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The regulation of mammalian stem cell fate during differentiation is complex and can be delineated across many levels. At the
chromatin level, the replacement of histone variants by chromatin-modifying proteins, enrichment of specific active and
repressive histone modifications, long-range gene interactions, and topological changes all play crucial roles in the
determination of cell fate. These processes control regulatory elements of critical transcriptional factors, thereby establishing the
networks unique to different cell fates and initiate waves of distinctive transcription events. Due to the technical challenges
posed by previous methods, it was difficult to decipher the mechanism of cell fate determination at early embryogenesis through
chromatin regulation. Recently, single-cell approaches have revolutionised the field of developmental biology, allowing
unprecedented insights into chromatin structure and interactions in early lineage segregation events during differentiation.
Here, we review the recent technological advancements and how they have furthered our understanding of chromatin regulation
during early differentiation events.

1. Introduction

During natural development, embryonic stem cells progres-
sively lose their pluripotency and upregulate cell fate specifi-
cation markers, thereby producing hundreds of different cell
types. The ability of a single cell to differentiate and give rise
to the whole organism has fascinated biologists for decades.
Epigenetic regulation, including histone modifications, his-

tone variant substitutions, maternal factors, DNA methyla-
tion, and imprinting, plays a crucial role in the specification
and determination of cell fate. Epigenetic factors can change
chromosome conformation and the weak interacting forces
[1], leading to differential gene expression across cell types.
Molecular biology techniques such as fluorescence micros-
copy and RNA interference have only answered particular
aspects of the underlying mechanisms. However, more
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delicate approaches are required to solve increasingly sophis-
ticated questions in the field. The discoveries of a totipotent
subpopulation within mouse embryonic stem cell (mESCs)
culture [2], expanded potential stem cells (EPSC) [3, 4],
and induced pluripotent stem cells with higher potency [5]
have reignited the interest in developing media that are capa-
ble of maintaining cells with increased differentiation poten-
tial. Studies suggest that such potential is linked to the
bivalent chromatin [6, 7] and depletion of inhibitory markers
that stabilise the cell fate [8]. The mESCs and primed human
ESC (hESCs) are capable of differentiating into the tropho-
blast lineage upon manipulation [9, 10]. However, it remains
unknown whether the transdifferentiation into the tropho-
blast lineage happens after the transition to the totipotent
state [11] or induced directly from the alternate pluripotent
state [12]. Recent developments in single-cell technology
have allowed us to look deeper into cellular networks involv-
ing chromatin state and epigenetic regulators in early
embryogenesis [13–15]. These proof of concept studies have
showcased the potential of single-cell technology in meeting
the needs of the field.

2. Single-Cell and Low-Input Techniques

Cellular heterogeneity primes cells towards different lineages
and is difficult to study in the context of the embryogenesis.
Traditional methods employing the expression of fluorescent
proteins and observational studies by perturbing critical fac-
tors that are known to be involved in the formation of
embryos are both time consuming and inefficient. Addition-
ally, certain cell types with smaller population sizes are easily
masked in the bulk analysis. Ever since the advent of single-
cell technology in 2009 [16], which permitted the analysis
of the mouse embryonic transcriptome, the field has quickly
adapted this concept to questions highly relevant to epige-
netic regulation. However, these methods remain technically
challenging, especially during the process of amplifying sig-
nals from each cell while suppressing unspecific noises. Epi-
genetic studies often involve a bulk analysis of materials
pooled together using millions of cells to derive the most
accurate map, which is not practical in studies involving early
embryos. To this end, various groups have employed differ-
ent methods, such as multiple rounds of bar coding and spe-
cialised beads to improve capturing and accuracy of
amplification of the epigenome [14, 17, 18] (Figure 1).

Chromatin accessibility reflects, to some degree, the
expression status of genes by controlling the exposure of
genomic regions to transcription factors (TFs) and other
DNA-binding elements. There are currently four approaches
to analyse chromatin accessibility in a single cell. Three of
them quantify enrichment of DNA fragments after enzy-
matic DNA cleavage of accessible regions. The assay for
transposase-accessible chromatin using sequencing (ATAC-
seq) employs the hyperactive transposase Tn5 which simul-
taneously cleaves and inserts itself to the accessible regions
and ligates sequencing indexes containing adaptors to these
regions in each cell (Figure 1). The resultant DNA fragments
are amplified via polymerase chain reaction (PCR), and short
fragments are selected to remove partially digested fragments

that are longer in length [19–21]. A second approach
employs the so-called DNase I hypersensitive site sequencing
(DNase-seq), whereby DNase-sensitive chromatin is cleaved
and further processed with either type II restriction enzyme
digestion or size selection to obtain fragments with appropri-
ate sizes for sequencing [22, 23]. A third approach is labelled
micrococcal nuclease sequencing (MNase-seq), whereby the
DNA nuclease digests naked DNA and leaves DNA that
binds to the nucleosomes intact, which allows profiling of
the inaccessible chromatin in the cell [24]. Lastly, a fourth
approach is the “nucleosome occupancy and methylome
sequencing” (NOMe-seq), in which a GpC methyltransferase
is used to mark accessible regions with GpC methylation
(Figure 1). This is followed by bisulfite sequencing of non-
methylated cytosine to obtain information on regions that
are not protected by the nucleosomes [25, 26]. Recent
advancements in single-cell chromatin accessibility assays
involve combinations of multiple readouts to maximize infor-
mation extracted from the same cell [27–29]. Each method
comes with its own bias in enrichment or loss of signals. In
addition, these approaches are costly, hence demanding care-
ful consideration before embarking on the experiment.

Chromatin-immunoprecipitation-sequencing (ChIP-
seq) is a commonly used technique to examine the interac-
tions between protein and genomic DNA. Incorporating
advancements of single-cell technologies, droplet-based
single-cell ChIP-seq (DROP-ChIP/scChIP-seq) has since
undergone rapid development and has been applied in many
studies for understanding the heterogeneity within such cell
populations comprehensively [18, 30] (Figure 1). Further-
more, multiple techniques such as the microfluidic-oscilla-
tory-washing-based ChIP-seq (MOWChIP-seq), ultra-low-
input native ChIP-seq (ULI-NChIP), and micro-ChIP
(μChIP) have since been developed to overcome challenges
that arise from low-input cell numbers and the scarcity of
some tissue samples, allowing for high throughput evaluations
of cell chromatin status [31–34] (Figure 1). A unique method
that fuses an antibody to Tn5, termed CUT&RUN [35] or
CUT&Tag [36] (Figure 1), has also opened new avenues in
profiling the effects of chromatin remodelling complexes
coupled with histone modifications, RNA polymerase II, and
TFs in single cells [17].

Chromosome conformation capture or Hi-C is a method
that enables the analysis of chromatin interactions (Figure 1).
In Hi-C, interacting DNA fragments are ligated and
sequenced to detect genome-wide long-range DNA interac-
tions, which provides information on spatial arrangement
and proximity of genes and their enhancers. Chromatins
are partitioned into self-interacting active and silent topolog-
ical associated domains (TADs), suggesting a relationship
between gene activities and genome folding [37]. However,
resolution remains a major issue for single-cell Hi-C over
low-input Hi-C [38, 39].

3. Roles of Histone Variants on Chromatin
Remodelling during Differentiation

Extensive rewiring in chromatin regulation, including his-
tone modifications, expression and binding of TFs, and
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genomic interactions, happens during differentiation. Here,
we evaluate the roles of epigenetic factors in chromosome
remodelling during differentiation, as well as the differ-

ences in the core regulatory network in the transition of
human and mouse ESCs to trophoblast stem cells (TSCs)
(Figure 2).
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Chromatin structure is based on the coiling and position-
ing of the nucleosome, which is made up of two identical sub-
units consisting of four histone proteins, H2A, H2B, H3, and
H4, while the H1 histone binds to linker DNA. After fusion
of the two germ cells into a single zygote, the histone compo-
sition undergoes rapid changes to be replaced by newly syn-
thesized canonical histones. It has been implicated that
expression of zygotic genes is independent of higher order
chromatin structure [40, 41]. Cell fate then appears to be
marked as early as the 4-cell stage by the core pluripotent
markers [42–44]. During the course of embryogenesis, the
chromatin progressively loses its open state, gaining a more
condensed conformation.

The roles of noncanonical histones have been widely
implicated in stem cell differentiation. In hESCs, depletion
of histone 3 variant centromere protein A (CENP-A) has
no effect on the self-renewal of stem cells but causes cell cycle
arrest at the G1 during differentiation. It also impacts the
repair mechanism of the stem cell, leading to apoptosis.
Whereas in fibroblasts, depletion of CENP-A leads to
increased apoptosis and reduced self-renewal capacity [45].
It remains unknown how centromeres are regulated by
CENP-B, CENP-C, and CENP-T during the differentiation
and self-maintenance of stem cells.

Investigations into histone variant H3.3 have uncovered
its crucial role in differentiation, cell fate transition, and the

maintenance of heterochromatin integrity at the centro-
meres, telomeres, and pericentromeric sites [46]. In particu-
lar, the H3.3 lysine 4 residue is associated with enhancers
and promoters of active genes, facilitating nucleosome depo-
sition, histone replacement, and binding of chromatin remo-
delers at those sites [47].

On the other hand, the histone 2 variant H2A.Z is essen-
tial in marking genes to be downregulated during differenti-
ation by interacting with polycomb repressive complex 2
(PRC2) to deposit repressive H3K27me3 marks [48]. It is
enriched at active enhancers and promoters, affecting the
accessibility of the transcription start site to the transcription
factors [49, 50]; H2A.Z also interacts with lysine acetylation
marks on H3 and CHD4 to remodel chromosomes during
stem cell maintenance and differentiation [51, 52].

Each species has its own unique H1 variants serving
different functions [53]. There are limited studies in this
area, and it is currently thought that H1 controls chroma-
tin compaction by regulating H2AK119ub1 during mESC
differentiation [54].

4. Histone Modifications

There have been extensive studies on post-translational mod-
ifications of Histone 3, which have shown that the pattern of
histone modifications is expressed in a lineage-specific

EPSC/2C cells

Mouse

Human

Differentiation methods

TSC media

mESCs (from ICM)
Histone modifications

H3K9me3 H3K4me2/3 H3K27me3
(silent embryonic genes)

H3K9ac H3K4me1/3 H3K27ac
(at crucial genes of TFs)

TFs

ETS2 YAP1 SOX2

TEAD4 EOMES ELF5 ESRRB

X chromosome inactivation

Fixed

mouse blastocyst
mTSCs

hTSCs

Common TFs

hESCs (from ICM)

GATA3 TFAP2

CDX2ZFP281

FGF2BMP4
TGF𝛽/activin/nodal

inhibitors

Differentiation methods

X chromosome inactivation

RandomGATA2OCT4

TFs

Human blastocyst
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manner in the ESC and TSC state. Bivalent marks, namely the
active marker H3K4me3 and repressive marker H3K27me3,
are unique characteristics in ESCs [6]. These marks poise
genes that are expressed when ESCs are committed to lineage
specification, and their roles have been studied for a long time.
Recent evidence suggests their crucial role in remodelling
chromosome accessibility and chromatin looping [55]. How-
ever, their specific functions remain largely unknown [56].

Genome-wide analysis performed by Rugg-Gunn et al.
suggests that H3K27me3 and H3K9ac levels are higher in
the inner cell mass as compared to the trophoblast lineage,
although there is no direct evidence to support the causative
relationship between the two [57]. Additionally, either triva-
lent histone marks such as H3K9me3, H3K4me2/3, and
H3K27me3 or bivalent histone marks can be adopted in
silencing embryonic genes in cells developing into the tro-
phoblast lineage [58] (Figure 2). CDX2 and EOMES are cru-
cial TFs in the establishment of the TSC cell fate and are
enriched with active histone marks such as H3K9ac and
H3K4me3 while having lower levels of repressive histone
marks [57]. In another study, inducing CDX2 expression
resulted in decreases in the expression of pluripotent genes
OCT4 and NANOG, increases in trophoblast lineage genes,
and the differentiation of TSCs in the mouse embryo [59].

Moreover, it has been reported that histone methyltrans-
ferase SUV39H1 mediated trimethylation on H3K9 is attrib-
uted to the suppression of embryonic genes in TSCs [60];
H3K9me3 also interacts with heterochromatin protein 1 to
condense and silence different gene sets during differentia-
tion in hESC and mESC [61, 62], highlighting the indispens-
able role of histone modifications in the regulation of lineage-
specific genes.

Enrichment of H4K20me3 during differentiation leads
to formation of pericentric heterochromatin by acting with
SMYD5, and it has been shown that reduced transcription
of endogenous long interspersed nuclear elements (LINEs)
and long terminal repeats (LTRs) is key in maintaining
pluripotency [63].

5. Comparison in the Development of Human
and Mouse Trophoblast-Related Lineage

In the mouse embryo, specification starts at the 4-cell stage
[43], whereas current evidence implies that such specification
occurs in the early blastocyst stage in human embryos [64,
65]. In the mouse embryo, implantation is initiated by the
mural trophectoderm (TE) followed by the polar TE. In the
human embryo, implantation is initiated by the polar TE.
The TE layer in human and mouse embryo subsequently
matures to give rise to the syncytiotrophoblast (ST) and the
extravillous cytotrophoblast (EVT) via cell fusion and endor-
eduplication, respectively. The mouse TE subsequently forms
three distinct layers of trophoblast derivatives, separating
maternal and fetal blood, whereas in human trophoblast ana-
logs, a different structure is formed with only one layer sepa-
rating maternal and fetal blood [66]. While there are studies
aiming at establishing three-dimensional [67] and two-
dimensional trophoblast cultures [68] that each are able to
differentiate into both the ST and EVT lineages, there is a

lack of studies looking into the role of chromatin remodelling
and epigenetic regulation in such models.

The similarities and differences in human and mouse
TSCs are well manifested through the aforementioned aspect
of physiology. While most of the discussion is focused on the
signalling pathway that contributes to the successful differen-
tiation from ESCs to TSCs, the underlying conservativeness
in the regulation of chromatin and binding of specific tran-
scription factors is still crucial for the transcriptional network
that drives the specification of TSCs.

6. Expression of Transcription Factors and
Their Binding to Genomic DNA Regions

Transcription factors are known to be bound to specific genes
to regulate gene expression directly or indirectly by recruiting
other transcription factors (or repressors), or histone modi-
fiers to activate or silence genes. ZFP281 was identified as a
conserved factor critical to the maintenance of human and
mouse TSCs. By interacting with MLL and COMPASS sub-
units and binding to the promoters of target genes, ZFP281
helps to establish the specific transcriptome necessary for dif-
ferentiation and specification of mouse TSCs. Moreover, it
has been demonstrated that ZFP281 facilitates the induction
of trophoblast stem-like cells from mouse embryonic stem
cells upon overexpression. In humans, ZFP281 helps to stabi-
lise the transcriptome in undifferentiated TSCs [69].

Mouse TSC determination involves genes such as
TEAD4, CDX2, SOX2, ESRRB, TFAP2, ETS2, ELF5, GATA3,
and YAP1 (Figure 2), although it is not known how all these
genes interact in this context [10]. On the other hand, a
group has recently identified the generation of human
induced TSCs through stepwise or direct reprogramming of
human dermal fibroblast. TE-associated transcription fac-
tors, TFAP2C and GATA2, are significantly upregulated dur-
ing reprogramming to naïve state, and supporting their
reprogramming to iTSCs [15].

CDX2 is expressed as early as the 8-cell stage and plays a
critical role during the differentiation of cells into the TE and
subsequent regulation of TE functions. However, it is not
essential for the initiation of TE lineage segregation as
CDX2 knock out embryos retained the ability to form blasto-
coel cavities, implying that other key genes regulated this
process. One such gene could be TEAD4, where knockout
cells failed to differentiate into the TE, and TEAD4 knockout
embryos were unable to develop into blastocysts [70–72].
While expression of OCT4 and CDX2 is critical in the human
TE, OCT4 is depleted in the differentiating mouse TE [73].
Contrastingly, in human embryos, CDX2 is only expressed
after blastocyst formation [74].

ELF5 has been described as one of the core genes that reg-
ulate the self-renewal and differentiation of TSCs. It interacts
with EOMES to recruit TFAP2C to TSC-specific genes,
thereby inducing their expression in mouse TSCs [75]. More-
over, Elf5was found to be methylated and repressed in mESCs
but hypomethylated and activated in mTSCs. It promotes the
expression of a network of TFs, including CDX2 and EOMES,
that drives the efficient differentiation of ESCs to trophoblast-
related lineages [65]. The GATA2/3-TFAP2A/C network was
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enriched in regions of inactive placental and pluripotent genes
in hESCs after treatment with BMP4, which induces
trophoblast-specific genes and suppresses pluripotency during
the initial stage of trophoblast differentiation [76].

Super-enhancers (SEs) are also one of the elements that
model the transcriptional network. By mapping these SEs
in mTSCs, more than 150 TFs, excluding master TFs such
as CDX2, GATA2, and TEAD4, were identified as potential
contributors to the TE lineage. This approach opens up a
new aspect to further elucidate the mechanisms and regula-
tors of mTSC lineage specification [77]. Additionally, it has
been proposed that ESRRB could directly regulate the core
genes of the TSC self-renewal regulatory network such as
CDX2, EOMES, and SOX2 [78]. Members of the ERV family
RLTR13D5 could also act as enhancers; they are bound by
H3K4me1 and H3K27ac, therefore providing binding sites
for CDX2, EOMES, and ELF5 [79].

7. X-Linked Genes

Studies revolving around long noncoding RNA (lncRNA)
have shed some light in their roles in regulation of the stem
cell pluripotency and lineage segregation. lncRNA recruits
chromatin modifiers such as mixed-lineage leukemia 1
(MLL1) and PRC2 to modulate chromatin structure and gene
expression [80, 81]. The study of X-linked genes patterning
and X chromosome inactivation by lncRNA X-inactive-
specific transcript (XIST) has provided some clues to early
developmental events. During lineage segregation in the
female mouse embryo, paternal X chromosome is first inacti-
vated, contributing to the TE lineage, followed by reactiva-
tion in the inner cell mass (ICM) and finally random X
chromosome inactivation. Whereas in the human female
embryo, random X chromosome inactivation first occurs in
cells contributing to the TE, followed by a second wave of
random X chromosome inactivation in ICM [82]. The inac-
tivation is initiated by expression of XIST and accompanied
by the recruitment of multiple chromatin modifiers to sup-
press the expression of extra X-linked genes [83]. In contrast
to two distinct lineage segregation events in the mouse blas-
tocyst, evidence suggests that the TE, epiblast, and primitive
endoderm might arise simultaneously during a single event
in human blastocysts [84, 85] (Figure 2).

8. Transposable Elements Function in TSC
and ESC

Transposable elements account for at least 40% of the
human or mouse genomes [86, 87]. Previously regarded as
“junk DNA”, it was recently discovered that transposable
elements adopt functional roles akin to enhancers, pro-
moters, or insulators, which are essential to gene regulation
[88]. Therefore, it is important to explore their regulatory
roles in TSCs and ESCs.

Transposable elements have contributed greatly to the
gene regulatory network in different lineages or cell types
[90]. To explore the overall pattern of different epigenetic
modifications that accompany transposable elements, we
analysed ATAC-seq data [91], histone modification data

including H3K27ac, H3K4me1, H3K4me3, H3K27me3, and
H3K9me3 [92], H3K36me3 and H4K20me1 [93], H2BK5ac
[94], datasets regarding transcription factors such as P300
[77], SOX2 [92], ELF5, EOMES, and CDX2 [92], TET1 [95],
CTCF, SP1, and TBP [93], and LSD1 [96] in mouse TSCs.
TE family enrichment analysis were done on these data using
the same method suggested by the Cao’s team [89]. Result
(Figure 3(a)) shows that the endogenous retrovirus-like ele-
ments (ERVs) such as the ERVK and ERV1 families are sig-
nificantly enriched in the open regions of mTSCs and bound
by critical TSC-related TFs. Furthermore, transposable ele-
ments such as B2, Alu, and MIR (Mammalian-wide inter-
spersed repeats) are bound by active histone marks such as
H3K4me1 and H3K27ac, implying possible functions as
enhancers. Promoters are conserved across species, whereas
enhancers are found to be specific to different organisms or
cell types. As enhancers are known to regulate tissue- or cell
type-specific gene expression, we overlapped the TE sites
with enhancers defined by P300 and H3K27ac. The TE-
derived enhancers such as ERVK and ERV1 were signifi-
cantly bound by transcription factors SOX2, LSD1, EOMES,
and ELF5. Given the functions of the factors discussed in ear-
lier sections, the analysis suggests that these repeats could act
as enhancers to regulate gene expression in TSCs. RLTR13D5
containing ERVK-derived enhancers echoes the significance
of ERV in the mTSCs by acting as enhancers and binding
sites for TSC-specifying TFs [79, 97].

Understanding the conservation of chromatin accessibil-
ity across hTSCs and mTSCs might provide novel insights
into their differences. To this end, we analysed ATAC-seq
datasets from naïve hESCs, primed hESCs, blastocyst-
derived TSCs, and naïve hESCs [98, 99]. The TE families
enrichment analysis shows that ERVK and ERV1 were signif-
icantly enriched in hESCs and hTSCs (Figure 3(b)), suggest-
ing that ERVK might play conserved and functional roles in
TSCs in both species. There are also both unique open
ERVKs and shared open ERVKs in ESC and TSC. From the
motif analysis, ERVKs with open chromatin state in hTSCs
are enriched for TSC-related transcription factor motifs such
as TEAD4 and GATA3, suggesting that these ERVKs might
have been adopted during evolution to cooperate with TSC-
specific transcription factors to regulate transcriptional net-
works essential for TSC.

Apart from expression of TFs and chromatin accessibil-
ities, recent Hi-C data has revealed the divergence in the
repressive and active chromatin interaction between mouse
ESCs and TSCs lineages. TSCs genes, which are repressed
in ESCs, interact with H3K27me3 associated regions in ESCs
through the PRC. Furthermore, enhancer-gene interactions
involving key TSC transcription factors are particularly
enriched to maintain the expression of TSC-genes [100].
Another recent report correlates the chromatin modifier
known as the ChAHP complex (CHD4, ADNP, and HP1)
with proper cell differentiation. This complex competes
with CTCF binding sites and modulates the formation of
TADs in proximal regions, specifically at conserved SINE
B2-transposable elements [101]. The role of the ChAHP
subunits CHD4 and HP1 in stem cell maintenance and dif-
ferentiation has been previously reported [51, 61].
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To identify the target genes regulated by transposable ele-
ments, Hi-C or promoter capture techniques could be used to
check the putative targets of these TE-derived enhancers.
CRISPR interference methods could be used to disrupt the

transposable elements followed by validation using RNA-
seq or qPCR analysis to check the expression of the putative
target genes. As demonstrated by Todd et al. [97], only small
subsets of transposable elements are crucial in regulating the
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Figure 3: Transposable elements are marked by epigenetic signatures. (a) Dot-plot of the enrichment of transposable elements families in 8
chromatin marks and 11 bound factors in mouse TSCs. The size of the circle represents corrected enrichment P values. The colour indicates
the enrichment score which was computed with a combination of the binomial test and hypergeometric test [89]. (b) Dot-plot of the
enrichment of transposable elements families in open chromatin regions defined by ATAC-seq peaks in human eight-stage blastocysts,
naïve ESCs, primed ESCs, blastocyst-derived TSCs, H9-derived TSCs, and AN1 iPSC-derived TSCs. The size of the circle represents
corrected enrichment P values. The colour indicates the enrichment score which was computed with a combination of the binomial test
and hypergeometric test [89].
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TSC and ESC gene expression. Therefore, it is important to
pinpoint those that have been adopted as functional gene reg-
ulatory elements during evolution critical in each cell type.

9. Future Perspective

There are numerous pluripotent states reported in human
and mouse ESCs, with the most common ones being the
naïve and primed state. There are a multitude of studies that
attempted to differentiate primed hESC from TSC with vary-
ing scales of success [10]. It was reported that during differ-
entiation of human ESCs towards TSCs, FGF2 should be
removed completely from the media, and BMP4 and
TGFβ/activin/nodal inhibitors should be added as supple-
ments. The size of the initial colonies also affects the outcome
of the differentiation process. Meanwhile, 2C-like cells [2]
and EPSCs [4] are the only two reported sources of mouse
stem cells that are capable of differentiating into TSC
in vitro, making it worthwhile to dissect the mechanism
underlying the derivation of TSCs in the respective state.

It has been established that hESCs exist in the primed
pluripotent state with one active X chromosome and one
inactive X chromosome. This resembles a closer gene expres-
sion and signaling profile to primed mouse epiblast stem cells
(mEpiSCs) than mouse ESCs, which is considered an earlier
stage of naïve pluripotent state with two active X chromo-
somes [102, 103]. In humans, naïve pluripotent stem cells
express TFs and display open chromatin structure associated
with cells from trophoblast-related lineages, which were con-
versely reported to be able to give rise to self-renewing TSCs,
a feat which is unachievable with primed hESCs that are
exposed to the same differentiation assays [98, 104]. Similar
phenomena were observed in the mouse, when overexpres-
sion of CDX2 in the naïve mESCs drove the cells towards a
TSC-like cell fate, but not mEpiSCs [105].

Early studies characterizing hESC-derived trophoblast-
like cells focused on human chorionic gonadotropin produc-
tion and cellular invasion capacity. While some studies claim
that mouse or human TSCs derived in vitro closely resemble
their in vivo counterparts, others have provided contradic-
tory results [12, 98]. This might be due to differences in the
parameters used by each group during cell type characteriza-
tion and culturing, as studies have shown that differences in
starting colony and chemical providers could drastically alter
the results [10]. It will be interesting to apply novel single-cell
technologies to improve the characterization and under-
standing of cellular heterogeneity and help to reconstruct a
clearer picture of cellular processes, including chromatin
remodelling events during changes in the cell fate.

10. Conclusion

In the last three decades, a considerable amount of effort has
been invested to our understanding and capturing cells in
different pluripotency states ranging from TSCs, expended
potential, 2C-like, naïve, prime, Rosette [106], Founder
[107], and many more. Researchers have employed a wide
range of methods to delineate their differences and analogues
in vivo and across different animal species. While single-cell

RNA-seq datasets have provided insights into the tran-
scriptome of different cell types and revealed details on rare
populations and the trajectory of cells during differentiation,
this information is often limited and does not provide suffi-
cient data to derive the factors and mechanisms controlling
the specification and determination of each cell type.

Although pluripotency circuitry has been well studied,
novel stem cell populations and pluripotent stages are consis-
tently being reported. The ability of cells to form blastocyst-
like structures [108] to investigate cell fate changes ex vivo
has recently gained vast interest. Transposable elements, pre-
viously disregarded as an unimportant part of the genome,
proved to be essential in controlling totipotency in the
mouse, while showing differentially binding to pluripotent
and TSC-specifying genes. There is still a broad gap in
knowledge regarding the epigenome within each cell in early
embryogenesis, priming them to different fates under the
same condition.
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