced cells.

2.2. Cell Transduction. Sprague-Dawley (SD) rat bone marrow MSCs (Cyagen Biotechnology, Guangzhou, China) were seeded into 6-well plates and cultured in low glucose Dulbecco’s modified eagle medium (DMEM-LG) (Gibco, Grand Isle, NY, USA) supplemented with 10% fetal bovine serum (Gibco, Mulgrave, VIC, Australia), 100 U/mL penicillin, and 100 mg/mL streptomycin. When the cells were 50% confluent, the recombinant lentiviral construction pLenti6.3-hBcl-xL-IRES2-EGFP and the empty vector pLenti6.3-IRES2-EGFP were separately added into the culture medium at MOI = 50. Transductions were carried out for 24 h at 37°C; then the virus-containing medium was aspirated and the cells were cultured in fresh medium. Stably transduced cells were selected by adding 1 μg/mL Blasticidin (Calbiochem, Billerica, MA, USA) into the culture medium.

2.3. Cell Imaging. 5 × 10^5 cells from each group of wild type MSCs, vector-MSC, and hBcl-xL-MSC were seeded into 6-well plate and cultured at 37°C for 24 hours. Cells were examined under an IX81 inverted microscope (Olympus, Tokyo, Japan) and photos were captured using a DP73 CCD digital camera (Olympus, Tokyo, Japan).

2.4. Western Blot Analysis. Cells were treated with RIPA lysis buffer (50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1% Triton X-100, 1% sodium deoxycholate, 0.1% sodium dodecyl sulfate, 2 mM sodium pyrophosphate, 25 mM β-glycerophosphate, 1 mM EDTA, 1 mM Na_2VO_4, and 0.5 μg/mL leupeptin). The protein concentration of the samples was determined using Pierce BCA Protein Assay Kit (Thermo Scientific, Rockford, IL, USA). Proteins were resolved by 10–13% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to 0.22μm polyvinylidene difluoride (PVDF) membrane (EMD Millipore, Billerica, MA, USA) and probed with the first antibodies at 4°C overnight and then washed and incubated with horseradish peroxidase conjugated goat anti-rabbit IgG (Santa Cruz Biotech, Dallas, TX, USA) for 1 hour at room temperature. Reactive bands were developed and enhanced by SuperSignal West Pico chemiluminescence detection reagents according to the instructions of the manufacturer (Thermo Scientific, Rockford, IL, USA). The first antibodies used were polyclonal rabbit anti-Bcl-xL antibody (Cell Signaling Tech, Boston, MA, USA), polyclonal rabbit anti-cleaved caspase-3 antibody (Cell Signaling Tech, Boston, MA, USA), polyclonal rabbit anti-GAPDH antibody (Bioworld Tech, St. Louis Park, MN, USA) (loading control), and polyclonal rabbit anti-β-actin antibody (Bioworld Tech, St. Louis Park, MN, USA) (loading control).

2.5. Immunophenotypic Characterization. Cells were rinsed twice with PBS, trypsinized, and centrifuged at 200 × g for 5 min and then resuspended in 500 mL PBS. Approximately 5 × 10^6 cells per 100 mL were labeled with primary mouse antibodies against rat CD29, CD90, CD44, CD34, and CD45 at 4°C for 30 min and washed. The labeled cells were analyzed with a BD FASArria Cell Sorter (Beckton Dickinson, San Jose, CA, USA). The antibodies used in this experiment were CD29-FITC, CD90-FITC, CD44-FITC, CD34-FITC, and CD45-FITC (Beckton Dickinson, San Jose, CA, USA). Mouse IgG1-FITC (Beckton Dickinson, San Jose, CA, USA) was used as an isotype control.

2.6. Annexin V/Propidium Iodide (PI) Flow Cytometry Assay. 1 × 10^6 cells from each group of wild type MSCs, vector-MSC, and hBcl-xL-MSC were seeded into T25 flasks and were cultured in medium with 200 μM PERDROGEN (H_2O_2) (Sigma, Santa Clara, CA, USA) at 37°C for 4 hours. After H_2O_2 treatment, Annexin V/PI apoptosis assay was performed using Annexin V-FITC Apoptosis Detection Kit I (Beckton Dickinson, San Jose, CA, USA). Briefly, cells were collected and washed in phosphate buffered saline (PBS) for two times and then resuspended in 500 μL Binding Buffer. The resuspended cells were incubated with Annexin V-FITC and PI for 15 min and checked with a BD FASArria Cell Sorter (Beckton Dickinson, San Jose, CA, USA).
2.7. Enzyme-Linked Immunosorbent Assay (ELISA). MSCs were cultured in a normoxic condition of 95% air and 5% carbon dioxide or a hypoxic condition of 95% nitrogen and 5% oxygen at 37°C for 24 hours. To assess the secretion of vascular endothelial growth factor (VEGF), insulin-like growth factor-1 (IGF-1), and plate-derived growth factor (PDGF), the conditioned medium was collected from wild type MSCs, vector-MSCs, and hBcl-xL-MSCs, respectively, and ELISA was performed using the VEGF Rat ELISA Kit (Abcam, Cambridge, Camb, UK), PDGF-AA Rat ELISA Kit (Abcam, Cambridge, Cambs, UK), and IGF-1 Rat ELISA Kit (Abnova, Taipe, Taiwan) according to the manufacturers’ protocol. The optic density (OD) value of each sample was read on an ELX-800 absorbance microplate reader (Biotek, Winooski, VT, USA) and adjusted with the TMB empty control. The concentration of each sample was calculated according to the standard curve.

2.8. Myocardial Infarction and MSC Transplantation. All animals were treated according to the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH publication number 85-23, revised 1996) and all animal protocols were approved by the Animal Care and Use Committee of the General Hospital of Shenyang Military Area Command, Shenyang, China. Male SD rats weighing 280 g to 300 g were divided into three groups (medium group, vector-MSC group, and hBcl-xL-MSC group). Rats were anesthetized by intraperitoneal injection with pentobarbital (50 mg/kg), intubated via an endotracheal cannula, and mechanically ventilated. A left lateral thoracotomy was performed. The proximal portion of LAD artery was ligated with a 6-0 Prolene (Ethicon, Somerville, NJ, USA) suture. Immediately after ligation, a pale area was observed in the front wall of the left ventricle (LV) indicating a successful infarction. Following the ligation, animals received six subepicardial injections of vector-MSCs or hBcl-xL-MSCs around the infarction region. For each injection, 1×10^6 cells were suspended in 50 μL culture medium and injected into the 1.0 mm wide border region surrounding the infarcted heart muscle (considered to be border zone) with a 31-gauge needle (Beckton Dickinson, San Jose, CA, USA). The medium group received injections of culture medium into the same area. The sham group received a left lateral thoracotomy without LAD ligation. Intramuscular penicillin G benzathine (100,000 U/kg) was used to prevent infection.

2.9. Determination of Cell Engraftment. One or four weeks after MSC transplantation, animals were sacrificed and the hearts were dissected. From each heart, five frozen sections were prepared crossing the midlevel of the infarcted area. The sections were all fixed in ice-cold acetone and washed in PBS. Heart sections made at 1 week after transplantation were directly mounted with ProLong Gold antifade reagent with DAPI (Invitrogen, Carlsbad, CA, USA). All sections were observed under a FV1000S-SIM/IX81 confocal microscope (Olympus, Tokyo, Japan). For each section, 10 high-power fields (HPF 400x) within the border zone were randomly selected and digitally photographed. Quantitative analysis of cell engraftment was performed with cellSens Entry software (Olympus, Tokyo, Japan). The integral optical density (IOD) of EGFP signal and total cell number in each microscopic field were calculated and cell engraftment was presented as the ratio of IOD and total cell number. An investigator blinded to the treatment performed the analysis.

2.10. In Vivo TUNEL Assay. Four weeks after MSC transplantation, animals were sacrificed and the hearts were dissected. Frozen sections were prepared from each heart crossing the midlevel of the infarcted region. TUNEL assay was performed as mentioned above and cell nuclei were counterstained with hematoxylin. For each slide, color images of 10 randomly chosen high-power fields (HPF 200x) within the border zone were captured and digitized under a BX53 microscope with a DP73 CCD digital camera (Olympus, Tokyo, Japan). Images were analyzed by an investigator who was blinded with respect to the MSC treatment. TUNEL-positive cells were defined as cells with clear brown-colored nuclear labeling. On each image, the total area of the brown-colored nuclei (area$_{brown}$) and the area of total cell nuclei (area$_{total}$) were calculated. The apoptotic index was represented as the ratio of area$_{brown}$ and area$_{total}$.

2.11. Evaluation of Capillary Density. For quantification of capillary density, 4 weeks after MSC transplantation, frozen sections were made from dissected hearts as mentioned above and stained with polyclonal rabbit anti-von Willebrand factor (vWF) antibody (Santa Cruz Biotech, Dallas, TX, USA) and horseradish peroxidase conjugated goat anti-rabbit IgG (Santa Cruz Biotech, Dallas, TX, USA). Cell nuclei were counterstained with hematoxylin. Microscopic pictures were captured under a BX53 microscope with a DP73 CCD digital camera (Olympus, Tokyo, Japan). Capillary density was analyzed by an investigator who was blinded with respect to the MSC treatment. Positively stained capillaries were counted in 10 randomly chosen high-power fields (HPF 400x) within the border zone in 5 sections per animal. And capillary density was presented as the average number of vessels per high-power field.

2.12. Evaluation of Infarction Size. Four weeks after MSC transplantation, animals were sacrificed and the hearts were removed. Frozen sections were prepared as mentioned above and stained with Trichrome-Masson method. In this method, the collagen fibers were stained in blue color while the cardiac muscle fibers were shown to be red and the cell nucleus was black-blue. Scar formation was assessed by the quantitative analysis of collagen deposition. Image acquisition was performed under a BX53 microscope with a DP73 CCD digital camera (Olympus, Tokyo, Japan). Three continuous cross sections on the central level of the scar from each heart were selected and the collagen deposition was quantified using...
cellSens Entry software (Olympus, Tokyo, Japan). Scar size was presented as the percentage of the collagen deposition area to the whole section area of the left ventricle. An investigator blinded to the treatment performed the analysis.

2.13. Echocardiography. Four weeks after MSC transplantation, transthoracic echocardiographic studies were performed on the anesthetized animals. Left ventricular dimension and function were assessed using a 12 MHz high frequency linear phased-array transducer (Philips SONOS 5500, Bothell, WA, USA) by a blinded investigator. Left ventricular end diastolic dimension (LVDD) and systolic dimensions (LVDS) were derived from two dimensionally targeted M-mode tracings obtained along the parasternal short-axis view of the left ventricle at the papillary muscle level. Left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) were calculated. All measurements were performed and averaged over three consecutive cardiac cycles.

2.14. Statistical Analysis. Data were analyzed using SPSS version 12.0 for Windows (SPSS, Chicago, IL, USA). All values were presented as mean ± standard deviation (SD). One-way analysis of variance with Tukey’s post hoc test was used to compare numeric data among the three experimental groups. Datasets consisting of two groups were compared with Student’s t-tests. A level of P < 0.05 was considered statistically significant.

3. Results

3.1. EGFP and hBcl-xL Expressed in Genetically Modified Rat MSCs. For the tracing of the genetically modified MSCs, we constructed expression vectors pLenti6.3-IRES2-EGFP and pLenti6.3-hBcl-xL-IRES2-EGFP (Figure 1(a)), where the individual expression of EGFP served as a tracking marker for the modified MSCs. To evaluate the expression of EGFP, wild type MSCs, vector-MSCs, and hBcl-xL-MSCs were seeded in a 6-well plate and cultured for 24 hours. Strong signals of EGFP were detected in vector-MSCs and hBcl-xL-MSCs while no signal was detected in wild type MSCs (Figures 1(b)–1(g)). Western blot analysis showed that the expression level of hBcl-xL in hBcl-xL-MSCs was remarkably higher than those in vector-MSCs and wild type MSCs (Figure 1(h)), which indicates the low level of endogenous expression of hBcl-xL in MSCs. Our results showed that both hBcl-xL-MSCs and vector-MSCs were successfully marked with EGFP and hBcl-xL-MSCs were successfully modified with hBcl-xL.

3.2. Immunophenotypic Characterization of Genetically Modified Rat MSCs. The surface marker expressions of the genetically modified bone marrow MSCs were identified by FCM analysis. It was shown that CD29, CD90, and CD44 were highly expressed in MSCs (Figures 2(b)–2(d)) while the markers for hematopoietic stem cells, CD34 (Figure 2(e)) and CD45 (Figure 2(f)), were not expressed. These expression patterns of the surface markers were similar to those of the primary cultured MSCs (see Supplementary Figure 1 in Supplementary Material available online at http://dx.doi.org/10.1155/2015/176409). This indicates that the genetic manipulation in this study did not alter the cell fate of the modified bone marrow mesenchymal stem cells.

3.3. Bcl-xL Modification Protected MSCs against Apoptosis In Vitro. To examine the antiapoptotic ability of hBcl-xL modified MSCs in vitro, wild type MSCs, vector-MSCs, and hBcl-xL-MSCs were treated with 200 μM H2O2 for 4 hours. Annexin V-FITC/(propidium iodide) PI apoptosis assay was carried out to evaluate cell apoptosis (Figures 3(a) and 3(b)). The results showed that the apoptotic rate of hBcl-xL-MSCs was significantly lower than those of wild type MSCs and vector-MSCs (10% ± 0.82% versus 21% ± 0.37% and 21% ± 0.13%, resp., n = 3, P < 0.05). These results demonstrated that hBcl-xL modification could protect MSCs against apoptosis under hypoxic conditions. We expected that hBcl-xL modification could also protect MSCs from apoptosis after transplantation into the infarcted myocardium.

3.4. Bcl-xL Modification Upregulated Angiogenic Cytokines in MSCs. Angiogenesis is a potential mechanism responsible for the therapeutic effect of MSC transplantation. We examined the MSC paracrine secretion of angiogenic cytokines VEGF, IGF-1, and PDGF. Wild type MSCs, vector-MSCs, and hBcl-xL-MSCs were cultured under either normoxic or hypoxic conditions for 24 hours. Cytokine secretions were examined by enzyme-linked immunosorbent assay (ELISA). The results showed that, under normoxic condition, the secretions of VEGF, IGF-1, and PDGF from hBcl-xL-MSCs were all significantly increased compared with wild type MSCs and vector-MSCs (increment: 1.5–1.9-fold for VEGF, 0.7–0.8-fold for IGF-1, and 1.2–1.3-fold for PDGF, n = 3, P < 0.05) (Figures 4(a)–4(c), normoxic). In response to hypoxia, angiogenic cytokine secretions were upregulated in all the three groups. The hypoxia-induced cytokine secretions of hBcl-xL-MSCs were much higher than those from wild type MSCs and vector-MSCs (increment: 0.6–0.7-fold for VEGF, 0.5-fold for IGF-1, and 1.1–1.3-fold for PDGF, n = 3, P < 0.05) (Figures 4(a)–4(c), hypoxic). These results suggested that hBcl-xL genetic modification could substantially enhance the angiogenic ability of MSCs, which may improve angiogenesis in the ischemic myocardium after MSC transplantation.

3.5. Bcl-xL Modification Increased the Engraftment of MSCs into Ischemic Myocardium. To evaluate the engraftment of MSCs into the ischemic heart muscle after transplantation, rat left anterior descending artery ligation models were established. Immediately after ligation, for each animal, totally, 6 × 10⁶ vector-MSCs or hBcl-xL-MSCs in culture medium were injected into the border zone of the infarcted myocardium. The medium group received injections of culture medium into the same area. The evaluation of MSC engraftment was carried out at 1 week and 4 weeks after cell transplantation. Frozen sections were made from the dissected hearts crossing the midlevel of the infarcted area. Figures 5(a)–5(n) showed representative images of the grafted MSCs in the hearts of rats sacrificed 1 week (Figures 5(a)–5(f)) or 4 weeks (Figures 5(g)–5(n)) following vector-MSCs (Figures 5(a)–5(c) and 5(g)–5(j)) or hBcl-xL-MSCs (Figures 5(d)–5(f) and 5(k)–5(n)) transplantation into the infarcted myocardium.
Figure 1: Expressions of EGFP and hBcl-xL in rat bone marrow MSCs. (a) Schematic representation of the coding regions of the viral vectors pLenti6.3-IRES-EGFP and pLenti6.3-hBcl-xL-IRES-EGFP. In vector pLenti6.3-hBcl-xL-IRES-EGFP, the insertion of IRES could lead to the individual expression of EGFP together with the expression of hBcl-xL in the transduced cells. All expressions were driven by CMV promoter. ((b)–(g)) Expressions of EGFP in wild type MSCs ((b) and (c)), vector-MSCs ((d) and (e)), and hBcl-xL-MSCs ((f) and (g)). (h) Western blot analysis of the expressions of hBcl-xL in MSCs, vector-MSCs, and hBcl-xL-MSCs. Data are representative of three independent experiments.
transplantation. Cell nuclei were stained with DAPI (Figures 5(a), 5(d), 5(g), and 5(k)). The grafted MSCs were detected by EGFP signals (Figures 5(b), 5(e), 5(h), and 5(l)). Because of the cytoplasmic distribution of EGFP, it appeared as irregular patches that spread around or colocalized with the DAPI signals (squared areas in Figures 5(c), 5(f), 5(j), and 5(n)). To show the myocardial engraftment of MSCs, the heart sections prepared 4 weeks after cell injection were also stained with anti-Troponin T (TnT) antibody, a marker for cardiomyocyte (Figures 5(i) and 5(m)). In each microscopic field, integral optical density (IOD) of EGFP signal was calculated. MSC engraftment was represented as the ratio of IOD and the total cell number (Figure 5(o)). The results showed that, at both 1 week and 4 weeks after cell transplantation, the number of grafted MSCs in the hBcl-xL-MSC group was significantly increased comparing with the vector-MSC group (increment: 21.3% at 1 week and 13.2% at 4 weeks, \(n = 6, P < 0.01 \)) (Figure 5(o)). These results suggested that hBcl-xL genetic modification could significantly increase the engraftment of MSCs after transplantation.

3.6. Bcl-xL Modification Protected MSCs against Apoptosis In Vivo. The increase in MSC engraftment into the ischemic myocardium suggested an antiapoptotic effect of hBcl-xL modification of MSCs in vivo. To assess the cellular protective effects of hBcl-xL modification of MSCs, 4 weeks after cell transplantation, animals were sacrificed and heart frozen sections were prepared as mentioned above. TUNEL assay was performed and the results showed that, in the border zone of the infarcted myocardium, the apoptotic rate in the hBcl-xL-MSC group was significantly lower than those of the medium group and the vector-MSC group (31% ± 1.4% versus 52% ± 1.8% and 42% ± 2.2%, resp., \(n = 6, P < 0.001 \)) (Figure 6). These results demonstrated that the hBcl-xL modification
could protect MSCs against apoptosis after transplantation into the infarcted myocardium. And the surviving MSCs could surely protect the surrounding infarcted myocardium from further damage, which was favorable for the recovery of heart function.

3.7. Bcl-xL Modified MSCs Promoted Angiogenesis and Prevented Scar Formation in Infarcted Heart. The above in vitro data showed that the hypoxia-induced cytokine secretions from hBcl-xL-MSCs were much higher than those from wild type MSCs and vector-MSCs. Thus, we expected that hBcl-xL genetic modification of MSCs could improve angiogenesis in the ischemic myocardium after MSC transplantation. To evaluate the angiogenic capacity of the hBcl-xL modified MSCs, 4 weeks after MSC transplantation, capillary density was determined in the border zone of the infarcted heart muscle by von Willebrand factor (vWF) staining (Figures 7(a)–7(c)). The results showed that the capillary densities in vector-MSC and hBcl-xL-MSC groups were significantly higher than in the medium group (23.7 ± 1.5 and 31 ± 1.0 versus 13 ± 1.1, vessels per HPF, n = 6, P < 0.001) (Figure 7(g)). And, also, the capillary density in hBcl-xL-MSC group was 31% higher than in vector-MSC group (n = 6, P < 0.01). These results demonstrated that the hBcl-xL

Figure 3: Antiapoptotic effect of hBcl-xL-MSCs in vitro. (a) Annexin V-FITC/PI apoptosis assay of wild type MSCs, vector-MSCs, and hBcl-xL-MSCs. Cells were seeded into T25 flasks and were cultured in medium with 200 μM H2O2 at 37°C for 4 hours. The resuspended cells were incubated with Annexin V-FITC and PI for 15 min and checked with a BD FAS AriA Cell Sorter. (b) The apoptotic rate was presented as mean ± SD (n = 3, *P < 0.05). PI: propidium iodide.
modification could significantly enhance the angiogenic capability of MSCs in vivo and thus effectively promote the revascularization of the ischemic heart muscle.

Scar formation which resulted from transmural myocardial infarction was a consistent outcome of the animal model of LAD ligation. Extensive collagen deposition was the basis for scar formation. In our animal models, 4 weeks after MSC transplantation, heart sections were stained with Trichrome-Masson method to assess scar formation (Figures 7(d)–7(f)). In this method, the collagen fibers were stained in blue color.
Figure 5: Engraftment of transplanted MSCs into infarcted myocardium. ((a)–(n)) Evaluation of MSC engraftment into the ischemic heart muscle at 1 week ((a)–(f)) and 4 weeks ((g)–(n)) after vector-MSCs ((a)–(c) and (g)–(j)) or hBcl-xL-MSCs ((d)–(f) and (k)–(n)) transplantation. Cell nuclei were stained with DAPI ((a), (d), (g), and (k)). The grafted MSCs were detected by EGFP signals ((b), (e), (h), and (l)) which appeared as irregular patches due to the cytoplasmic distribution of EGFP. The expanded squared areas in (c), (f), (j), and (n) indicate the MSC engraftments where the EGFP signals colocalized with DAPI. Myocardium was showed by Troponin T staining 4 weeks after cell injection ((i) and (m)). (o) MSC engraftment in vector-MSC group (dark grey bar) and hBcl-xL-MSC group (black bar) was presented as the ratio of IOD and total cell number per HPF. Values are mean ± SD (n = 6, *P < 0.01). EGFP: enhanced green fluorescent protein; DAPI: 4,6-diamino-2-phenylindole; IOD: integral optical density; HPF: high-power field. Scale bar represents 50 μm (c) and 30 μm (j), respectively.
3.8. Bcl-xL Modified MSCs Promoted Functional Recovery of Infarcted Heart. To evaluate the extent of heart functional recovery, 4 weeks after MSC transplantation, transthoracic echocardiographic studies were performed on the anesthetized animals (Table 1). Compared with the sham group, contractile function was impaired in all the other three groups after heart infarction. The transplantation of both vector-MSCs and hBcl-xL-MSCs into the infarcted myocardium could improve left ventricular function. However, the level of heart functional restoration in hBcl-xL-MSC group was much higher than in vector-MSC group.

4. Discussion

MSCs derived from adult bone marrow have emerged as a promising cell source for the cell therapy of myocardial infarction. However, the low survival rate of the grafted MSCs severely holds back the therapeutic efficacy of cell transplantation aiming at cardiomyocytes restoration. In this study, we demonstrated that hBcl-xL genetic modification could enhance the survival and the biological functions of MSCs both in vitro and in vivo. Under hypoxic conditions, hBcl-xL modification could protect MSCs against apoptosis and promote the secretions of VEGF, IGF-I, and PDGF. In the LAD ligation animal model, hBcl-xL modification significantly increased the survival rate and the engraftment of MSCs after transplantation. And the transplantation of hBcl-xL-MSCs efficiently prevented scar formation and improved the recovery of heart function after myocardial infarction. These observations were in agreement with the previously published data that the expression of hBcl-xL in rat heart can inhibit the apoptosis of ischemic cardiomyocytes after myocardial infarction and can prolong the cold preservation time period for cardiac transplants [13, 14]. The present study revealed that genetic modification of MSCs with hBcl-xL...
Figure 7: hBcl-xL-MSCs promoted angiogenesis and prevented scar formation in infarcted heart. ((a)–(c)) Evaluation of capillary density by von Willebrand factor staining at 4 weeks after transplantation of medium (a), vector-MSCs (b), or hBcl-xL-MSCs (c). ((d)–(f)) Assessment of scar formation by Trichrome-Masson staining at 4 weeks after medium (d), vector-MSCs (e), or hBcl-xL-MSCs (f) transplantation. (g) Capillary density was presented as the number of vessels per high-power field. (h) Scar size was presented as the percentage of the collagen deposition area to the whole section area of the left ventricle. Values are mean ± SD (n = 6, *P < 0.01, **P < 0.001). Scale bar represents 50 μm (c) and 1 mm (f), respectively.
gene could be an intriguing strategy to improve the viability of MSCs after implantation into the ischemic heart and thereby lead to a better therapeutic outcome for the treatment of myocardial infarction.

The precise underlying mechanisms of the hBcl-xL-MSCs mediated functional recovery of infarcted heart are unclear. It was shown that the in situ survival rate of the implanted cells was closely related to the therapeutic efficacy of MSCs [12]. Previous studies demonstrated that the low survival rate of MSCs after transplantation into infarcted hearts was caused by multiple factors including the lack of oxygen, nutrients, and survival factors, the inflammatory reaction, the host immune rejection, the existence of proapoptotic cytokine secretion in engrafted MSCs and thereby promote the functional recovery of infarcted heart.

Table 1: Echocardiography at 4 weeks after MSC transplantation.

<table>
<thead>
<tr>
<th>Group</th>
<th>LVDd (mm)</th>
<th>LVDs (mm)</th>
<th>LVEF (%)</th>
<th>LVFS (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sham</td>
<td>4.57 ± 0.03</td>
<td>2.34 ± 0.04</td>
<td>82.95 ± 0.95</td>
<td>48.80 ± 0.10</td>
</tr>
<tr>
<td>Medium</td>
<td>6.87 ± 0.03</td>
<td>5.06 ± 0.07</td>
<td>44.79 ± 0.25</td>
<td>26.35 ± 0.35</td>
</tr>
<tr>
<td>Vector-MSC</td>
<td>6.66 ± 0.04*</td>
<td>4.81 ± 0.03*</td>
<td>47.22 ± 0.09*</td>
<td>27.78 ± 0.39*</td>
</tr>
<tr>
<td>hBcl-xL-MSC</td>
<td>5.99 ± 0.01*Δ</td>
<td>3.89 ± 0.04*Δ</td>
<td>59.60 ± 0.30*Δ</td>
<td>35.06 ± 0.11*Δ</td>
</tr>
</tbody>
</table>

* Differences of statistical significance versus medium group, n = 6, P < 0.01.
Δ Differences of statistical significance versus vector-MSC group, n = 6, P < 0.01.

Fibroblast growth factor (bFGF), and interleukine-1 (IL-1) [12, 23–25]. These factors have been showed to contribute to the functional improvement of infarcted hearts by promoting angiogenesis and cell survival and preventing myocardium remodeling [23, 25–28]. In our study, overexpression of hBcl-xL significantly increased the secretions of VEGF, IGF-1, and PDGF by rat bone marrow MSCs under hypoxic condition. This finding was concordant with the previously reported data that the overexpressed Bcl-2 gene could upregulate the secretion of VEGF in implanted MSCs and improve heart functional recovery after acute myocardial infarction [12]. These data suggested that the cardioprotective effects of hBcl-xL-MSCs could be at least partly attributed to the high level of paracrine factor expressions.

The mechanism underlying the hBcl-xL mediated upregulation of cytokine secretion by MSCs was not clear. Our study and previous data [25] confirmed that, as a major pathological condition in ischemic hearts, hypoxia could enhance the expressions of VEGF and other cytokines in MSCs. It was reported that Bcl-2 overexpression could effectively enhance the stability of hypoxia-induced VEGF mRNA [29]. And treating melanoma cells with a Bcl-2/Bcl-xL bispecific antisense oligonucleotide resulted in a reduction of hypoxia-induced VEGF secretion [30]. These data indicated that Bcl-2 and Bcl-xL play roles in the regulation of hypoxia-induced cytokine secretion.

Hypoxia-induced cytokine secretion was demonstrated to be mediated by a heterodimeric basic helix-loop-helix transcription factor, hypoxia-inducible factor (HIF) [31]. Hypoxia could induce HIF expression by inhibiting its ubiquitination and degradation [32]. HIF plays a pivotal role in responses to ischemia. HIF-1 could upregulate angiogenic cytokine expression through the phosphatidylinositol 3-kinase (PI3K)/mitogen activated protein kinase (MAPK) signaling pathway [33]. In addition, HIF-1 could reverse hypoxia-induced cell apoptosis by upregulating Bcl-2 expression [31]. And HIF-1 directly regulated Bcl-xL transcription by binding to a hypoxia-responsive element (HRE) in the Bcl-xL promoter [34]. On the contrary, Bcl-2 overexpression increased the protein level and the VEGF-promoter binding activity of HIF-1 [29]. Here, we speculated that Bcl-xL works synergistically with HIF by forming a positive feedback loop in the cellular responses to hypoxia. Further studies are needed to clarify this hypothesis.

Taken together, our study confirmed that Bcl-xL genetic modification could enhance the survival and the hypoxia-induced cytokine secretion in engrafted MSCs and thereby promote the functional recovery of infarcted heart.
Transplantation of Bcl-xL engineered MSCs may provide an effective approach in the treatment of heart infarction.

Conflict of Interests
The authors declare that there is no conflict of interests regarding the publication of this paper.

Authors’ Contribution
Xiaodong Xue and Yu Liu contributed equally to this paper.

Acknowledgments
This study was funded by the National Natural Science Foundation of China (Grant no. 81071267, Beijing, China). Authors thank Yan Shen, Hongxin Wang, Zhejun Zhang, and Huai Lan for technical assistance.

References
[22] M. Gpecchi, H. He, O. D. Liang et al., “Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells,” Nature Medicine, vol. 11, no. 4, pp. 367–368, 2005.

