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MicroRNAs (miRNAs) have been widely demonstrated to interact with multiple cellular signaling pathways and to participate in a
wide range of physiological processes. Estradiol-17β (E2) is the most potent and prevalent endogenous estrogen that plays a vital
role in promoting bone formation and reducing bone resorption. Currently, little is known about the regulation of miRNAs in
E2-induced osteogenic differentiation. In the present study, the primary bone marrow mesenchymal stem cells from rats
(rBMSCs) were isolated and incubated with E2, followed by miRNA profiling. The microarray showed that 29 miRNAs were
differentially expressed in response to E2 stimulation. Further verification by real-time reverse-transcriptase polymerase chain
reaction revealed that E2 enhanced the expression of let-7b and miR-25 but suppressed the miR-30b expression. Moreover, a
gain-of-function experiment confirmed that miR-30b negatively regulated the E2-induced osteogenic differentiation. These
data suggest an important role of miRNAs in osteogenic differentiation.

1. Introduction

Osteoporosis is a global public health problem and poten-
tially causes serious fractures, disability, and chronic pain,
thus leading to financial burdens for families and lower
quality of life for individuals. Estrogen deficiency is one of
the main causes of osteoporosis, especially in postmeno-
pausal women [1]. As a steroid hormone, estrogen plays an
important role in skeletal homeostasis. Bone remodeling is
a process that relies on the dynamic equilibrium between
osteoclasts and osteoblasts. It has been well established by
both in vivo and in vitro studies that estrogen inhibits
osteoclast formation [2]. Estrogen not only suppresses
the formation but also promotes the apoptosis of osteo-
clasts by regulating the release of cytokines, including
interleukin-1, interleukin-6, receptor activator of nuclear
factor kappa-B ligand (RANKL), tumor necrosis factor-α
(TNFα), osteoprotegerin (OPG), and macrophage colony-

stimulating factor (MCSF) in the bone microenvironment
[3–5]. Recently, several studies suggested that estrogen
could also inhibit osteoblast apoptosis and promote oste-
oblast differentiation, thus protecting against bone loss
[6, 7]. Estradiol-17β (E2) is the most potent estrogen
that could effectively improve bone mesenchymal stem cell
(BMSC) proliferation and osteogenic differentiation in var-
ious species, including mouse, rat, and human [8–10].
However, the precise molecular mechanisms underlying
the observed effects of E2 on osteoblast differentiation
are still not fully understood. According to its ability to
improve bone mineral density and reduce fracture inci-
dence, estrogen replacement therapy is a conventional
way to treat osteoporosis. However, studies have shown
that the use of estrogen increases the risk of breast cancer,
ovarian cancer, thrombotic stroke, and myocardial infarc-
tion [11–13]. Therefore, investigating the molecular mech-
anisms of estrogen-induced osteoblastic differentiation is
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of great significance because this may potentially inspire
precise and targeted therapy for osteoporosis.

MicroRNAs (miRNAs) are a class of small noncoding
RNA molecules that govern gene expression at the post-
transcriptional level [14]. Expression of miRNA is charac-
teristically spatiotemporal and tissue specific, making them
promising targets for precise treatment of various disease
[15, 16]. Several miRNAs have been demonstrated to have
clear effects on various cancers and are expected to pre-
vent the undesirable effects of conventional treatments. It
was suggested that the miRNA replacement therapy in
cancers might reduce blood cell reduction, diarrhea, and
constipation, all of which could be caused by conventional
chemotherapeutic drugs [17]. These implied that it is
reasonable to explore the precise osteoporosis treatment
from the view of microRNA regulation. Meanwhile, emerg-
ing evidence has shown that miRNAs are closely involved
in regulating osteogenic differentiation of BMSCs [18]. For
example, miR-10a, miR-21, and miR-96 have a positive
effect on regulating osteogenic differentiation [19–21], while
miR-103a, miR-200a, and miR-141 inhibit osteogenic differ-
entiation [22, 23]. Therefore, it is feasible to analyze the
underlying mechanism of estrogen-induced osteogenesis
from the view of microRNA regulation and explore the
potential precise treatment for osteoporosis based on it.

In this study, we established an in vitro model of E2-
induced osteogenic differentiation by using rat bone marrow
mesenchymal stem cells. Microarray and gain-of-function
experiments were performed to analyze the significance of
miRNAs in E2-induced osteogenic differentiation. This study
may provide the foundation for further work on miRNAs
in estrogen-induced osteogenesis and may inspire new
strategies to treat bone defects or osteoporosis.

2. Materials and Methods

This research was performed under the approval of the
Institutional Animal Care and Use Committee of Sun
Yat-sen University (Guangzhou, China). All experimental
methods were performed in accordance with relevant guide-
lines and regulations.

2.1. Isolation, Culture, and Identification of rBMSCs. Male
Sprague-Dawley rats (4 weeks old) were sacrificed by cervical
dislocation. rBMSCs were isolated from bilateral femurs and
tibias of the rats as described previously [24].

The cells were grown in complete medium (CM),
which is Dulbecco’s modified Eagle’s medium (DMEM,
Invitrogen Corp., New York) supplemented with 10% fetal
bovine serum (FBS, Gibco, Cat. No. 10099141, New York,
USA) and 1% penicillin-streptomycin (Gibco, Cat. No.
15140163) at 37°C in a 5% CO2 atmosphere. Cells at passages
3-4 were used in all experiments. To investigate the osteo-
genic differentiation potential, rBMSCs were exposed to the
osteogenic differentiation medium (OM), which is CM
supplemented with 10nM dexamethasone (Sigma-Aldrich,
Saint Louis, Missouri, USA Cat. No. D1756), 10mM β-
glycerophosphate (Sigma-Aldrich, Cat. No. G9422), and
0.05mM ascorbic acid-2-phosphate (Sigma-Aldrich, Cat.

No. A8960). To investigate the adipogenic differentiation
potential, rBMSCs were cultured in adipogenic differentia-
tion medium, which is CM supplemented with 100nM
dexamethasone, 10 ng/ml insulin, and 0.5μM isobutyl-
methylxanthine (IBMX) (Gibco, Cat. No. I7018). For estro-
gen stimulation, E2 at different concentrations (1 nM,
10 nM, and 100nM) was added to phenol red-free OM. E2
treatment was continuous during the differentiation.

Immunophenotyping of rBMSCs was analyzed by flow
cytometry using fluorescein isothiocyanate-conjugated anti-
bodies which were purchased from eBioscience (California,
USA).

2.2. Cell Counting Kit-8 (CCK-8) Assay. The toxicity of E2 on
BMSCs was measured by the CCK-8 assay. BMSCs were
seeded in a 96-well plate and then cultured in CM with
different doses of E2 (0 nM, 1nM, 10 nM, 100 nM, 500 nM,
and 1μM) for 24 h and 48 h. The CCK-8 assays were per-
formed using the CCK-8 Cell Viability Assay Kit (Dojindo,
Cat. No. CK04-01, Kumamoto) according to the manu-
facturers’ instruction.

2.3. Alizarin Red Staining and Oil Red O Staining. Since the
production of calcium nodules needs a long-term stimula-
tion, the rBMSCs were cultured for 5, 9, 13, or 19 days and
then subjected to alizarin red staining. rBMSCs cultured in
a 6-well plate were washed with PBS and fixed with 70%
ice-cold ethanol at 4°C for 1 hour, followed by 1% Alizarin
Red (Sigma-Aldrich, Cat. No. A5533) staining for 10 minutes
at room temperature. For oil red O staining, rBMSCs cul-
tured in adipogenic differentiation medium for 7 days were
washed with PBS and fixed with 4% paraformaldehyde for
15 minutes at room temperature, followed by staining in
isopropanol solution of oil red O for 30 minutes at room
temperature. Samples were observed under a phase-contrast
microscope, and the images were acquired with a scanner.
Three independent experiments were performed, and the
quantification of the calcium nodules was analyzed by the
ImageJ Software based on the whole-well image.

2.4. Western Blotting. The expression levels of alkaline
phosphatase (ALP), osteocalcin (OCN), osteopontin (OPN),
runt-related transcription factor 2 (RUNX2), and bone
morphogenetic protein 2 (BMP2) were analyzed by western
blotting. The sources of antibodies were as follows: Rabbit
monoclonal antibodies against ALP (Cat. No. ab224335),
rabbit polyclonal antibodies against OPN (Cat. No.
ab104302), mouse antibodies against RUNX2 (Cat. No.
ab76956), mouse monoclonal antibodies against BMP2
(Cat. No. ab6285), and mouse polyclonal antibodies against
beta-actin (Cat. No. ab8227) were from Abcam, Oxford,
UK. Rabbit polyclonal antibodies against OCN were from
Bioss Inc. (Cat. No. bs-4917R, Beijing, China). Three inde-
pendent experiments were performed, and the quantification
of the protein band was done by ImageJ software based on
both the band area and intensity.

2.5. miRNA Microarray. Total RNA of the control cells
(cultured in OM) and the E2-incubated rBMSCs (cultured
in OM supplemented with 100nM E2 for 13 days) was
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isolated with TRIzol (Invitrogen, Cat. No. 15596018,
California, USA) and purified with the RNeasy Mini Kit
(Qiagen, Cat. No. 74104, Hilden, Germany) according to
the manufacturer’s instructions. RNA quality and quantity
were measured by a NanoDrop spectrophotometer (ND-
1000, NanoDrop Technologies Inc.), and RNA integrity
was determined by gel electrophoresis. The miRCURY™
Hy3™/Hy5™ Power Labeling Kit (Exiqon, Cat. No. 208035,
Denmark) was used for miRNA labeling according to the
manufacturer’s guideline. After the labeling procedure, the
Hy3™-labeled samples were hybridized on the miRCURY™
LNA Array V19.0 (Exiqon) according to the array manual.
Then, the slides were scanned by the Axon GenePix 4000B
Microarray Scanner (Axon Instruments, USA).

Scanned images were then imported into the GenePix
Pro Software V6.0 for grid alignment and data extraction
and normalization. A median normalization method was
used. Differentially expressed miRNAs between two groups
were identified with the fold-change thresholds of >1.5
or <0.67. Finally, a hierarchical clustering was performed
to show the distinguishable miRNA expression profiling
between these two groups. The heat map of the differen-
tially expressed miRNAs was made by the Mev clustering
software based on the normalized intensities of each group
[25]. The pathway analysis was performed by the Nimble
Scan V2.5 (Roche NimbleGen Inc., Madison, WI, USA).

2.6. Quantitative Reverse Transcriptase PCR (qRT-PCR) of
miRNA. Total RNAs were isolated with TRIzol and tran-
scribed into cDNA with the Thermo Scientific RevertAid
First Strand cDNA Synthesis Kit (Thermo Fisher Scientific,
Cat. No. K1622, California, USA) together with bulge-loop
miRNA primers (RiboBio, Guangzhou, China) according
to the manufacturer’s guidelines. RT-PCR was performed
with the SYBR Green detection reagent (Tiangen, Cat. No.
FP209-01, Beijing, China). All reactions were run in tripli-
cate, and the miRNA levels were normalized to U6 snRNA.

2.7. Cell Transfection. miRNA mimics and inhibitors were
synthesized and purified by RiboBio. The E2-treated
rBMSCs were transfected with 50nM miRNA mimics or
400nM miRNA inhibitors. Transfection was performed
with Lipofectamine RNAiMAX Reagent (Invitrogen, Cat.
No. 13778030) according to the manufacturers’ instruction.

2.8. Statistical Analysis. SPSS statistical software V20.0 was
used for data analysis. The data were presented as the
mean ± standard error of the mean. Statistical significance
was analyzed with one-way ANOVA. p < 0 05 was consid-
ered statistically significant.

3. Result

3.1. Identification of Rat Bone Marrow Mesenchymal Stem
Cells (rBMSCs). On the third passage, the isolated rBMSCs
displayed rapid proliferation and a fibroblast-like appear-
ance. A flow cytometry assay revealed that the rBMSCs
were positive for mesenchymal marker CD29 and stem cell
marker CD90 but were negative for myelogenous markers
CD11b/c and CD45 (Figure S1A). Next, the isolated

rBMSCs were analyzed for their capacity of multidirectional
differentiation, since rBMSCs are capable of differentiating
into osteogenic or adipogenic lineages. As expected,
rBMSCs that were cultured in the osteogenic differentiation
medium (OM) displayed significant calcium deposits,
which indicate osteogenic differentiation, compared with
those cultured in complete medium (CM) (Figure S1B).
Furthermore, rBMSCs that were cultured in adipogenic
differentiation medium accumulated lipid droplets, indicating
the adipogenic differentiation (Figure S1C).

3.2. The Viability of rBMSCs Cultured with E2. To explore
whether E2 would affect the viability of rBMSCs, the cells
were treated with a range of concentrations of E2 (0 nM,
1nM, 10nM, 100 nM, 500nM, and 1μM) for 24-48 h and
then CCK-8 assays were performed. No significant differ-
ences in toxic effect were observed among these concentra-
tions (Figure 1).

3.3. E2 Induced the Osteogenic Differentiation in rBMSCs. To
confirm the effect of E2 on osteogenic differentiation, the
rBMSCs were treated with different doses (1 nM, 10 nM,
and 100nM) of E2 for 5, 9, or 13 days, followed by immuno-
blotting analysis for the expression of osteogenesis-related
proteins, including ALP, RUNX2, OCN, and OPN. As shown
in all three incubation periods, E2 treatment resulted in a
significant increase of ALP, RUNX2, OCN, and OPN levels
consistent with the series of E2 concentrations (Figure 2).

The effect of E2 on the production of calcium nodules
was further investigated. The alizarin red staining assay
revealed that after being cultured in OM for 13 and 19 days,
rBMSCs exhibited significant calcium nodule formation,
which was not observed in cells cultured in CM. Moreover,
E2 addition to OM further promoted the production of cal-
cium nodules in rBMSCs in a dose-dependent manner
(Figure 3 and Figure S2). Taken together, the above results
indicate that E2 enhanced the osteogenic differentiation
of rBMSCs.
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Figure 1: The proliferation of BMSCs stimulated with a range of
concentrations of E2 (0 nM, 1 nM, 10 nM, 100 nM, 500 nM, and
1 μM) for 24-48 h. No significant toxic effect was observed among
these concentrations (∗p < 0 05).
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In order to explore the potential mechanism of E2-
induced osteogenic differentiation, the expression of BMP2
was detected in the early stage of E2 stimulation. As shown

in Figure 4, the expression of BMP2 was increased with
10 nM and 100nM E2 stimulation for 5 days. After the
stimulation of E2 for 9 days, the expression of BMP2 was also
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Figure 2: The effect of E2 on the expression of osteogenesis-related proteins. (a) Western blotting showed that the expression of ALP,
RUNX2, OCN, and OPN was increased by E2 at various concentrations and duration times in rBMSCs. (b–d) The relative protein
levels were calculated based on the loading control for day 5 (b), day 9 (c), and day 13 (d). CM: complete medium; OM: osteogenic
medium. Three independent experiments were performed. (∗OM group vs. 1-100 nM E2 group, p < 0 05; #CM group vs. OM groups,
p < 0 05.)
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increased in the 1 nM, 10nM, and 100nM group. Therefore,
BMP2 was involved in the regulation of E2-induced osteo-
genic differentiation.

3.4. E2-Induced Osteogenesis Involved Altered miRNA
Expression. To investigate the miRNA expression in E2-
induced osteogenic differentiation in rBMSCs, the total
RNAs were extracted from E2-treated or nontreated cells
for microarray screening. Among the 700 miRNAs repre-
sented on the chip, 29 were differentially expressed in
response to E2 treatment (Figure 5(a)). Most of these
miRNAs (21/29) were downregulated, while 8 of them
were upregulated compared with the control group during
this time frame (Table 1 and Table S1). Consistently, the
majority (19/29) of these miRNAs have been categorized
as related to osteogenic differentiation in previous studies
(Table S2).

Potential target genes of these 29 miRNAs were predicted
using the databases Microcosm, Miranda, and Mirdb. The
genes that were identified as targets of the 29 miRNAs by
all three databases were further subjected to the pathway
enrichment analysis. The KEGG pathway analysis showed
that the predicted target genes were enriched in ten sig-
naling pathways (Figure 5(b)). Among these pathways,
JAK-STAT signaling, PI3K-AKT signaling, and calcium
signaling have been proven to be closely related to osteogen-
esis or bone metabolism [26–28]. These results implied that
miRNAs may be involved in the regulation of E2-induced
osteogenesis.

We selected 3 miRNAs (let-7b, miR-25, and miR-30b) to
confirm their alteration induced by E2, using a quantitative
PCR assay. As shown, the expression levels of let-7b and
miR-25 were upregulated 1.5-fold, while the expression level
of miR-30b dropped by 58%, compared with the control
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Figure 3: Alizarin red staining showed that E2 promoted the production of calcium nodules in a dose-dependent manner. (a) Calcium
nodules observed in a microscope. (b) Whole-well images of calcium nodules. (c) Relative quantification of calcium nodules performed in
the whole-well images. CM: complete medium; OM: osteogenic medium. Three independent experiments were performed. (Bar = 50 μm.
∗OM group vs. 1-100 nM E2 groups, p < 0 05).
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groups (Figure 5(c)). These results suggest that E2 promoted
the expression of let-7b and miR-25 and decreased the
miR-30b expression.

3.5. miR-30b Regulated the E2-Induced Osteogenesis. miR-
30b was chosen for an investigation of its effect on E2-
induced osteogenic differentiation. Immunoblotting assay
revealed that overexpression of miR-30b markedly attenu-
ated the expression of E2-induced osteogenesis-related
proteins, including ALP, RUNX2, OCN, and OPN, while
knockdown of miR-30b significantly increased the expres-
sion of these proteins (Figures 6(a) and 6(b)). Furthermore,
alizarin red staining revealed that the production of a
mineralized nodule in E2-treated rBMSCs was signifi-
cantly suppressed by miR-30b overexpression, but it was
apparently restored by miR-30b silencing (Figure 7). These
data indicated that miR-30b may negatively regulate E2-
induced osteogenesis.

4. Discussion

Hormone replacement therapy (HRT) is a common
treatment for osteoporosis. However, its long-term use is

restricted by potential complications [29, 30]. Understanding
the cellular and molecular mechanisms of the estrogen-
induced effects on osteoporosis may provide novel and
precise treatments, which could avoid these systemic side
effects. miRNAs are considerably small molecules and their
expression is strictly spatiotemporal and tissue specific [31],
making them promising targets for the precise treatment of
various diseases. Our study revealed the miRNA expression
profile during estrogen-promoted osteogenic differentiation
and explored the role of miR-30b in this process, indicating
that miRNA-targeted treatment could be a new strategy for
osteoporosis therapy.

According to previous studies, the concentration of E2 is
used to induce osteogenic differentiation ranging from 0.1 to
100 nM [32–34]. Moreover, the cytotoxicity test of E2
revealed that the concentration of E2 from 1nM to 1μM
was nontoxic to BMSCs. Therefore, we choose 1 nM to
100 nM E2 in this study. According to our results, 100 nM
E2 has been found to have an obvious osteogenic effect
on BMSCs.

In this study, we showed that E2 promoted the expression
of ALP, RUNX2, OCN, and OPN. An osteoblast expresses a
high level of ALP, which has been widely used as an early-
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Figure 4: The effect of E2 on BMP2 expression. (a) Western blotting shows that the expression of BMP2 was increased with 10 nM and
100 nM E2 stimulation for 5 days. The expression of BMP2 was also increased with 1 nM, 10 nM, and 100 nM E2 stimulation for 9 days.
(b–c) The relative protein levels were calculated based on the loading control for day 5 (b) and day 9 (c). CM: complete medium;
OM: osteogenic medium. Three independent experiments were performed. (∗OM group vs. 1-100 nM E2 group, p < 0 05.)
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Figure 5: Altered miRNA expression in the process of E2-induced osteogenic differentiation. (a) Heat-map representation of miRNAs
differentially expressed in control and E2-treated rBMSCs. Red color indicates the miRNAs that were induced, and green color indicates
miRNAs that were repressed. (b) Pathway analysis of the altered miRNAs. (c) E2 significantly increased the expression of let-7b and miR-25,
while decreasing the expression of miR-30b. Three independent experiments were performed. (∗Control group vs. E2 group, p < 0 05.)
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stage marker of osteoblast differentiation [35]. RUNX2 is
upregulated during osteogenesis [36] and promotes the
differentiation of multipotent mesenchymal cells into osteo-
blasts and inhibits their differentiation into adipocytes [37].
OCN is closely related to the calcium-ion balance and
mineralization in bone tissue [38], and OPN regulates the
formation of hydroxyapatite and promotes mineralization
of the bone matrix. Both OCN and OPN are related to the
late-stage osteoblast differentiation [39]. This may account
for our observation of inconspicuous upregulation of OCN
and OPN at 1 nM and 10nM doses of E2 at the early time
point (day 5). BMP2 is an important early-stage regulator
of osteogenesis [40, 41]; after E2 stimulation, the expression
of BMP2 was upregulated significantly in the early stages,
indicating that BMP2 was involved in the regulation of
E2-promoted osteogenesis.

let-7b, miR-25, and miR-30b were selected to validate the
microarray results via a quantitative PCR assay. The reasons
for selecting these miRNAs to investigate the effect on E2-
induced osteogenic differentiation are as follows: (1) The
expression levels of these miRNAs are relatively high in
rBMSCs according to the intensity values detected by micro-
array analysis (Table 1), which facilitates verification by
quantitative PCR assay. (2) Among the 29 miRNAs, the
alterations in expression of these miRNAs are the most
significant. (3) It has been suggested that these miRNAs
were closely related to mineralization [23] and osteogene-
sis [18]. One target gene of miR-30b is RUNX2, which is
an important osteogenic differentiation marker and was
found to be upregulated by E2 in the present study.
Hence, miR-30b was more likely to regulate E2-induced
osteogenic differentiation and was therefore selected to
investigate its effect. Both the let-7 family and miR-25
have been found to be related to osteogenesis in a previous

study. For example, the let-7 family was able to enhance
the osteogenesis and repress the adipogenesis of human
stromal/mesenchymal stem cells [42], and miR-25 played
a role in regulating osteoblast differentiation in the
osteoblast-like line MG-63 [43]. However, whether they
were involved in the regulation of E2-induced osteogenic
differentiation was still unknown. Our study provided a
first clue that both let-7b and miR-25 play a positive role
in E2-induced osteogenesis in rBMSCs.

The expression of miR-30b was decreased in E2-induced
osteogenesis. It has been reported that BMP2 promoted
vascular smooth muscle cell (VSMC) calcification by down-
regulating miR-30b and miR-30c expression [44]. The
process of vascular calcification is highly similar to physio-
logical mineralization, which consists of the degradation of
pyrophosphate by alkaline phosphatase and the deposition
of hydroxyapatite crystals on the collagen-rich matrix
[45, 46]. Our data further implied that miR-30b negatively
regulated E2-induced osteogenesis by interaction with
RUNX2 (Figure 8). Meanwhile, Runx2 is one of the down-
stream factors of the BMP2 pathway. Therefore, E2 is sup-
posed to promote osteogenesis via BMP2/miR-30b/Runx2
signaling. In addition, the expression of ALP, OCN, and
OPN was inhibited by miR-30b. ALP, OPN, and OCN were
not predicted as the target genes of miR-30b; therefore, the
expression of these three proteins might not have been
regulated by miR-30b directly but rather by other factors or
molecular pathways. As a transcription factor, RUNX2 trans-
activates the expression of OPN and OCN [47–49]. There-
fore, miR-30b may inhibit the expression of OPN and OCN
via RUNX2.

On the other hand, miR-30b can inhibit autophagy by
directly targeting beclin1 (BECN1) and autophagy protein 5
(ATG5) [50]. Recent studies have found that autophagy

Table 1: Data of the altered miRNAs. The basal intensity values and fold change (E2/control) of the differentially expressed miRNAs are
shown. The fold change = normalized data in the E2 group/normalized data in the control group (shown in Table S1).

miRNA
Basal intensity value

Fold change miRNA
Basal intensity value

Fold change
Control E2 Control E2

miR-25 646.50 1271.00 1.83 miR-138-2 47.50 30.00 0.59

let-7b 1494.00 2841.50 1.77 miR-214 85.50 56.50 0.62

miR-125a 781.00 1258.00 1.50 miR-24 826.00 548.00 0.62

miR-182 1147.00 1897.00 1.54 miR-296 69.50 30.50 0.41

miR-320 18.00 30.50 1.58 miR-672 370.00 209.00 0.53

miR-125b 20.00 32.50 1.52 miR-877 142.50 73.00 0.48

miR-3586 43.00 69.50 1.51 miR-383 65.00 41.00 0.59

miR-673 130.50 328.00 2.34 miR-490 38.00 25.50 0.63

miR-30b 771.00 183.00 0.22 miR-352 568.50 396.00 0.65

miR-322 77.50 24.00 0.29 miR-28 116.50 81.50 0.65

miR-26a 607.50 321.00 0.49 miR-142 187.50 134.00 0.67

let-7i 1316.50 628.50 0.45 miR-195 114.00 66.50 0.54

miR-23b 1623.00 1086.50 0.62 miR-34b 82.00 57.50 0.65

miR-193a 676.00 418.50 0.58 miR-200c 369.50 238.00 0.60

miR-141 213.00 107.00 0.47
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promotes osteogenic differentiation of MSCs [6, 51]. There-
fore, autophagy may be another possible mechanism
underlying the inhibition of osteogenic differentiation by
miR-30b. However, this speculation requires more investiga-
tion for confirmation.

5. Conclusions

In conclusion, our study demonstrates that E2 can effectively
promote osteogenic differentiation of rat BMSCs and can
provide an insight into the potential contribution of miRNAs
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Figure 6: The effect of miR-30b on the expression of osteogenesis-related proteins. (a) Overexpression of miR-30b attenuated the expression
of ALP, RUNX2, OCN, and OPN, while suppression of miR-30b increased the expression level of these proteins. (b) The relative protein levels
were calculated based on the loading control. Three independent experiments were performed. (∗Mimic NC group vs. miR-30b group, or
inhibitor NC group vs. anti-miR-30b group, p < 0 05.)
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Figure 7: Alizarin red staining shows that overexpression of miR-30b limited the production of mineralized nodules, while the suppression of
miR-30b improved the production of mineralized nodules. (a) Calcium nodules observed in a microscope. (b) Whole-well images of calcium
nodules. (c) Relative quantification of calcium nodules performed in the whole-well images. Three independent experiments were performed.
(Bar = 50 μm. ∗Mimic NC group vs. miR-30b group or inhibitor NC group vs. anti-miR-30b group, p < 0 05.)

10 Stem Cells International



to E2-induced osteogenesis. These findings inform us that
miR-30b can be a possible therapeutic target to treat
osteoporosis. Further in vivo experiments are needed to
support its application.
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Supplementary Materials

Supplementary 1. Table 1: detailed data of the altered miR-
NAs. The fold change (E2/control), basal intensity values,
and the normalized data of the differentially expressed
miRNAs are shown. The fold change = normalized data in
the E2 group/normalized data in the control group.
Supplementary 2. Table 2: the effect of miRNAs in previous
studies. The effect of miRNAs in previous studies were
presented. P: positive; N: negative; MSCs: Mesenchymal
Stem Cells; BMSCs: Bone Mesenchymal Stem Cells; SMCs:
Smooth muscle cells; mADSCs: mouse Adipose-Derived
Stem Cells; hADSCs: human Adipose-Derived Stem Cells;
hMSCs: human Mesenchymal Stem Cells; PMCO: Primary
Mouse Calvaria Osteoblasts; PDLF: Periodontal Ligament
Fibroblast.

Supplementary 3. Figure 1: identification of rBMSCs. (a) Flow
cytometry assay shows the surface markers of rBMSCs.
Isotype controls are presented as red plots, and the specific
cell surface markers are presented as blue plots. The isolated
rBMSCs were positive for CD29 and CD90, both of which are
the markers of rBMSCs, but were negative for myelogenous
makers CD11b/c and CD45. (b, c) The multidirectional dif-
ferentiation abilities of rBMSCs. (b) The alizarin red staining
showed that rBMSCs cultured in the osteogenic differentia-
tion medium displayed significant calcium deposits com-
pared with the control group, and (c) the oil red O staining
showed that rBMSCs cultured in adipogenic differentiation

OCN, OPN

miR-30b

E2

RUNX2 Osteogenesis

Figure 8: The schematic diagram shows that E2 promotes the osteogenic differentiation of rBMSCs by downregulating the expression
of miR-30b.
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medium could accumulate lipid droplets compared with
the control group. Three independent experiments were
performed. (Bar = 100 μm.)

Supplementary 4. Figure 2: alizarin red staining showed the
production of more calcium nodules in the 100nM group
than in the OM group on day 13. (a) Calcium nodules
observed in a microscope. (b) Whole-well images of calcium
nodules. (c) Relative quantification of calcium nodules per-
formed in the whole-well images. CM: complete medium;
OM: osteogenic medium; 1-100 nM E2: OM+ 1-100 nM
E2. Three independent experiments were performed.
(Bar = 50μm. ∗OM group vs. 1-100 nM E2 groups, p < 0 05.)
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