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Knee arthrofibrosis is one of the most serious complications of knee surgery; however, its pathogenesis is unclear, and current
treatment methods have not achieved satisfactory results. Mesenchymal stem cells (MSCs) have good anti-inflammatory and
antifibrotic properties, and studies have reported that human infrapatellar fat pad-derived MSCs (IPFSCs) have the advantages
of strong proliferative and differentiating ability, ease of acquisition, and minimal harm to the donor. Increasing evidence has
shown that MSCs function through their paracrine extracellular vesicles (EVs). Our study is aimed at exploring the effects of
human IPFSC-derived EVs (IPFSC-EVs) on knee arthrofibrosis and the underlying mechanisms in vivo and in vitro. In the
in vivo study, injecting IPFSC-EVs into the knee joint cavity effectively reduced surgery-induced knee arthrofibrosis in rats. In
the in vitro study, IPFSC-EVs were found to inhibit the proliferation of fibroblasts in the inflammatory environment.
Additionally, we screened a potential IPFSC-EV molecular target, metallothionein 2A (MT2A), using RNA sequencing. We
found that silencing MT2A partially reversed the inhibitory effect of IPFSC-EVs on fibroblast proliferation in the inflammatory
environment. In conclusion, IPFSC-EVs inhibit the progression of knee arthrofibrosis by regulating MT2A, which inhibits
fibroblast proliferation in the inflammatory environment.

1. Introduction

Knee arthrofibrosis following knee surgery is a major chal-
lenge for most orthopedic surgeons, manifesting primarily
as recurrent joint pain, knee contracture, and limitations in
flexion and extension functions, all of which substantially
deteriorate patients’ postoperative quality of life [1]. Despite
rapid advances in surgical techniques, the incidence of post-
operative knee arthrofibrosis remains high. Knee arthrofi-
brosis occurs in 3%–10% of patients after total knee
arthroplasty and in 4%–35% after cruciate ligament recon-
struction [2]. Therefore, there is an urgent need for further
research to solve this problem.

At present, the mechanism of arthrofibrosis following
knee surgery is unclear. It is believed that the main causes
of knee arthrofibrosis are excessive fibroblast proliferation

and extracellular matrix production in response to various
inflammatory cytokines and growth factors [3, 4]. Therefore,
inhibiting excessive fibroblast proliferation in the inflam-
matory environment is a feasible therapeutic approach for
preventing postoperative knee arthrofibrosis. It has been
recently reported that inhibiting fibroblast proliferation can
reduce the severity of knee arthrofibrosis [5, 6].

Many strategies for preventing arthrofibrosis in animals
have been developed in recent years, including topical appli-
cations of hydroxycamptothecin, mitomycin C, and artesu-
nate [7–9]. However, when used to prevent fibrosis, the
reagents have been shown to damage surrounding normal
tissues, interfere with local tissue healing, and cause toxic
adverse effects after reagent absorption [10]. Therefore, there
is an urgent need to develop safer and more effective treat-
ments for knee arthrofibrosis.
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Studies have reported that mesenchymal stem cells
(MSCs) have positive therapeutic effects on fibrotic diseases,
such as pulmonary, hepatic, and renal fibrosis [11–13].
However, the use of MSC transplantation is greatly limited
due to issues with rejection reactions and low survival rates
[14]. MSCs function through their paracrine extracellular
vesicles (EVs) [15]. EVs contain abundant mRNA, miRNA,
lipids, and active proteins, which play a crucial role in signal
transduction between cells [16–18]. Compared with MSCs,
MSC-derived EVs (MSC-EVs) are noncellular components
that can enrich the active components of source cells, have
lower immunogenicity, can overcome the hidden danger of
tumorigenicity after MSC transplantation, and have promis-
ing application prospects [19]. MSC-EVs has been shown to
promote cartilage repair and alleviate osteoarthritis (OA)
[20], and a previous study demonstrated that rat adipose
MSC-EVs could facilitate cartilage injury repair and have
better anti-OA effects by increasing chondrocyte viability
and migration and suppressing cell apoptosis [21]. MSC-
EVs have also been shown to prevent the development of
OA via the circHIPK3/miR-124-3p/MYH9 axis [22]. Among
MSCs, human infrapatellar fat pad-derived MSCs (IPFSCs)
are an ideal donor choice owing to their strong proliferative
and differentiative ability, abundant sources, ease of acquisi-
tion (partial resection of the infrapatellar fat pad is required
in knee arthroplasty), and minimal harm to the donor [23].
However, it remains unknown whether IPFSC-EVs can
inhibit the progression of knee arthrofibrosis. We hypothe-
sized that the use of IPFSC-EVs could be a novel approach
for preventing postoperative knee arthrofibrosis.

In this study, we established a rat model of surgery-
induced knee arthrofibrosis, injected IPFSC-EVs into the
knee joint cavity, and collected specimens for histological
preparation 4 weeks after surgery. Using hematoxylin and
eosin staining, Masson staining, and immunohistochemis-
try, we found that IPFSC-EVs reduced the expression of pro-
inflammatory factors (IL-6 and TNF-α) and inhibited the
degree of postoperative knee arthrofibrosis. Using transcrip-
tomic sequencing, we screened metallothionein 2A (MT2A),
a potential target gene of IPFSC-EVs, for its ability to inhibit
knee arthrofibrosis. Studies have shown that MT2A plays an
important role in regulating cell proliferation and inflamma-
tory responses [24–27]. Therefore, exploring the effects of
IPFSC-EVs on fibroblast proliferation in the inflammatory
environment and the role of MT2A in this process is
expected to provide new intervention targets for treating
fibrotic diseases in clinical practice.

2. Materials and Methods

2.1. Animals. The study was approved by the Animal Ethics
Committee of Yangzhou University. A total of 48 male Spra-
gue–Dawley rats weighing 250–300 g were purchased from
the Experimental Animal Center of Yangzhou University
(Yangzhou, China). Before the experiment, all rats were
carefully housed in the animal room at a constant tempera-
ture (24 ± 0:5°C) and humidity (50%–60%). The rats were
randomly divided into four groups (n = 12 per group): a
phosphate-buffered saline (PBS) control group and three

IPFSC-EV intervention groups (109, 5 × 109, and 1010 parti-
cles/mL). The IPFSC-EV concentrations used were selected
based on a previous study [28].

2.2. Establishing the Animal Model and Injecting IPFSC-EVs
into the Knee Joint Cavity. The knee arthrofibrosis model
was established as described in a previous study [6]. Briefly,
after the rats were fully anesthetized, a cortical bone area of
approximately 3 × 3mm2 was removed to expose the cancel-
lous bone. After satisfactory hemostasis, the incision was
sutured in layers. Finally, Kirschner wires were used to fix
the knee joint in a fully flexed position. Penicillin (50mg/kg)
was administered for 3 consecutive days after surgery to pre-
vent infection. From the first postoperative week, 10μL of
IPFSC-EVs at various concentrations (109, 5 × 109, and 1010

particles/mL) was injected into the knee joint cavity under
ultrasound guidance. The control group was injected the same
dose of PBS twice a week for 4 weeks.

2.3. Histological Analysis. Rats were euthanized 4 weeks after
establishing the model, following which the knee joint spec-
imens were collected for histological analysis. The specimens
were fixed in 4% paraformaldehyde for 1 week, fully decalci-
fied in ethylenediaminetetraacetic acid, and embedded in
paraffin. Subsequently, the four groups of specimens were
cut into sections and stained with hematoxylin and eosin
to observe the degree of fibrosis. The density and content
of collagen (collagen I and III) in the fibrotic tissues were
observed via Masson staining and immunohistochemistry,
respectively. The content of proinflammatory cytokines (IL-6
and TNF-α) and fibrosis marker (α-SMA) in the fibrotic tis-
sues were also observed via immunohistochemistry.

2.4. Cell Isolation and Culture. The human fibroblast cell line
was purchased from ScienCell Research Laboratories (Carls-
bad, CA, USA). Fibroblasts were cultured in Dulbecco’s
Modified Eagle Medium ([DMEM]; Gibco, CA, USA) sup-
plemented with 10% fetal bovine serum ([FBS]; Clarkbio,
VA, USA) and 1% penicillin–streptomycin ([PS]; Beyotime,
Shanghai, China) in a humidified atmosphere with 5% CO2.
Human IPFSCs were derived from patients undergoing knee
arthroplasty. All patients participating in this study provided
written informed consent, and the study was approved by
the Ethics Committee of Northern Jiangsu People’s Hospital
affiliated with Yangzhou University. The fragments of infra-
patellar fat pad were digested in PBS containing 0.2% colla-
genase type I (Beyotime, Shanghai, China) at 37°C for 10 h.
The cell suspension was then filtered through a 40μM cell
strainer and resuspended in DMEM supplemented with
10% FBS and 1% PS.

2.5. Detection of IPFSC Surface Antigens Using Flow
Cytometry. IPFSC surface antigens were detected using the
Human MSC Analysis Kit (BD Biosciences, USA) according
to the manufacturer’s instructions. After reaching 90% con-
fluency, the cells were digested with trypsin, and the cell
concentration was adjusted to 107 cells/mL. Anti-CD90,
anti-CD44, anti-CD105, and anti-CD73 antibodies were
then added separately to the cell suspension. After
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incubation at room temperature for 30min in the dark, the
cells were detected using flow cytometry.

2.6. Identification of Trilineage Differentiation of IPFSCs.
This experiment was performed using the human adipose
MSC induction and differentiation kit (Cyagen Biosciences,
Guangzhou, China) strictly according to the manufacturer’s
instructions. The osteogenic, adipogenic, and chondrogenic
induction media were prepared in advance, and the induc-
tion was performed for up to 3 weeks. Mineral content of
the cultures was determined using Alizarin Red staining,
endoacidic mucopolysaccharide content in cartilage tissue
was determined using Alician Blue staining, and lipid accu-
mulation was determined using Oil Red O staining.

2.7. Isolation and Identification of IPFSC-EVs. After reaching
60% confluency, the IPFSCs were washed twice with PBS.
The cell culture medium was then replaced with serum-
free medium for EVs (Umibio, Shanghai, China). After cul-
turing for 48h, the conditioned IPFSC medium was col-
lected to isolate the EVs, which were extracted using
ultracentrifugation. The morphology of IPFSC-EVs was
observed using transmission electron microscopy. The parti-
cle size distribution and concentration of IPFSC-EVs were
determined using the NanoSight LM10 instrument (Mal-
vern, UK). Protein markers of EVs were detected by western
blot, including CD63 and CD81. Fibroblasts were incubated
with PKH26- (red) labeled IPFSC-EVs, and the uptake of
IPFSC-EVs by fibroblasts was observed under a confocal
laser scanning microscope.

2.8. Cell Activity Detection. The fibroblast suspension was
added to a 96-well plate at a density of 5000 cells/well. To
simulate the cellular inflammatory environment, the inflam-
matory fibroblast model was established using interleukin
(IL)-1β. The fibroblasts were treated with 10 ng/mL of IL-6
and IPFSC-EVs at various concentrations (108, 5 × 108, and
109 particles/mL) for 24h. Subsequently, 10μL of Cell
Counting Kit-8 (CCK-8) buffer was added to each well,
and the plate was incubated at 37°C for 2 h. The absorbance
of cells was measured at 450 nm using a microplate reader.

2.9. RNA Sequencing for Fibroblasts. Fibroblasts in the
inflammatory environment were treated with IPFSC-EVs
(109 particles/mL) for 24 h, and total RNA was extracted
using TRIzol (Tiangen, Beijing, China). After the RNA sam-
ples had passed the quality control, mRNAs with polyA tails
were enriched using Oligo (dT) magnetic beads. Next, a
cDNA library was created, and after it was qualified, on-
machine sequencing was performed, with the DESeq algo-
rithm used to calculate differentially expressed genes. Using
jlog 2ðFoldChangeÞj > 0 and Padj < 0:05 as the screening
conditions, a volcano plot of genes differentially expressed
between the IPFSC-EV and control groups was constructed.
Subsequently, Gene Ontology (GO) analysis was performed
to help elucidate the biological implications of the differen-
tially expressed genes, including biological processes, cellular
composition, and molecular functions, and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway analysis
was performed to identify significantly enriched pathways

affected by the differentially expressed genes. Combined
with the specific functions of these genes, the molecular tar-
get of IPFSC-EVs was identified.

2.10. Flow Cytometry to Detect Fibroblast Proliferation. This
experiment was performed using the Cell Cycle Detection kit
(keyGEN BioTECH, Nanjing, China). Fibroblasts were
treated with IPFSC-EVs (109 particles/mL) for 24 h in an
inflammatory environment, washed with PBS, and then
fixed in 70% ice-cold ethanol overnight. The fibroblasts were
then rewashed with PBS, and each sample was resuspended
in 0.5mL of propidium iodide and allowed to stand for
30min in the dark. The samples were then assessed using
flow cytomtery, and the data were analyzed using FlowJo
software.

2.11. EdU Cell Proliferation Assay. This assay was performed
using the EdU Cell Proliferation Kit (keyGEN BioTECH).
Fibroblasts in the inflammatory environment were treated
with IPFSC-EVs (109 particles/mL) for 24h, 50μM of EdU
working fluid was added to each well, following which the
wells were allowed to stand for 2 h. The cells were fixed with
4% paraformaldehyde for 30min and then permeabilized
with PBS containing 0.5% Triton X-100. After counterstain-
ing with Hoechst 33342 reaction solution, EdU-positive cells
and nuclear staining were observed under a fluorescence
microscope.

2.12. Western Blot Assay. A western blot was performed as
previously described [29]. Briefly, cells were lysed on ice
using radioimmunoprecipitation assay buffer (Beyotime,
Shanghai, China), and the protein content was determined
using the bicinchoninic acid protein assay kit (Beyotime,
Shanghai, China). Separating gels with different concentra-
tions of acrylamide (10%–15%) were prepared according to
the molecular weight of the target proteins. After separation
via electrophoresis, the proteins were transferred onto poly-
vinylidene difluoride membranes (Millipore, Bedford, MA).
The membranes were then placed in in 5% skimmed milk
for 2 h and incubated with primary antibodies (antiprolifer-
ating cell nuclear antigen [PCNA], anti-cyclin D1, anti-IL-6,
anti-tumor necrosis factor [TNF]-α, and anti-β-actin, which
were purchased from Cell Signaling Technology, and anti-
MT2A, purchased from Abcam) overnight at 4°C, followed
by incubation with the corresponding secondary antibodies
for 2 h at room temperature. Finally, protein signals were
detected using chemiluminescence by visualizing the mem-
branes under the BIO-RAD ChemiDoc XRS imaging system.

2.13. Reverse Transcription–Polymerase Chain Reaction
(RT–PCR). Fibroblasts were treated with IL-1β (10 ng/mL)
and IPFSC-EVs (109 particles/mL) for 24h, and total RNA
was extracted using TRIzol (Tiangen, Beijing, China), after
which cDNA was synthesized using the HiScript III RT
SuperMix for qPCR (+gDNA wiper) kit (Vazyme, Nanjing,
China). Subsequently, RT–PCR was performed using the
AceQ Universal SYBR qPCR Master Mix kit (Vazyme, Nan-
jing, China). Gene expression levels were determined using
the 2−ΔΔCT method. The primer sequences used for RT–
PCR are listed in Table 1.
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2.14. Lentiviral Vector Infection. Lentiviral-mediated perma-
nent transfection was performed to silence MT2A. Fibro-
blasts were incubated with the lentiviral vector for RNA
interference (RNAi) of MT2A (LVMT2A) and negative con-
trol RNAi (Genechem Co., Ltd., Shanghai, China) at a mul-
tiplicity of infection of 20 for 16 h according to the
manufacturer’s instructions. After transfection for 72 h, the
transfection efficiency was determined using fluorescence
microscopy. Lentiviral-transfected fibroblasts were cultured
with 2μg/mL puromycin (Sigma, USA) for 48h. RT–PCR
and western blot analyses were performed to determine the
gene and protein expression levels of MT2A, respectively.
Stably transfected fibroblasts with silenced MT2A were used
for subsequent experiments.

2.15. Statistical Analysis. The data for this study are pre-
sented as mean ± standard deviation (SD). The statistical
analysis was performed using the SPSS 19.0 statistical soft-
ware. Pairwise comparisons were performed using Student’s
t-test, whereas multiple-group comparisons were performed
using one-way analysis of variance. A P value of <0.05 was
considered statistically significant.

3. Results

3.1. Identification of IPFSCs and IPFSC-EVs. The human
IPFSCs showed a typical spindle-like shape and swirl
arrangement under optical microscopy (Figure 1(a)). The
trilineage differentiation of human IPFSCs was identified
using Alizarin Red staining, which revealed dark red calcium
nodules and several osteoblasts. Alcian Blue staining was
positive, indicating the presence of endoacidic mucopolysac-
charide in cartilage tissue. Oil Red O staining revealed visible
fat droplets as well as several adipocytes (Figure 1(b)). Flow
cytometry detection of cell surface antigens revealed high
expression of positive stem cell markers (CD44, CD73,
CD90, and CD105) in the isolated cells (Figure 1(c)). Con-
sidering the abovementioned results, these findings are con-

cordant with the characteristics of MSCs. The EVs obtained
using ultracentrifugation had a typical disc-shaped bilayer
membrane structure and a diameter of approximately
100 nm, as revealed through transmission electron micros-
copy (Figure 1(d)). NanoSight analysis revealed that the
EVs ranged from 50 to 200 nm in size and their concentra-
tion was approximately 1010 particles/mL (Figure 1(e)).
Western blot analysis revealed that the extracted EVs highly
expressed the EV surface markers CD63 and CD81
(Figure 1(f)). Based on the abovementioned results, we con-
firmed that the extracted EVs were IPFSC-EVs. In addition,
Fibroblasts were incubated with PKH26- (red) labeled
IPFSC-EVs, and the uptake of EVs by fibroblasts was
observed under the microscope after 24 h. Red fluorescence
was observed in fibroblasts (Figure 1(g)). The above results
indicated that fibroblasts could uptake IPFSC-EVs.

3.2. IPFSC-EVs Delay the Progression of Knee Arthrofibrosis
in Rats. To examine the inhibitory effect of IPFSC-EVs on
knee arthrofibrosis in rats, we injected different concentra-
tions of IPFSC-EVs (109, 5 × 109, and 1010 particles/mL) into
the knee joint cavity to observe whether IPFSC-EVs could
delay the progression of knee arthrofibrosis. Hematoxylin
and eosin staining revealed that the control group had dense
fibrotic tissues, and the IPFSC-EV groups exhibited signifi-
cantly less degree of fibrosis than the control group. With
increasing IPFSC-EV concentration, the degree of fibrosis
in the knee joint cavity was gradually reduced. Similarly,
Masson staining revealed that the collagen content in the
knee joint cavity gradually decreased with the increase in
IPFSC-EV concentration (Figure 2(a)). Immunohistochemi-
cal analysis revealed that IPFSC-EVs decreased the expres-
sion levels of collagens I and III in the knee joint cavity in
a concentration-dependent manner (Figures 2(c) and 2(d)),
which was consistent with the results of Masson staining.
In addition, immunohistochemical analysis also revealed
that IPFSC-EVs could reduce the content of proinflamma-
tory cytokines (IL-6 and TNF-α) and fibrosis marker (α-
SMA) in a concentration-dependent manner (Figures 2(e)–
2(g)). Taken together, these findings indicated that IPFSC-
EVs could effectively inhibit the progression of knee arthro-
fibrosis in rats.

3.3. Construction of a Cellular Inflammatory Model and
Detection of Fibroblast Proliferation Activity via CCK8
Assay. IL-1β is a key mediator of the inflammatory response
and the development of pathological conditions that lead to
chronic inflammation. Studies have reported that IL-1β
could drive the inflammatory phenotype of fibroblasts and
play a significant role in the fibrosis process [30, 31]. To sim-
ulate the inflammatory environment of fibroblasts, we used a
low concentration of IL-1β (10 ng/mL) to create a cellular
inflammatory model. The model’s reliability was validated
using RT–PCR, and results showed that the cellular inflamma-
tory model could promote the expression of inflammatory
cytokines (IL-6 and TNF-α) (Figure 3(a)). We also found that
the low concentration-IL-1β inflammatory environment
could promote the expression of fibroblast proliferation-
related genes (CCND1 and PCNA) (Figure 3(b)). In other

Table 1: Primer sequences for RT–PCR.

Genes Primer sequence (5′–3′)

MT2A
S: CAACCTGTCCCGACTCTAGC

AS: AGGTTTGTGGAAGTCGCGTT

LVMT2A
S: GATGTAAAGAACGCGACTTCC

AS: GGAAGTCGCGTTCTTTACATC

PCNA
S: AGCCATATTGGAGATGCTGTTG

AS: CTGAGTGTCACCGTTGAAGAGAG

CCND1
S: AGCTGTGCATCTACACCGAC

AS: GAAATCGTGCGGGGTCATTG

IL-6
S: CAATGAGGAGACTTGCCTGGTG

AS: TGGCATTTGTGGTTGGGTCA

TNF-α
S: ATGAGCACTGAAAGCATGATCC

AS: AGGAGAAGAGGCTGAGGAACAAG

GAPDH
S: GGAAGCTTGTCATCAATGGAAATC

AS: TGATGACCCTTTTGGCTCCC

S: sense; AS: antisence.
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words, inflammatory stimulation could promote fibroblast
proliferation, which is consistent with the current theory of
the mechanism of fibrosis formation [3, 4]. Additionally,
we verified the effects of IPFSC-EVs on fibroblast viability

in noninflammatory and inflammatory environments using
CCK8 assay. The results revealed that IPFSC-EVs had no
significant effect on fibroblast proliferation in the nonin-
flammatory environment but could significantly inhibit
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Figure 1: Identification of infrapatellar fat pad mesenchymal stem cells (IPFSCs) and IPFSC-EVs. (a) IPFSCs were isolated and cultured,
showing a spindle-like shape under optical microscopy. (b) IPFSCs had adipogenic, osteogenic, and chondrogenic differentiation ability.
(c) Characteristic antigens of IPFSCs detected using flow cytometry. (d) IPFSC-EVs showed a typical disc-shaped bilayer membrane
structure under transmission electron microscopy. (e) NanoSight analysis showing the diameter range of the extracted EVs. (f) Western
blot showing the expression levels of the characteristic EV proteins CD63 and CD81. (g) After PKH26 labeling of IPFSC-EVs, uptake of
IPFSC-EVs by fibroblasts was observed under fluorescence microscopy.
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Figure 2: Continued.
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fibroblast proliferation in the inflammatory environment in
a concentration-dependent manner, with an IPFSC-EV con-
centration of 109 particles/mL having the greatest inhibitory
effect (Figure 3(c)). Therefore, we used 109 particles/mL of
IPFSC-EVs for subsequent experiments.

3.4. Screening of Molecular Targets for Inhibiting Knee
Arthrofibrosis Using RNA-Seq. To screen potential molecular
targets of IPFSC-EVs that can be used to prevent knee
arthrofibrosis, we treated fibroblasts with IPFSC-EVs (109

particles/mL) in the inflammatory environment for 24 h
and then performed transcriptomic sequencing (RNA-seq).
The volcano plot revealed differentially expressed genes
between the IPFSC-EV and control groups (Figure 3(d)).
GO analysis revealed that processes such as the regulation
of cell cycle phase transition and cell cycle G1/S phase tran-
sition were upregulated, whereas processes such as connec-
tive tissue development were downregulated (Figure 3(e)).
KEGG pathway analysis revealed that the cell cycle and
p53 signaling pathway were upregulated and that extracellu-
lar matrix–receptor interaction was significantly downregu-
lated (Figure 3(f)). By combining the results of GO and
KEGG pathway analyses with specific functions of these

genes, we identified the significantly upregulated gene
MT2A as being related to the progression of knee arthrofi-
brosis. We verified the reliability of the obtained molecular
targets using western blot and RT–PCR. The results revealed
that the mRNA and protein expression levels of MT2A were
significantly increased after the fibroblasts were treated with
IPFSC-EVs (Figure 4(a)).

3.5. IPFSC-EVs Inhibit Fibroblast Proliferation in the
Inflammatory Environment. The effects of IPFSC-EVs on
fibroblast proliferation in the inflammatory environment
were verified using flow cytometry, western blot, RT–PCR,
and the EdU cell proliferation assay. In the flow cytometry
analysis, the proportion of fibroblasts in the G1 phase
increased after treatment with IPFSC-EVs, whereas that of
fibroblasts in the S and G2 phases significantly decreased,
indicating that IPFSC-EVs could arrest fibroblasts in the
G1 phase and inhibit their proliferation (Figure 4(b)). In
the western blot and RT–PCR analyses, the mRNA and pro-
tein levels of the proliferation-related genes CCND1 and
PCNA were decreased (Figures 4(c) and 4(d)). The decrease
in cyclin D1 expression indicated that the cell cycle was
inhibited, while the decrease in PCNA expression indicated
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Figure 2: IPFSCs-EV treatment reduced the severity of knee arthrofibrosis in rats. (a) Hematoxylin and eosin staining showed that IPFSC-
EVs reduced the degree of fibrosis and fibroblast number in the knee joint cavity. Masson staining showed that IPFSC-EVs reduced collagen
content in the fibrotic tissues. (c and d) Immunohistochemical staining of collagens I and III revealed that IPFSC-EVs reduced collagen
content in the fibrotic tissues in a concentration-dependent manner. (e and f) Immunohistochemical staining of IL-6 and TNF-α showed
that IPFSC-EVs reduced the expression of proinflammatory factors in the fibrotic tissues in a concentration-dependent manner. (g)
Immunohistochemical staining of α-SMA also revealed that IPFSC-EVs reduced the degree of fibrosis in the knee joint cavity in a
concentration-dependent manner.
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that cellular DNA synthesis was reduced, both indicating
inhibition of cell proliferation. In the EdU cell proliferation
assay, the proportion of EdU-positive cells in total cells
was significantly reduced (Figure 4(e)), which also indicated
that IPFSC-EVs could effectively inhibit fibroblast prolifera-
tion. In summary, IPFSC-EVs could inhibit fibroblast prolif-
eration in the inflammatory environment.

3.6. IPFSC-EVs Inhibit Fibroblast Proliferation in the
Inflammatory Environment by Regulating MT2A. To further
explore the underlying mechanism of how IPFSC-EVs
inhibit fibroblast proliferation in the inflammatory environ-
ment, MT2A was silenced via lentiviral vector transfection.
The transfection efficiency was approximately 80% as
observed under fluorescence microscopy, and the cells grew
well (Figure 5(a)). Western blot and RT–PCR analyses
revealed that when compared with the negative control virus
group, the LVMT2A group could significantly silence the
mRNA and protein expression of MT2A, thus meeting
the requirements of subsequent experiments (Figures 5(b)

and 5(c)). After silencing MT2A, RT–PCR and western blot
analyses revealed that the inhibitory effect of IPFSC-EVs on
the mRNA and protein expression levels of proliferation-
related genes (CCND1 and PCNA) were partially reversed
(Figures 5(d) and 5(e)). Moreover, the EdU cell proliferation
assay showed that the inhibitory effect of IPFSC-EVs on the
proportion of EdU-positive cells was also partially reversed
(Figure 5(f)). Taken together, these results demonstrated that
IPFSC-EVs inhibited fibroblast proliferation in the inflam-
matory environment by regulating MT2A (Figure 6).

4. Discussion

To the best of our knowledge, this is the first study to show
that IPFSC-EVs can effectively reduce the severity of
surgery-induced knee arthrofibrosis in rats, and that this
effect might be mediated by regulating the molecular target
MT2A, thereby inhibiting fibroblast proliferation in an
inflammatory environment. Our findings suggest a possible

–log10 (Padj) –log10 (Padj)

GO upregulation

0 0 10 20 30 40 50 60 70 80
mitotic nuclear division

GO downregulation

chromosome segregation
defense response to other organism

mitotic sister chromatid segregation
regulation of multi-organism process

response to interferon-gamma
regulation of mitotic cell cycle phase...

regulation of cell cycle phase transition
microtubule cytoskeleton organizatio...

cell cycle G1/S phase transition
sister chromatid cohesion

regulation of symbiosis, encompassin...
viral life cycle

DNA conformation change
DNA-dependent DNA replication

10 20 30 40
SRP-dependent cotranslational prote...

cotranslational protein targeting to...
protein targeting to ER

establishment of protein localization...
nuclear-transcribed mRNA catabolic...

protein localization to endoplasmic...
translational initiation

protein targeting to membrane
protein targeting to membrane
connective tissue development

viral gene expression
nuclear-transcribed mRNA catabolic...
establishment of protein localization...

protein targeting
rRNA processing

(e)

–log10 (Padj) –log10 (Padj)

KEGG upregulation KEGG downregulation

0 2 4 6 8 10 0 5 1012
Cell cycle ECM-receptor interaction

Terpenoid backbone biosynthesis
Biosynthesis of unsaturated fatty acids

TNF signaling pathway
One carbon pool by folate

Cardiac muscle contraction
Lysosome

PPAR signaling pathway
Pyruvate metabolism

Citrate cycle (TCA cycle)
Carbon metabolism

Cholesterol metabolism
cGMP-PKG signaling pathway

Ferroptosis
Biosynthesis of amino acids

NOD-like receptor signaling pathway
MicroRNAs in cancer

Oocyte meiosis
DNA replication

ECM-receptor interaction
Cellular senescence
Pathways in cancer

p53 signaling pathway
Apoptosis

Progesterone-mediated oocyte...
Transcriptional misregulation in cancer

Gap junction
Necroptosis

Pyrimidine metabolism

(f)

Figure 3: Construction of a fibroblast inflammatory model and screening of molecular targets for inhibiting knee arthrofibrosis. (a)
Increased expression of the inflammatory factors IL-6 and TNF-α after IL-1β stimulation. (b) Increased expression of the proliferation-
related genes PCNA and CCND1 after IL-1β stimulation. (c) IL-1β (10 ng/mL) was combined with various IPFSC-EV concentrations to
react with fibroblasts for 24 h. CCK-8 assay revealed that fibroblast viability was suppressed in a concentration-dependent manner. (d)
Volcano plot showing genes that were differentially expressed between IPFSC-EVs and controls. (e) GO analysis showing upregulated
cell cycle phase transition and cell cycle G1/S phase transition and downregulated connective tissue development. (f) KEGG pathway
analysis showing upregulated cell cycle and p53 signaling pathway and significantly downregulated extracellular matrix–receptor
interactions. All data are presented as mean ± SD. ∗P < 0:05 compared with the control group.
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strategy for preventing the development of knee arthrofibro-
sis following orthopedic surgery.

Knee arthrofibrosis is extremely distressing to patients as
it causes persistent pain, limited joint mobility, and even
severe disability [32]. These symptoms can lead to an inabil-
ity to perform daily living activities and have a profoundly
detrimental effect on physical and mental health [33]. Cur-
rent prevention and treatment strategies primarily focus on
improving surgical techniques and early rehabilitation exer-
cises; however, the clinical results obtained to date have been
unsatisfactory [34].

Excessive fibroblast proliferation has recently been
shown to be an important factor in the progression of
fibrotic diseases [35–37]. When the body is injured, the tis-
sues undergo an inflammatory response, which in turn pro-
duces various stimuli to promote the activation and
proliferation of fibroblasts, resulting in the secretion of a
large amount of extracellular matrix and eventually leading
to the formation of local fibrosis [38, 39]. Therefore, inhibit-
ing fibroblast proliferation remains the primary focus of
research on preventing and treating articular fibrosis.

Several studies have confirmed that MSC-derived EVs
can inhibit the formation of fibrosis [40–42]. One study
reported that human bone marrow MSC-derived EVs
(BMSC-EVs) could reduce collagen deposition, inhibit
inflammation, and increase hepatocyte regeneration, thereby
effectively alleviating liver fibrosis in rats [43]. BMSC-EVs
can also effectively alleviate silica-induced pulmonary fibro-
sis, including inhibiting the profibrotic transforming growth
factor-β1 and downregulating the expression level of the
fibrosis marker protein, alpha-smooth muscle actin [44].
Moreover, adipose MSC-derived EVs have been shown to
effectively inhibit the proliferation and migration of hyper-
trophic scar fibroblasts and reduce the expression levels of
collagen I, collagen III, and alpha-smooth muscle actin
[45]. Similarly, our study also confirmed that IPFSC-EVs
can effectively reduce the number of fibroblasts and expres-
sion levels of collagens I and III in fibrotic tissues. To further

explore the underlying mechanism, MT2A was identified
using RNA-seq, and it was implicated to be involved in the
progression of knee arthrofibrosis.

Human metallothioneins (MTs) are a class of low-
molecular-weight proteins that are widely present in mam-
mals, higher plants, and certain prokaryotes and are a large
family of cysteine-rich molecules [46]. MTs have high affin-
ity for metal ions and reactive oxygen species and have been
reported to exert protective effects in various animal models,
including lipopolysaccharide-induced lung injury, rheuma-
toid arthritis, multiple sclerosis, coagulopathy, ethanol-
induced gastroduodenal mucosal injury, and gastritis caused
by Helicobacter pylori [47–52]. MTs have four iso-
forms—MT1, MT2, MT3, and MT4—and MT2A is an
important member of the MT family. In recent years, studies
have shown that MT2A is closely related to the regulation of
cell proliferation [53, 54]. MT2A expression was found to be
decreased in gastric cancer cell lines and primary tumor tis-
sues, and MT2A upregulation could significantly decrease
cyclin D1 expression in gastric cancer cells, further indicat-
ing that MT2A upregulation could inhibit gastric cancer cell
proliferation [53]. These results are consistent with our
study result that MT2A upregulation can inhibit cell prolif-
eration. However,MT2A was highly expressed in breast can-
cer tissues in a previous study, and the mRNA content of
MT2A was positively correlated with the Ki-67 index (a
marker of cell proliferation activity), which supported the
hypothesis that highMT2A expression could promote breast
cancer cell proliferation [54]. MT2A expression differs sig-
nificantly among cells derived from tissues of various dis-
eases, and its effect on the proliferation of tissue-derived
cells also differs considerably. Therefore, our findings might
thus provide a foundation for future research.

In the in vivo study, we established a model of surgery-
induced knee arthrofibrosis in rats. The histological analysis
of knee fibrotic tissues stained with hematoxylin and eosin
indicated that IPFSC-EVs could significantly reduce fibrosis
and the number of fibroblasts. It is well known that excess
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Figure 4: IPFSC-EVs inhibited fibroblast proliferation in the inflammatory environment. (a) Western blot and RT–PCR showing that
IPFSC-EVs could promote MT2A expression. (b) Cell cycle analysis showing that IPFSC-EVs could arrest fibroblasts in the G1 phase in
the inflammatory environment and inhibit cell cycle progression. (c and d) Western blot and RT–PCR results showing downregulated
mRNA and protein expression levels of the proliferation-related genes CCND1 and PCNA after IPFSC-EV treatment of fibroblasts. (e)
EdU cell proliferation assay showing a significantly lower proportion of EdU-positive cells in total cells after IPFSC-EV treatment of
fibroblasts in the inflammatory environment for 24 h. All data are presented as mean ± SD. ∗P < 0:05 compared with the control group.
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collagen deposition is a key factor in the formation of fibro-
sis. Masson staining was performed to detect the collagen
content in fibrotic tissues, which revealed that the collagen
content was significantly reduced in the IPFSC-EVs groups
compared with the control group. In addition, the expres-
sion of collagens I and III was detected using immunohisto-
chemistry. Our findings indicated that IPFSC-EVs could
significantly suppress the expression of collagens I and III.
Meanwhile, immunohistochemical analysis also revealed
that IPFSC-EVs could reduce the expression of proinflam-
matory cytokines (IL-6 and TNF-α) and fibrosis marker

(α-SMA). The above results suggested that IPFSC-EVs had
the potential to inhibit the progression of knee
arthrofibrosis.

In the in vitro study, the results of CCK8 and EdU cell
proliferation assays demonstrated that IPFSC-EVs inhibited
the viability and proliferative ability of fibroblasts in the
inflammatory environment. Moreover, RT–PCR and western
blot analyses confirmed that the expression of proliferation-
related genes (CCDN1 and PCNA) was decreased after treat-
ment with IPFSC-EVs, which was in agreement with the
aforementioned results. These results indicate that IPFSC-
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Figure 5: IPFSC-EVs inhibited fibroblast proliferation in the inflammatory environment by regulating MT2A. (a) Cell transfection
efficiency under fluorescence microscopy. (b and c) Western blot and RT–PCR analyses showing decreased gene and protein expression
of MT2A in the virus strain, indicating successful MT2A silencing. (d and e) Western blot and RT–PCR analysis showing the partially
reversed tendency of IPFSC-EVs to inhibit CCDN1 and PCNA expression after silencing MT2A. (f) EdU cell proliferation assay showing
the partially reversed ability of IPFSC-EVs to inhibit DNA synthesis in fibroblasts after silencing MT2A. All data are presented as mean
± SD. ∗P < 0:05 compared with the control group.
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Figure 6: A proposed underlying mechanism of IPFSC-EVs in attenuating the progression of knee arthrofibrosis.
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EVs could inhibit fibroblast proliferation in the inflammatory
environment. Intriguingly, whenMT2A was silenced in fibro-
blasts, the IPFSC-EV-induced inhibitory effect on cell prolifer-
ation was reversed.

This study was aimed at preliminarily exploring the
inhibitory effect of IPFSC-EVs as a cell-free therapy on knee
arthrofibrosis and screening and verifying the molecular
targets of IPFSC-EVs to inhibit fibroblast proliferation in
the inflammatory environment. However, this study is only
a preliminary study and presents several limitations. First,
IPFSC-EVs were administered via local injection, and
although no adverse complications occurred in any animal,
the safety and long-term effects of IPFSC-EVs need further
experimental verification. Second, we did not explore which
components in the EVs are involved in regulating cell prolif-
eration. Third, because the situation in patients with severe
knee arthrofibrosis is much more complex than in animal
models, it remains unknown whether IPFSC-EVs can inhibit
severe knee arthrofibrosis in clinical practice. Therefore,
follow-up studies will be conducted in the future.

5. Conclusion

The findings of our study demonstrated that IPFSC-EVs can
inhibit the progression of knee arthrofibrosis. This effect
may be mediated by upregulating MT2A expression, which
inhibits fibroblast proliferation in the inflammatory environ-
ment. Thus, IPFSC-EVs could be used as a novel therapeutic
strategy to prevent knee arthrofibrosis following joint
surgery.
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