Hindawi

Security and Communication Networks
Volume 2019, Article ID 1368905, 28 pages
https://doi.org/10.1155/2019/1368905

Review Article

WILEY

Hindawi

Secure Multiparty Computation and Trusted Hardware:
Examining Adoption Challenges and Opportunities

Joseph 1. Choi @ and Kevin R. B. Butler

Department of Computer and Information Science and Engineering, University of Florida, E301 CSE Building,

PO. Box 116120, Gainesville, FL 32611, USA

Correspondence should be addressed to Joseph I. Choi; choijoseph007@ufl.edu

Received 30 September 2018; Revised 12 February 2019; Accepted 4 March 2019; Published 2 April 2019

Academic Editor: Bela Genge

Copyright © 2019 Joseph I. Choi and Kevin R. B. Butler. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

When two or more parties need to compute a common result while safeguarding their sensitive inputs, they use secure multiparty
computation (SMC) techniques such as garbled circuits. The traditional enabler of SMC is cryptography, but the significant number
of cryptographic operations required results in these techniques being impractical for most real-time, online computations. Trusted
execution environments (TEEs) provide hardware-enforced isolation of code and data in use, making them promising candidates
for making SMC more tractable. This paper revisits the history of improvements to SMC over the years and considers the possibility
of coupling trusted hardware with SMC. This paper also addresses three open challenges: (1) defeating malicious adversaries, (2)
mobile-friendly TEE-supported SMC, and (3) a more general coupling of trusted hardware and privacy-preserving computation.

1. Introduction

Secure multiparty computation (SMC) allows two or more
parties to collectively perform some computation and receive
the resulting output without ever exposing any party’s sensi-
tive input. Following its beginnings in the 1980s with Yao’s
work on two-party garbled circuit computation [1, 2], SMC
techniques have rapidly improved in the past several decades,
with costs lowered by orders of magnitude. For example,
recent work [3] demonstrates garbled circuit evaluation
at speeds of 115 billion gates/second, and secret sharing
supported privacy-preserving location services were available
at Real World Crypto 2015 [4].

Despite these significant gains, secure multiparty com-
putation cannot yet be considered sufficiently practical for
use in a majority of applications where (near) real-time
performance is required. (It is certainly possible to support
some subset of applications with the current iteration of
SMC, but SMC in (near) real-time environmental constraints
is not yet a widespread phenomenon.) This is especially
true for techniques based on fully homomorphic encryption
[5] or secret sharing [6, 7]. (Depending on the application,
secret sharing may be preferable to GC, such as for matrix

and tensor operations or operations that follow the map-
reduce paradigm.) Partial homomorphic encryption, while
offering better performance than its fully homomorphic
counterpart, is limited in the operations it can support.
All these techniques share a common limitation, this being
the substantial amount of cryptographic operations that are
required of the parties involved, even in the two-party setting,
or the requirement for a secure communication channel.
(The number of required cryptographic operations does
decrease when three or more parties are involved. If secure
communication channels were available, this would remove
the need for cryptographic primitives.)

The rise of a number of trusted execution environ-
ments (TEEs) in recent years, most recently including Intel’s
Software Guard Extensions (SGX) [8], presents an oppor-
tunity to offload some of the costs of secure multiparty
computation. Figure 1 demonstrates how TEEs can support
SMC and, more generally, privacy-preserving computation.
Where before a single physical computing node could only
serve as one computational entity, TEEs effectively provide
a way to create several computational entities for performing
secure computation within a single physical computing node.
(Secure computation is impossible if there exists only a single

http://orcid.org/0000-0003-4048-8306
http://orcid.org/0000-0002-7498-4239
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/1368905

Untrusted System

TEE / Trusted Hardware o —

= (= iR
‘g]ié?"t Eﬂ - Code

Restricted; no
Trusted Trusted direct access —
Code Data =

, D
— =

\5\ y Input over \{ Output over
2! LZ3\) secure channel secure channel
:; !/ 7

FIGURE 1: TEEs provide trusted containers for holding trusted code
and data. Input is passed into the TEE over a secure channel and
computation performed within the TEE, protected from the rest of
the untrusted system.

computational entity, as no guarantees can be provided if the
single entity is compromised.)

TEEs provide isolation guarantees for code and data
during execution, suggesting they could be used interchange-
ably with cryptographic operations to safeguard secrets. For
example, Intel SGX provides secure memory regions (or
enclaves); code or data exists in unencrypted form when
within the CPU’s cache and registers, while it is encrypted
when outside the processor boundary. This allows execution
within TEEs to be much faster than execution tied to complex
cryptography. TEEs also offer the ability to attest to contained
code and data (making it possible to reason about their
integrity) while also limiting potential attacks. (Ideally, an
adversary can only monitor resource consumption.)

However, introducing TEEs to secure multiparty com-
putation problems is not a simple matter of drag-and-
drop. The trust model associated with TEEs is substantially
different than with cryptographic approaches to SMC; TEE
use requires acceptance of extra security assumptions and
an altered trusted computing base (TCB), whereas security
assumptions in cryptography are often much simpler. The
security properties of each TEE should be carefully examined
to determine whether they align with the requirements of the
computation; certain TEEs will be better suited for specific
applications. Care must also be taken to avoid unintentional
leakage of secrets over side channels and when communicat-
ing between trusted and untrusted components.

In this paper, we survey the current SMC landscape,
beginning with the foundations of SMC and tracking its
evolution over the years. We follow this with an exploration of
the potential for enhancing secure computation using trusted
hardware. We make the following contributions:

(i) SMC techniques/optimizations: we conduct an exten-
sive literature review of current SMC techniques
and provide insight into inherent challenges of SMC
solutions through a brief history of optimizations.

Security and Communication Networks

(ii) Trusted execution: we investigate what it means to
ground trust in hardware, the security properties pro-
vided by TEEs, and the differences between popular
TEE options. We also explore a variety of work that
already leverages trusted hardware to get a better
understanding of how TEEs are deployed in practice.

(iii) Open challenges: guided by our review, we identify
several open challenges in integrating TEEs and
secure multiparty computation techniques.

The remainder of the paper is organized as follows:
Section 2 describes the fundamentals of and explores recent
advances in secure multiparty computation; Section 3 consid-
ers grounding of trust in hardware and presents a number of
security solutions that already make use of trusted hardware;
Section 4 addresses several open challenges surrounding
hardware-assisted secure computation and proposes steps
forward for each; and Section 5 concludes.

2. Secure Multiparty Computation

Secure multiparty computation (SMC), also referred to as
secure function evaluation (SFE), is a type of privacy-
preserving computation where two or more parties collec-
tively compute a function and receive its output without
any party learning the other parties’ private inputs. In our
investigation, we keep the focus on cryptographic security,
that nothing about the input is leaked beyond what can be
inferred from the output, but there are stronger notions.
(Certain computations (e.g., two-party arithmetic sum or the
millionaires’ problem) trivially leak information about their
inputs.)

In cases where the output itself is sensitive (e.g., a key)
or used as input in a continuing computation, output privacy
[9] is needed. An even stronger notion is that of differential
privacy [10, 11], which ensures the preservation of uncertainty
in any party’s input even when an adversary is given the entire
transcript of the computation. There is a large corpus of work
dealing with differential privacy in the context of SMC [12-
17].

Another principal goal of SMC is correctness of the
computed output. Other desirable properties of SMC include
agreement on abort (honest parties will agree to abort
upon detecting dishonest parties), fairness (either all parties
receive the output or none do), graceful degradation (security
beyond a threshold), and robustness or guaranteed output
delivery (outputs not withheld from honest parties). Some of
these properties are precursors to others; for example, Cohen
et al. [18] show that a fair computation can be transformed
into one providing guaranteed output delivery.

2.1. Security Model. Adversaries attempting to violate the
security guarantees of SMC may be classified as semi-honest,
malicious, or covert. Semi-honest (or honest-but-curious)
adversaries are interested in faithful execution of the SMC
protocol to ensure proper, unmodified evaluation of the
function but may otherwise act arbitrarily to reveal the secret
input of cooperating parties. Malicious adversaries, on the
other hand, deviate from the agreed protocol with the aim of

Security and Communication Networks

manipulating the resulting output or learning parties’ secrets.
A third type of adversary is proposed by Aumann et al. [19];
these covert adversaries are like their malicious counterparts
in that they are willing to cheat, but only to the extent that
they are not caught (thus limiting their deviation).

SMC does not depend on a separate trusted third party.
In the semi-honest setting, computing parties themselves are
trusted to adhere to the protocol. Additional countermea-
sures are required to catch cheating in the malicious and
covert settings, where computing parties are untrusted.

Adversaries may be either static or adaptive. Static
adversaries must choose which parties to corrupt before
computation begins, while adaptive adversaries are free to
corrupt parties at any stage of the computation based on
all available information. It is much more difficult to defend
against adaptive adversaries. Additional factors determining
adversarial success are the number of parties an adversary
can corrupt and whether or not they collude. Protocols for
SMC accordingly vary in the number of corruptions they can
handle and in their requirement for a trusted honest majority;
the adversarial setting dictates which techniques are better
than others.

2.2. Yao’s Garbled Circuits. SMC saw its beginnings in the
1980s, with Yao's seminal work [1, 2]. Yaos approach would
later be termed “garbled circuits” to reflect the scrambling
of circuit and inputs [20]. Yaos approach depends in part
on oblivious transfer (OT) [21], which allows parties other
than the circuit generator to learn the garbled representations
of their inputs. (Only the generator knows the mapping
of plaintext bits to their garbled representations.) In l-out-
of-2 oblivious transfer, the circuit generator supplies two
alternative garbled representations (corresponding to either a
zero or one bit). The nongenerator party receives exclusively
one of these, which will be the garbled representation that
matches its input bit. The generator does not learn which of
the two were selected.

In the case of two parties, Alice (the circuit generator)
and Bob (the circuit evaluator), Yao's garbled circuit protocol
proceeds as follows:

(1) Alice generates a Boolean circuit version of some
functionality f.

(2) Alice transforms the circuit into a garbled circuit
by garbling the truth table for each gate in the
circuit. Garbling comprises encrypting each entry of
the truth table using randomly generated keys and
randomizing the order of rows in the truth table.

(3) Alice sends the garbled circuit, together with her
garbled inputs, to Bob.

(4) Bob, using l-out-of-2 oblivious transfer, learns the
g
garbled representation of his inputs.

(5) Bob evaluates the garbled circuit on both parties’
inputs and outputs the result.

Figure 2 shows how each gate of the circuit is garbled or
replaced by a table of encrypted values. During evaluation,
Bob will decrypt one of the encrypted values at each gate,

EncEn(kg)) Enc@ﬁnc@kg))

Enc@(En(kg)) Enc@(Enc@(ki»

FIGURE 2: An example of Yao’s garbled circuit evaluation of a single
AND gate. Each gate’s garbled representation is a table of encrypted
values, one of which is unlocked by the values of the input wires (or
keys). The gate outputs a key that will be used to unlock the output
of the next gate, and this process repeats iteratively until arriving at
the final output.

®k° / k1<0> ©

— K/ k!

IR
e
o
00
0o

FIGURE 3: The point-and-permute optimization assigns an indepen-
dent, special-purpose bit value to each wire label; alternate labels
on each wire have opposite bit values. These values determine the
order of the garbled gate’s table entries. The output wire’s labels are
assigned, at random, a different special-purpose bit for indexing at
the next gate.

Enck}((Enck[y) (kg))

Ency (Ency 19))

Enckxn (Enckvn (k(z)))

0000

Enckg (Enck; (kg))

depending on the values of the gate’s input wires. This
decrypted value is passed along as input to the next gate in
the circuit, where it will be used to unlock the next value.
The original construction for garbled circuit evaluation
is inefficient because the evaluator must try to decrypt all
entries of a truth table. This can be alleviated by either
padding outgoing keys with trailing zeroes or using the
more elegant point-and-permute optimization [20]. Point-
and-permute, a technique introduced by Beaver et al. in 1990,
works by appending, at random, a special purpose bit to
each wire label. As shown in Figure 3, the two labels on each
wire have opposite bit values, and truth tables entries are
indexed according to these values. During decryption, the
evaluator selects the single correct ciphertext to decrypt based
on these bit values. Only the generator knows the random
association between these bits and the truth values (0 or
1) that the associated wire labels represent. Further, a hash
function can replace a chosen plaintext attack (CPA)-secure

encryption scheme for producing each gate’s ciphertexts.
Other important and now ubiquitous optimizations of the
original construction are presented in Section 2.5.1.

The formal security properties of garbled circuits have
been extensively reasoned about. Bellare et al. [22] establish
garbling schemes as a first-class cryptographic primitive & =
(Gb, En, De, Ev, ev), a five-tuple of a probabilistic garbling
algorithm, an encoding function, a decoding function, an
algorithm for evaluating the garbled function, and an algo-
rithm for evaluating the original (nongarbled) function.
Using &, Bellare et al. are able to construct one garbling
scheme that achieves privacy and a stronger scheme that
simultaneously achieves privacy, obliviousness, and authen-
ticity. These properties can be summarized as follows:

(i) Privacy: parties should not learn anything beyond
that revealed by knowing just the final output (with
respect to a side-information function @).

(ii) Obliviousness: nothing about the function or its
input/output will be leaked to the evaluator when
computing the garbled output (with respect to @).

(iii) Authenticity: a party with knowledge of the garbled
function and garbled input should be unable to
produce a different but valid garbled output.

The side-information function @ captures the information
expected to be revealed by the computation, which may
include circuit size and topology or the original circuit itself.

Some applications require adaptive security, rather than
selective security (where the adversary must choose both
circuit and input at once). Adaptive security considers the
setting where an adversary may choose its inputs to be
garbled based on prior knowledge of the garbled circuit being
computed. In follow-on work [23], Bellare et al. extend the
definitions from their previous work [22] into adaptive ones.
Bellare et al. further present both coarse-grained (which
treats input as atomic) and fine-grained adaptive security
(which allows an adversary to choose successive input bits
based on the garbled representations of the preceding bits
that it has learned so far). They show that adaptive security of
garbled circuits supports one-time programs [24] and secure
outsourcing [25]. A one-time program is some function that
can only be evaluated on a single input, after which the
program will fail to evaluate on any other input. Secure
outsourcing refers to the delegation of work to untrusted
helpers in a privacy-preserving and failure-evident man-
ner.

Bellare et al. show that a one-time padding technique
is sufficient to transform a statically secure garbling scheme
into a coarse-grained adaptively secure one; this is further
transformed into a fine-grained adaptively secure scheme,
supporting one-time programs using their Output Masking
and Secret Sharing transform. They also show that their
scheme which gives obliviousness and authenticity [22] can
be transformed to support outsourcing based on one-way
functions. An alternative approach by Hemenway et al. [26]
relies only on the existence of one-way functions to realize
an adaptively-secure garbling scheme. Their construction
encrypts a garbled circuit using a somewhere equivocal

Security and Communication Networks

Xp
Alice > Bob
secret: X = X, ©%p | secretiy =y, ®yy,
Ya

FiGURE 4: For two parties (Alice and Bob) to initiate GMW
computation, they must first split their inputs into shares and each
sends one of their shares to the other party. Alice gets all a shares;
Bob gets all b shares.

encryption scheme built from one-way functions. Jafargholi
and Wichs [27] prove that Yao's construction itself is already
adaptively secure (for NC1 (Nick’s Class 1 (named after Nick
Pippenger): the set of functions that can be represented by
circuits of polynomial size and logarithmic depth) circuits),
with security loss captured in the pebbling game (in a graph
pebbling game, “pebbles” are placed on vertices of the graph,
and “pebbling moves” allow transferring pebbles to other
vertices; the goal is to determine whether a pebble can be
assigned to each vertex; Hemenway et al. [26] instead assign
pebbles to gates, with different colored pebbles representing
different modes for creating garbled circuits and a goal of
determining whether gates can be converted across different
modes) of Hemenway et al. [26].

2.3. The GMW Construction. The primary alternative to Yao's
garbled circuit protocol is given by Goldreich, Micali, and
Wigderson [28]. Their GMW construction assumes a honest
majority, meaning at least half of the participants are not
corrupted. The GMW construction has the added benefit
of being extensible to more than two parties. The parties
perform coordinated evaluation of each gate, some of which
may be evaluated separately on the held shares while others
(e.g., AND gates) require OT to establish new shares during
evaluation.

Like Yao’s protocol, the GMW scheme depends on obliv-
ious transfer and represents the function being computed
as a Boolean circuit. However, OT occurs during the entire
computation, making GMW particularly costly when com-
munication latency is high or for circuits of greater depth. In
the two-party setting, the participants interactively compute
a function using shared values (shared by a 2-out-of-2 secret
sharing scheme), which correspond to each of the inputs and
intermediate wires. A high-level view of the setup is shown in
Figure 4. To split each of the i bits of input x = x;, x,,...,x,,a
random bit a; is sampled from {0, 1} to become the first share.
The second share is b; = x; @ g;.

XOR gates are evaluated by each party simply XORing
the two shares it has, since XOR is an associative operation
(ile,(aob)d(cod) = (adc) o (be d)). AND gates
are evaluated using either 1-out-of-4 OT alone or oblivious
transfer coupled with pregenerated multiplication triples (for
reduced communication complexity). One party randomly
samples a new bit from {0, 1} (its share) and XORs this value
with each possibility of the AND operation, resulting in four
values. The other party receives one of these four values to be
its own share. NOT gates are evaluated by each party negating
its share of the value to be negated.

Security and Communication Networks

2.4. Alternatives to Garbled Circuits. The principal con-
tenders to garbled circuits are homomorphic encryption
(HE) and secret sharing. Homomorphic encryption allows
computation on ciphertexts without ever requiring that they
be decrypted in the process. These schemes can be grouped
according to supported operations:

(i) Partially Homomorphic Encryption (PHE) schemes
support a single type of operation, which may be
either addition or multiplication.

(ii) Somewhat Homomorphic Encryption (SWHE)
schemes support multiple types of operations but
only a limited number of them.

(iii) Fully Homomorphic Encryption (FHE) schemes sup-
port the evaluation of arbitrary functions with any
number of operations.

FHE, originally termed privacy homomorphism by Rivest et
al. [29], is the most difficult to realize and was first instanti-
ated by Gentry [5] in 2009. Gentry devises a scheme based on
the intuition that an encryption scheme which can evaluate its
own decryption circuit (or bootstrappable scheme) can also
evaluate arbitrary circuits. Gentry builds this scheme using
ideal lattices, which provides helpful properties that include
low circuit complexity of associated decryption algorithms
and additive/multiplicative homomorphisms. To reduce the
complexity of the decryption circuit and make the scheme
bootstrappable, Gentry has the encrypter perform unkeyed
preprocessing of the ciphertext, reducing the burden placed
on the decrypter. While the practicality of homomorphic
encryption has much improved since Gentry’s 2009 scheme
[5], HE solutions remain many orders of magnitude slower
than computation on plaintext.

Secret sharing schemes split and distribute secrets among
two or more parties. Together, these shares can be used to
reconstruct the original secret. A single share is insufficient
for that purpose, although individual shares may expose
partial information about the secret. Threshold schemes
permit any group of no fewer than k participants (k being
the threshold value) to compute the secret. Where threshold
schemes are insufficient, secret sharing for general access
structures [30, 31] gives added control over what specific
subsets (or access structures) of participants are qualified
to reconstruct the secret. Secret sharing schemes may be
proactive [32], meaning shares are renewed (without the
secrets themselves changing) to periodically reset adversarial
progress at attacking secrets. Secret sharing schemes may also
be characterized as verifiable [33, 34], meaning it is possible to
assert that a received share of the secret is valid even without
any knowledge of the secret.

In secret sharing schemes, the sharing parties are typically
called clients, while the trusted parties that receive shares
from clients are called servers. Servers communicate with
one another to perform secure computation over the shares,
releasing output to the clients once done. A popular secret
sharing scheme proposed by Shamir [6] in 1979 uses points on
a polynomial as the shares and the constant term as the secret.
The secret is recovered by solving a system of linear equations.
Shamir’s scheme is also an ideal secret sharing scheme, since

it both prevents nonqualified subsets of participants from
learning information about the secret and minimizes the
length of shares in relation to the secrets length. Another
popular secret sharing scheme proposed by Blakley [7] places
the secret at the intersection of hyperplanes. Follow-up work
has investigated both fault-tolerant [35] and cheater-tolerant
[36] schemes.

Secret sharing may be the stronger contender to GC-
based MPC than homomorphic encryption. Shamir secret
sharing, in particular, provides a natural way to implement
addition and multiplication operations, achieving Turing-
completeness [37]. Homomorphic encryption, on the other
hand, is best used for creating multiplication triples or for
randomized preprocessing in the SPDZ [38] protocol.

Yet another alternative for secure multiparty computation
is RAM-based secure computation [39, 40]. This approach
builds on Oblivious RAM (ORAM) [41], a technique for
concealing access patterns to data on a remote storage by
continuous shuftling and reencrypting data as it is accessed.

2.5. A Brief History of Improvements. Secure multiparty com-
putation techniques have much improved in the past several
decades, bringing down costs by many orders of magnitude.
Improvements have been made in each of the semi-honest,
covert, and malicious adversarial models. Key innovations are
explored below, with an emphasis on improvements to gar-
bled circuits, as GC-based techniques generally outperform
their secret sharing and HE-based counterparts.

2.5.1. Ubiquitous Optimizations. Besides the point-and-
permute optimization described earlier in Section 2.2 that
allows more efficient evaluation of gates, there are other
important optimizations that are now standard in garbled
circuit construction. These include free XOR (and flexible-
XOR), row reduction, and cut-and-choose.

Kolesnikov and Schneider provide a new GC construc-
tion for two-party SFE, a one-round protocol that evaluates
XOR gates for free [42]. Free XOR gives a 4x improvement
to permutation network and universal circuit (UC) compu-
tation and a 2x improvement to integer addition and equality
testing. This free XOR optimization is now a staple of the GC
approach to SFE. Kolesnikov et al. improve on free XOR with
flexible-XOR, or FleXOR [43], which weakens the Random
Oracle requirement of free-XOR in favor of the correlation-
robustness assumption [44]. FleXOR allows garbling of XOR
gates with at most two ciphertexts; the associated savings in
GC size are over 30% when compared to free XOR.

Naor et al. [45] introduced garbled row-reduction in
1999. One of the table entries (the first entry, set following
point-and-permute) is chosen as the all-zero string, thus
reducing the communication complexity by one ciphertext
for each gate, as shown in Figure 5. Garbled row-reduction
has since become yet another staple of following garbled
circuits work. Pinkas et al. [46] took this one step further in
2009, further reducing the number of ciphertexts to two per
gate using polynomial interpolation over a quadratic curve.
The two values held by the garbled gate are used together
with the input labels to construct a quadratic polynomial.

Encyo (Encyg (&%)

i o

Enckg(Enck;)(kg)) > Enco(Ency (k)

Enck}((Enclsl’ (k;)) > Enck}((Enck; (k;))

Enck}((Enckg(kg)) > Enck;(Enc@(k‘;))

FIGURE 5: In garbled row-reduction, the number of entries at each
garbled gate is reduced by replacing the first entry with the all zero
(0™) string.

The output of the gate is the y-intercept of the resulting
quadratic curve. Pinkas et al. analyze this and their other
algorithmic improvements to Yao's protocol against various
(including malicious) adversaries and show that secure two
party computation is practical for reasonably large circuits
(including that for AES encryption). (Pinkas et al’s row-
reduction is incompatible with free-XOR.)

The cut-and-choose technique allows Yaos protocol to
be lifted into the malicious adversarial setting. When there
are two parties, Alice and Bob, Alice first constructs some m
copies of the circuit which are structurally identical but have
different garblings. Alice also provides commitments (may
be simple hashes of the input or more complex functions)
of her input for each of these circuit copies. Bob, upon
receiving these circuit copies and associated input commit-
ments, selects m — 1 copies to verify. Alice de-garbles the
chosen copies to assure Bob that all circuits were constructed
correctly for performing the expected computation. If veri-
fication succeeds, Alice sends Bob her garbled input for the
one remaining, unverified (now primary) circuit. Bob checks
this against the earlier received commitment to ensure Alice
did not alter her input. If this check succeeds, Alice and Bob
continue with Yao's protocol.

Some of the earliest works on cut-and-choose date back
to 2006-2007 [47-50]. Of these, Lindell and Pinkas [49] were
the first to present a rigorous proof of security for a cut-and-
choose backed protocol. Lindell and Pinkas [51] proposed a
simpler and more eflicient cut-and-choose in 2011, based on
the decisional Diffie-Hellman (DDH) assumption. Through
a concrete analysis of efficiency, Lindell and Pinkas show
that their technique is more efficient than prior work for
not-very-small circuits (Lindell and Pinkas do not explicitly
define “not-very-small”; the overhead of their technique
will be more pronounced if the communication cost of
sending all the circuit generator’s garbled inputs in the check
circuits dominates overall circuit evaluation time) while also
outperforming alternatives to cut-and-choose, including the
committed input [52], LEGO [53], and virtual multiparty [54]
methods. Lindell again revisits cut-and-choose to present
a revised version [55] that vastly improves on previous
protocols in the covert or malicious adversarial settings by
permitting cheating only when all (not just a majority) of
the evaluated circuits are found to be incorrect. In particular,
Lindell demonstrates that, for a cheating probability of at
most 274, sending 40 circuits will suffice (where the best
prior works sent between 125 and 128 circuits). Lindell’s

Security and Communication Networks

technique asymptotically achieves a cheating probability of
27, where s denotes the number of garbled circuits.

Huang et al. extend the cut-and-choose optimization
with symmetric cut-and-choose [56]. Instead of having one
party (Alice in our previous illustration) generate K garbled
circuits, symmetric cut-and-choose has both parties (Alice
and Bob) generate K circuits to be checked by the other
party. In doing so, the same statistical security level can be
attained (security level here means the probability that a
malicious party can successfully cheat; previous work in cut-
and-choose achieved a security level of 27%**%, while Huang

et al. [56] achieve 27KTOU X)) while reducing K by a factor
of 3. Because the number of garbled circuits generated for
cut-and-choose in malicious settings dominates cost in a GC
protocol, symmetric cut-and-choose is expected to give 3x
speedup.

Huang, Katz, and Evans [57] propose an alternative
means to give stronger security guarantees than semi-honest
protocols, building on the dual-execution protocol of Mohas-
sel and Franklin [48]. A dual-execution protocol comprises
two independent runs of a semi-honest GC protocol with
generator/evaluator roles swapped in the two runs. The
outputs are then compared to verify they are identical; in
so doing, only a single bit (comparison result) is leaked
to a malicious adversary. Huang et al’s scheme introduces
minimal extra cost by relaxing the security properties and
allowing leakage of a single bit of extra information.

2.5.2. Compilers for Garbled Circuits. Fairplay [58], in 2004,
became the first compiler for generic secure function eval-
uation and paved the way for practical, deployable SFE.
It provides a high-level procedural definition language in
Secure Function Definition Language (SFDL) and compiles
SEDL into a one-pass Boolean circuit presented in Secure
Hardware Definition Language (SHDL). Fairplay also pro-
vides Alice/Bob programs that evaluate Yao's garbled circuits.
We lay out below the development of other compilers for
garbled circuits since the release of Fairplay.

Building on Fairplay, Faerieplay [59] considers the sce-
nario where Alice houses a computation in a strong tamper-
protected secure coprocessor at Bobss site. Faerieplay seeks to
make this coprocessor as small as possible, with limited RAM
and CPU. Faerieplay further augments Yao's blinded circuits
with tiny trusted third parties (TTTPs) to reduce overhead by
severalfold compared to ORAM and Fairplay.

Huang et al. improve garbled circuit efficiency by (1) not
generating/storing the entire garbled circuit at once and (2)
providing a programming framework for generating a secure
computing protocol from an existing (insecure) implementa-
tion of the desired function [60]. They achieve computation
rates of 10 us per garbled gate on circuits with over 10’
gates and show that Yaos garbled-circuit technique can
outperform special-purpose protocols for several functions:
Hamming distance, Levenshtein distance, Smith-Waterman
genome alignment, and AES encryption.

Holzer et al. show how to perform two-party secure com-
putation using ANSI C [61]. They combine model checking
techniques with garbled circuits, making nonstandard use of

Security and Communication Networks

bit-precise model checker CBMC for converting C programs
into Boolean circuits. To produce efficient circuits, CBMC
attempts to minimize the size of Boolean formulas.

Kamara et al. propose Salus [62] for server-aided, GC-
based SFE. Salus provides a new and efficient input-checking
technique for cut-and-choose as well as a new pipelining
technique that works even in the malicious adversarial
setting. Salus is demonstrated to be 4-6x faster than most
other preceding, optimized two-party SFE techniques.

Frigate [63], released in 2014, is a principled com-
piler and fast circuit interpreter for GC-based SMC. The
development of Frigate was motivated by the observation
that many artifacts for SMC are incomplete, incorrect, or
unstable. Frigate is built using the best-practices for com-
piler design/development and, through extensive validation
checks (performed on internal compiler state, operator com-
binations, and edge cases), is found to build correct circuits.
Frigate gives compile time speedups as high as 447x over prior
work and comparable gate counts, making it (arguably) the
state-of-the-art for garbled circuit compilation/evaluation.
In addition to its efficiency, Frigate is also extensible. For
example, DUPLO [64] modifies Frigate with dedicated wire
pools for each function, allowing the circuit representation
for each function to be generated independently from the
circuit representation of other functions. The dependency
removal allows each distinct function of the input program
to easily be garbled separately and soldered back together
afterwards.

2.5.3. Platforms/Libraries for Multiparty Computation. While
Section 2.5.2 above specifically explores advances to the state
of garbled circuit compilers, we also explore the rise of
more general platforms and libraries for multiparty com-
putation. These may be more fitting than garbled circuits
for SMC on algorithms that use variables and branching
instructions which would add pure, unnecessary overhead
as a result of unused or dead portions of circuits. The
platforms/libraries presented below support homomorphic
encryption and secret sharing, with some even support-
ing mixed-protocol combinations that include garbled cir-
cuits.

Sharemind [65], introduced by Bogdanov et al. in 2008,
is a virtual machine for privacy-preserving data processing.
Sharemind comprises a computation runtime environment
and a programming library. Sharemind does additive secret
sharing over the ring Z,:, which Bogdanov et al. assert is
optimal as it aligns with integer arithmetic on modern com-
puters; share multiplication is also implemented in the same
ring, simplifying many share computing protocols in the
process. Sharemind protocols are information-theoretically
secure in a honest-but-curious setting with three participants.

TASTY [66] is a tool for automating two-party secure
computation protocols, allowing generation of protocols
based on homomorphic encryption, garbled circuits, and
combinations of both. TASTY takes a user-provided high-
level description of the desired computation in a domain-
specific language and transforms the description into proto-
col. TASTY can also efficiently evaluate circuits generated by

Fairplay. The most recent techniques and optimizations are
worked into the resulting low-latency protocols.

Malka et al. provide the VMCrypt library [67], which
boasts scalability and modularity, and successfully demon-
strate computations on the order of hundreds of millions
of gates. The library gives novel algorithms with very small
memory requirements and no disk usage. VMCrypt is paired
with an API supporting integration into existing projects and
customization without modifying of source code.

The Secure Computation API (SCAPI) [68] developed by
Ejgenberg et al. emphasizes flexibility, extensibility, efficiency,
and ease of use. SCAPI is meant to provide a general and
modular library for implementing secure computation that is
not limited to particular tasks and can be readily understood
or incorporated. The SCAPI library is divided into three
layers which provide low-level primitives, noninteractive
schemes, and basic protocols for secure computation. Higher-
layer functionality may be used directly or constructed from
lower-layer building blocks as needed. SCAPI also provides a
built-in communication layer.

Bogdanov et al., in 2014, proposed a new programming
language SecreC [69], an imperative language which allows
programming in a SMC-technique-agnostic manner. Types
of data items are annotated with protection domains (which
inform the required level of protection and determine the
appropriate algorithms and protocols for computing on that
data); function declarations may be domain-polymorphic.

ABY [70], developed by Demmler et al., is a mixed-
protocol framework that combines arithmetic sharing,
Boolean sharing, and garbled circuits. In arithmetic sharing
schemes, values are treated as sums of two addends (shares),
whereas in Boolean sharing schemes, shares are individual
bits that can be XORed to produce the original bit. The goal
of a mixed-protocol is to improve overall performance by
allowing each part of the computation to be implemented
according to its most efficient representation. ABY works
by precomputing almost all crypto operations and provides
efficient conversions between secure computation schemes
based on precomputed OT extensions. Mixed-protocols are
demonstrated useful for private set intersection, biometric
matching, and modular exponentiation.

ObliVM [71] is a programming framework for building
efficient, oblivious representations of programs, the observ-
able execution traces of which do not reveal any information
about the value of their secret inputs (a nonoblivious algo-
rithm may leak secrets regardless of the security of the under-
lying SMC protocol). Similarly to SCAPI, ObliVM empha-
sizes extensibility, efficiency, and intuitiveness to nonexperts.
Programs written in the oblivious programming abstractions
of ObliVM’s domain-specific language (ObliVM-lang) are
translated into efficient oblivious algorithms that outperform
generic ORAM when applicable. These are, in turn, converted
into a sequence of circuits. ObliVM can be extended beyond
garbled circuits (e.g., by being customized to use additively-
homomorphic encryption in the backend).

Rmind [72], built atop the Sharemind framework, pro-
vides a privacy-preserving environment for statistical anal-
ysis of data from multiple sources. Its performance is
comparable to that of a standard GNU R environment,

which is one of the standard choices for statistics. Rmind
uses secret sharing with three noncolluding servers that
are provisioned with the same algorithm(s). Servers should
be deployed by independent entities without conflicting
interests in the computation or the data on which it
relies.

HyCC [73] is a tool-chain for fully automated compilation
of ANSI C programs into hybrid protocols that can even
outperform certain hand-optimized protocols. Decomposed
source code is translated into Boolean and arithmetic circuits,
which are optimized before being deployed with a combi-
nation of Yao-GC, GMW, and arithmetic circuit protocols.
Biischer et al. identify homomorphic encryption and integra-
tion of TEEs such as SGX as a next step.

Zhu et al. [74] develop NANOPI, a toolchain for semi-
automating the development and deployment of extreme-
scale actively-secure MPC applications. The underlying pro-
tocol which they build is both time- and space-efficient,
resolving the space-round dilemma that previously prevented
efficient, large-scale computation. They run their protocol on
an actively-secure four-party logistical regression (involving
4.7 billion AND and 8.9 billion XOR operations), which
completed in less than 28 hours on their testbed comprising
four small-memory machines.

The SCALE-MAMBA [75] system builds on SPDZ [38],
the semi-homomorphic encryption scheme introduced by
Bendlin et al. [76], and an OT-based approach employing OT
extensions in the random oracle model referred to as TinyOT
[77]. It provides a runtime system SCALE and a Python-
like programming language MAMBA. SCALE consists of an
offline phase, an online phase, and a compiler, with offline and
online phases fully integrated. The compiler takes programs
written in the MAMBA language and transforms it into
bytecode accepted by SCALE.

For an in-depth investigation of the characteristics/prop-
erties of available general purpose compilers for secure
multiparty computation (including GC compilers), we refer
readers to the work of Hastings et al. [78].

2.5.4. Efficiency Gains. Kruger et al. perform SFE using
ordered binary decision diagrams (OBDDs), which are
graph-based representations of functions [79]. OBDDs are
more succinct than gate-based representations for many
Boolean functions. Using OBDDs, Kruger et al. achieve
smaller bandwidth compared to Fairplay (e.g., 45% reduction
for the millionaire’s problem), making their approach useful
for constrained environments such as wireless and sensor
networks. Despite the advantages of OBDD over gate repre-
sentation for certain classes of functions (as well as further
room for optimization using restriction, negated edges, and
specialized OBDD variations), there has been little work on
OBBDs since that of Kruger et al. [79].

The Portable Circuit Format (PCF) of Kreuter et al. [80]
is intended to make circuit compilation more efficient than in
prior work by relying online circuit compression and lazy gate
generation [81]. They demonstrate support for a RSA-1024
signature function with over 42 billion gates and identify the
underlying crypto primitives as the bottleneck. In addition to

Security and Communication Networks

scaling beyond previous systems, PCF also decreases resource
use requirements.

Whereas much work investigates the efliciency of Yao’s
construction, optimizations for efficient Goldreich-Micali-
Wigderson (GMW)-based computation are given by Schnei-
der et al. [82], who claim that GMW can outperform most
implementations of Yao's GC in the semi-honest adversarial
setting (given low network latency). They also propose depth-
optimized circuit constructions for overcoming latency issues
and demonstrate a 100x improvement of facial recognition
functionality even when network latency is high. Hazay et
al. [83] take protocols in the dishonest majority setting and
modify them to use short symmetric keys. Security is based
on the concatenation of all honest parties’ keys; this technique
gains efficiency at the cost of tolerating fewer corruptions,
with a 13x reduction in the case of 120 out of 400 parties being
honest, compared to the previously fastest protocol given by
Dessouky et al. [84].

Shelat and Chen [85] set out to build a Yao-based protocol
for secure two-party computation that requires minimal
hardness assumptions (an OT protocol secure against mali-
cious adversaries). Given this assumption, their protocol
requires constant rounds of communication plus OT rounds,
which is preferable to the rounds linear in circuit depth
required by alternative approaches such as that of Nielsen et
al. [86]. Additionally, Shelat and Chen’s protocol has optimal
overhead complexity and is highly parallelizable, such that
each circuit can be pipelined and all circuits processed
in parallel. An auxiliary circuit computes a hash of the
generator’s input to ensure input consistency; a k-probe-
resistant matrix advances Pinkas and Lindell’s state-of-the-art
approach for handling selective failure attacks. The result is
an approach that requires weaker crypto assumptions while
giving a several factor improvement in performance.

Zahur et al. [87] devise a scheme that supports both
the Free-XOR [42] optimization and the two-ciphertext row
reduction of Pinkas [46], where the two were previously
incompatible. They achieve this based on the intuition that
an AND gate can be broken into two half-gates, each of which
can be garbled with a single ciphertext. The resulting circuits
are smaller than those produced by prior schemes, though
the evaluator must now perform an additional cryptographic
operation for each AND gate.

SPDZ [38, 88] is a protocol developed by Damgard
et al. which operates in two phases: offline preprocessing
in which shared randomness is generated without needing
to know the function to be computed or its inputs; and
the actual secure computation done in an online phase.
Performance of the online phase scales linearly with the
number of parties, and operations are as cheap as those
used in passively secure Shamir secret sharing-based proto-
cols.

Many recent works push for SMC with minimal rounds
or round-optimal SMC. Round complexity, or the number
of rounds of communication that occur between computing
parties, is a determinant of the efficiency of SMC protocols,
with less rounds being preferable. Garg et al. [89] build two-
round MPC protocols from the minimal assumption of the
existence of two-round OT. More generally, Benhamouda et

Security and Communication Networks

al. [90] show that k-round MPC can be constructed from k-
round OT. Garg et al. [91] show it is possible to build two-
round MPC protocols that require a fixed number of OT
calls, complemented by a polynomial number of cheaper one-
way function calls, thus limiting the number of expensive
public key operations. Ananth et al. [92] build a two-round
MPC protocol in the honest majority setting that can provide
security with abort (an adversary may not prevent honest
parties from learning the output of a computation by aborting
the protocol). They also build a two-round MPC protocol that
provides guaranteed output delivery. Halevi et al. [93] design
a four-round actively secure MPC protocol specifically for
multiparty coin-tossing.

Ishai et al. [94] instead investigate message complexity
of MPC protocols, which represents the number of point-to-
point messages communicated between parties. Minimizing
message complexity is desirable when the cost of exchanging
messages is high. Ishai et al. find that, for functionalities
taking inputs from » parties and delivering outputs to k
parties, 2n + k — 3 messages are necessary and sufficient.

2.5.5. Reusable GC. Part of the difficulty of garbled circuits
is the inability to save state or to take the encrypted output
wires of one computation, save them, and reuse them as
input wires to another computation. Partial GC [95] addresses
this need as the first implemented technique to allow reuse
of encrypted values generated during GC computation.
This avoids repeating of expensive processing when similar
computations are done again, and PartialGC achieves up
to 96% reduction of computing time and 98% reduction of
bandwidth. (Computing time reduction occurs only when
input checks are the bottleneck. Mood et al. [95] therefore
suggest Partial GC works best with a large number of inputs
and a very small circuit. For some programs (e.g., edit
distance), overall bandwidth requirements actually increase,
dominated by the extra bandwidth required for outsourced
OT of all circuits.)

Goldwasser et al. [96] take a different approach to
reusable garbled circuits, building a reusable scheme that
supports any polynomial number of inputs from a new build-
ing block: a succinct single-key functional encryption scheme.
By applying their functional encryption scheme to a garbled
circuit, it is possible to generate many different encodings of
the same garbled circuit, each taking a different input, without
exposing the underlying circuit and any inputs. Agrawal et
al. [97] further improve on Goldwasser et al’s approach by
constructing a new functional encryption scheme for circuits
that gives stronger security guarantees.

2.5.6. Malicious Adversaries. Kreuter et al. [81] explore the
feasibility of two-party SFE in a malicious adversarial setting
(previous techniques only supported 35-thousand gate AES).
By incorporating best known techniques and parallelizing
almost all steps of the protocol, they are able to evaluate even
billion-gate circuits in the malicious setting.

Protocols for SMC among # parties traditionally commu-
nicate at least a linear (in n) number of bits, but recent work
has investigated sublinear (in #) communication complexity.

It is possible to construct sublinear SMC protocols that
tolerate some number of semi-honest adversaries (provided
an honest majority) in the two-client-n-server setting (two
parties who wish to compute a function of their inputs have a
choice of n servers among which to distribute shares for pro-
cessing), extensible to a multi-client setting with a constant
multiplicative increase in complexity [98]. In the malicious
adversarial setting, a sublinear protocol is achievable at the
cost of allowing the protocol to abort. Each client will abort
during the OT precomputation phase if OT pairs are received
from more than a (sublinear) number of parties, as this would
only occur if an adversary employs more corrupted parties
than honest volunteers [98]. OT pairs received from the
various servers can be fed into an OT-combiner to achieve
secure OT [99].

Other recent work breaks the I-billion gates/second
barrier in the presence of malicious adversaries (specifically
considering the case of three parties and an honest majority),
making it one of the most efficient to-date [3]. Araki et al.
do this by improving the efficiency of cut-and-choose on
multiplication triples, and they build on work by Furukawa
et al. [100], reducing 10-bit bandwidth per AND gate to
7 bits and designing cache-efficient shuftling techniques to
cut-and-choose without needing to randomly permute large
arrays. Despite surpassing competing work [101] by at least
two orders of magnitude, they incur higher latency than
techniques that follow the garbled circuit approach.

Wang et al. [102] present a new, constant round Boolean-
circuit protocol that is secure against an arbitrary number
of malicious corruptions. A preprocessing phase outputs a
single, authenticated garbled circuit to be evaluated by one
of the parties. Wang et al’s protocol allows 128 parties across
5 continents to perform an AES computation in under 3
minutes and is the first to examine garbled circuits at such
a large scale. While certainly an impressive result, more
analysis is required to determine the effects on SMC problems
besides the often used AES for benchmarking. Katz et al.
[103] further optimize Wang et al’s protocol by pairing
authenticated garbling with the half-gate optimization of
Zahur et al. [87]. Communication cost is further reduced
by no longer sending an information-theoretic message
authentication code (MAC) for each garbled row.

Garg et al. [89] demonstrate that maliciously secure
round-optimal MPC protocols can be built from maliciously
secure two-round OT. Before their contribution, maliciously
secure round-optimal MPC relied on additional noninterac-
tive zero-knowledge proofs [104]. Benhamouda et al. [90]
demonstrate that, for any k > 5, k-round malicious OT is
necessary and complete for k-round malicious MPC.

2.5.7 Proactive SMC. The proactive security model proposed
by Ostrovsky et al. [105] considers an adversary’s ability to
eventually corrupt all parties. Eldefrawy et al. [106] show that
it is possible to design MPC in this model, and they provide
the first proactive secure multiparty computation (PMPC)
protocol that is secure in the presence of a dishonest majority.
To do this, they require new techniques for refreshing, recov-
ering, and performing operations on secret-shared data that

10

use a combination of information-theoretic secret-sharing
and cryptographic protection against active adversaries. The
protocol itself is based on any one-way function and oblivious
transfer (like the GMW protocol).

2.5.8. SMC on the Web. Halevi et al. [107] explore the
feasibility of SMC on the web and assert the model of web
computation is generally not suitable for secure computation
exchanges. On the web, clients independently connect to
servers, interact with them, and leave when done; this rules
out protocols that require simultaneous interaction of all
parties. Instead, Halevi et al. propose a new client-server
protocol, secure in both the semi-honest and malicious
adversarial models. In it, each client independently connects
to a server once and interacts with it; no other clients need to
be connected at the same time.

Harnik et al. [108] attempt to minimize online complexity
by incorporating parties” inputs one at a time to minimize the
number of OTs needed for each new input. Choi et al. [109]
alternatively show how to minimize online rounds using a
preprocessing phase that occurs before parties receive their
inputs. One flavor of their protocol generates some constant
number of garbled gates during preprocessing and requires
only two online rounds. The other flavor of their protocol
generates a garbled universal circuit during preprocessing
and requires just one online round.

2.6. Mobile and Resource-Constrained Platforms. High com-
munication and computation costs make it especially hard to
perform SMC on mobile and resource-constrained platforms.
While highly provisioned smartphones, such as the newest
generation of the iPhone and flagship Android devices,
may now be able to handle the stress of certain SMC
functions, SMC may just as likely be needed between low-cost
authentication tokens/tablets issued by banks or state entities.
Protocols need to be revisited and specifically designed to
overcome the limitations of these platforms. Key innovations
include offloading the majority of computation to the cloud
via secure outsourcing.

Mood et al. introduce a memory-efficient technique for
generating garbled circuits using a standard SFDL language
for describing secure functions as input. They introduce a
new pseudo-assembly language (PAL) [110], an intermediate
language between SFDL and SHDL. Together with PAL, they
provide a template-driven compiler that generates circuits
which can be evaluated with Fairplay. By deploying this
compiler on Android devices, a large new set of circuits can
be generated on smartphones. Circuit generation using PAL
can be used together with other SFE optimizations and can
reduce memory overhead by 95.6% compared to Fairplay
when calculating the intersection of two sets.

Carter et al. give a set of SFE protocols customized
for mobile devices: Efficient Mobile Oblivious Computation
[111]. Partially homomorphic cryptosystems are used to
develop protocols for location-based and social network-
ing apps, and the resulting protocols show execution time
improvements of 99% and networking overhead improve-
ments of 96% over the most optimized GC techniques. Their

Security and Communication Networks

work provides, for the first time, mobile app developers with
a practical and equally secure alternative to garbled circuits
based on partially homomorphic cryptographic primitives.
Follow-on works investigate the outsourcing of computa-
tion from the mobile device to a public cloud [112-114]. Carter
et al. [114] give a generic technique for lifting any secure two-
party protocol into outsourced two-party SMC. The function
being evaluated is augmented with auxiliary consistency
checks and input values to create an outsourced protocol with
low overhead cost. This work shows that efficient outsourcing
is possible, regardless of the underlying SMC scheme. Carter
et al. [112] propose a new outsourced OT primitive that
requires significantly less bandwidth and computation than
standard OT. They also provide outsourced input validation
techniques that force the cloud to prove the correctness of
its protocol execution. Their extensions are secure in the
malicious adversarial model and reduces execution time by
98.92% and bandwidth by 99.95% for edit distance of size
128 compared to nonoutsourced evaluation. In so doing, they
show that even limited devices can evaluate some of the
largest garbled circuits. Whitewash [113] specifically tackles
the circuit-generation phase of GC computation, providing
a new technique for securely outsourcing this phase to a
cloud provider. On average, the Whitewash protocol reduces
execution time by 75% and network costs by 60% compared
to prior outsourcing protocols. Through Whitewash, Carter
et al. show that garbled-circuit generation can be nearly as
practical on mobile devices as on server-class machines.

2.7. Real-World Deployment. Given the vast corpus of work
on secure multiparty computation in recent decades, how
do attempts to use it in practice fare? The first large-scale,
practical application of multiparty computation occurred
on January 14, 2008, when 1229 bidders participated in a
nationwide auction for Danish sugar-beet contracts with the
goal of determining a market clearing price (price per unit of
commodity being traded) based on total supply and demand
[115]. The entire computation completed in about 30 minutes
and led to the change in ownership of about 25,000 tons of
production rights. Based on this, Bogetoft et al. [115] write,
“we expect that multiparty computation will turn out to be
useful in many practical scenarios in the future.”

One such scenario demonstrated by Nipane et al. [116]
is anonymous message exchange. Their proposed Mix-in-
Place Anonymous Networks (MIPNets) replace the multiple
intermediaries of mix networks with a single, central oblivi-
ous proxy. (Mix networks provide sender/receiver anonymity
and unlinkability by pooling messages at intermediate proxy
nodes and shuffling them before sending them to their next
destination, which may be another proxy.) Clients send to
and receive from the proxy using SFE, and each operation
changes the appearance of all messages kept by the proxy.
Using MIPNets, Nipane et al. realized instant messaging for
up to 100 clients.

Bogdanov et al. [117] used Sharemind [65] to implement
a secret-sharing-based system that would aid the Estonian
Tax and Customs Board (MTA) in detecting value-added
tax (VAT) fraud. Though the system was ultimately not

Security and Communication Networks

adopted, it promised the ability to process one month of
Estonian economic transactions (approximately 50 million
transactions from 80 thousand companies) in ten days using
20,000 euros of hardware. Secure multiparty computation
also powered a 2015 study [118] by the Boston Women’s
Workforce Council (BWWC) of the gender wage gap in
the Greater Boston Area, which computed the sum of
compensation data contributed by 40 employers. (The study
used a modified variant of the privacy-preserving distributed
data mining technique of Clifton et al. [119].) Another area
where secure multiparty computation has made an impact is
conjunction analysis, specifically computing satellite collision
probabilities. Hemenway et al. [120] propose a combination of
GMW and garbled circuits that allows satellite operators to
compute collision probability without sharing private orbital
information, resulting in a protocol that takes only a few
minutes to run on a commodity laptop.

Archer et al. [121] survey some of the more current uses
of SMC in the real world, including the Private Data as a Ser-
vice (PDaaS$) system of Jana (https://galois.com/project/jana-
private-data-as-a-service/), ongoing commercial efforts by
Partisia (https://partisia.com/mpc-goes-live/) (which pow-
ered the Danish sugar-beet auction mentioned before),
and protection of corporate secrets by Unbound Tech
(https://www.unboundtech.com/). SMC has also garnered
the interest of legislative bodies. Bipartisan Senate Bill
2169/House Bill 4479 (Student Right to Know Before You
Go Act), introduced in 2017 to the United States Congress,
would require SMC for the assessment of student records
[122]. The FORWARD Act introduced in 2018 to the United
State House of Representatives would create a pilot program
for the National Institutes of Health (NIH) to use SMC for
conducting research on a fungal infection.

2.8. Limitations. Despite the numerous advances made and
the beginnings of real-world deployment of secure multiparty
computation (Section 2.7), SMC still suffers from the high
overhead of cryptographic operations. Even two-party secure
computation remains impractical for most real-time (on the
order of seconds or even milliseconds), online computa-
tions. Defenses against malicious or adaptive adversaries and
resource constraints further degrade performance.

Besides performance limitations, several other barriers
to implementation of SMC are identified by the Usable and
Efficient Secure Multiparty Computation (UaESMC) [123]
project. Their findings are summarized below:

(i) Legality: current laws do not have adequate language
to describe SMC; cartel/competition laws and data
jurisdiction restrictions discourage cooperation.

(ii) Receptiveness: SMC techniques are simply too com-
plex for nonexperts to understand; SMC needs to
be accompanied by proper monitoring/auditing for
establishing trustworthiness.

(iii) User risks: intentional misuse by users can break
security, esp., if functions are not carefully crafted to
leak no additional information in the output.

(iv) Technology: data handling and scalability concerns.

11

(v) Data visibility: the inability to see the input data
fosters suspicion in the computation result.

Evans et al. [124] specifically suggest that more widespread
adoption of SMC will depend on building increased confi-
dence in SMC techniques and better catering SMC to parties
without a strong technical cryptographic background.

3. Hardware-Assisted Computation

Cryptography alone may not be enough to pose practical
approaches for secure multiparty computation, even as the
computing environment continues to change. For instance,
many complex computations are now oftloaded onto cloud
service providers for better performance. However, this
removes cloud subscribers’ direct control over their own data,
and cloud providers are trusted with this (possibly sensitive)
data. While advances in SMC have been largely based in
cryptography through this point, van Dijk and Juels [125]
assert that “general multi-client private computing based
solely on cryptographical assumptions is impossible.”

The new enabler may be existing or emerging hardware
technologies, which give us the means to tackle some of
the limitations of solutions that are purely cryptographic
in nature. (Limitations such as inadequate legal language
and data visibility concerns also apply to hardware and
are symptomatic of SMC in general.) For example, trusted
hardware allows sidestepping the problem of using two
or more legal entities (potentially falling under different
jurisdictions) to process data, which creates legal and organi-
zational deployment obstacles. Trusted hardware in terms of
hardware security modules (HSMs) and air-gapped computer
systems has been around for decades and is well understood,
so relying on trusted hardware to do SMC is a sensible
direction for exploration.

3.1. Grounding Trust in Hardware. Behind any secure com-
puting system is a root of trust. A root of trust is the lowest
level of a system from which trust originates. It comprises
highly reliable hardware, firmware, or software components
that are the product of a secure design process and is typically
small to support verification. A root of trust is commonly
implemented in hardware to enforce tamper-resistance. The
root of trust is charged with security-critical functions such as
platform measurement and cryptographic key management;
this functionality makes it possible to reason about the
security of a larger system.

Approaches like AEGIS [126] build a root of trust from
a minimal set of trusted software, performing integrity
checks of each successive level by comparing a computed
cryptographic hash with a stored (signed) hash value. Build-
ing on top of software requires an assumption that the
underlying hardware and system firmware are trusted. For
example, AEGIS assumes an uncompromised motherboard,
processor, and BIOS. However, blind trust in underlying
hardware is no longer an appropriate attitude in the face of
a number of possible hardware vulnerabilities, which include
physical attacks, hardware Trojan and backdoor insertion,

12

counterfeiting, and tampering. This reality suggests the root-
of-trust needs to occur deeper within the system (i.e., below
the software layer), with the help of trusted hardware.

Superdistribution [127, 128], originally termed software
service system by Ryoichi Mori in 1983, refers to unre-
strained distribution of digital content in encrypted form
(for purposes of Digital Rights Management or DRM).
Superdistribution relies on and requires the installation of
a special tamperproof hardware black-box or Superdistribu-
tion Label Reader (SDLR) (originally Software Usage Monitor
(SUM), connected by serial port (Prototype I); later iterations
included a Hyper Security Integrated Circuit and a more
efficient coprocessor-based variant (Prototype II)), which can
decrypt received content and facilitate payments to content
owners. Each piece of content has an associated Superdistri-
bution Label (SDL) which contains identifying information
and terms/conditions of use. Superdistribution, which now
forms the basis of most of the work on DRM, provides one of
the first illustrative examples of secure operations grounded
in trusted hardware.

There are a number of hardware-based technologies for
security, starting with external hardware security modules
which are carefully designed to give resistance to tam-
pering and physical attacks (e.g., IBM 4758 [129] and its
descendants). Hardware security modules may alternatively
be embedded into the motherboard to reduce costs; one
such example is the Trusted Platform Module (TPM) [130]
designed by the Trusted Computing Group (TCG). While
external hardware security modules offer a high level of
physical security, they come at a high monetary cost and
cannot work on an SoC. In contrast, on-board TPMs are
already widely deployed in commodity systems, making them
a convenient building block for secure systems.

The TPM is a tamper-resistant, secure microcontroller
that manages cryptographic keys and performs measurement
of code loaded by the system in Platform Configuration Reg-
isters (PCRs). The TPM provides a hardware-based root of
trust; it is possible to check whether a system is in a good state
by using the TPM to measure underlying hardware, BIOS,
boot loader, and operating system. These measurements are
used during trusted boot and attestation of the identity of a
system. Among other things, the TPM can be used to build an
integrity measurement architecture by holding an aggregate
value corresponding to an in-kernel list of measurements of
loaded executable content [131]. The TPM may be virtualized
to support large numbers of virtual machines on a single
hardware platform [132]. The TPM is also a key component
of several more comprehensive platform security solutions,
such as Intel Trusted Execution Technology. A TPM may be
implemented as a standalone hardware chip embedded into
the motherboard, in which case it is referred to as a discrete
TPM (dTPM). dTPMs have dedicated compute resources and
storage and are hardened against physical attacks in accor-
dance with Trusted Computing Group (TCG) specifications.
Alternatively, ARM TrustZone may be leveraged to build
a firmware-based TPM (fTPM) [133]. fTPMs offer better
performance than dTPMs while also sidestepping bus attacks.
However, fTPMs, unlike dTPMs, are vulnerable to physical
attacks on memory (due to reliance on system DRAM) and

Security and Communication Networks

side-channel attacks (due to sharing of resources with an
untrusted OS).

Intel Trusted Execution Technology (Intel TXT) [134]
provides a Measured Launch Environment (MLE). Critical
elements of the launch environment are compared with
known good values, and mismatching code is prevented
from loading by the launch policy. Intel TXT also provides
protection of secrets following improper MLE shutdown
and platform attestation. Intel TXT depends on the PCRs
and nonvolatile user-defined indices (NV indices) that are
provided by TPMs. Besides the TPM, Intel TXT is enabled
by trusted extensions integrated directly into the silicon,
authenticated code modules (ACMs) that serve as the first
measurement targets, and Launch Control Policy tools.

ARM TrustZone [135] partitions all of a system’s resources
into one of two worlds: secure or normal. Hardware logic
built into TrustZone-enabled bus fabric ensures secure world
assets are inaccessible by normal world components, while
ARM processor core extensions enable processor cores to
safely/efliciently execute code from both worlds in a time-
sliced fashion. The secure world can support anything from
a separate operating system to a code library managed by the
normal world. ARM TrustZone differs from Intel TXT in that
TrustZone itself implements TPM functionality in firmware
without relying on dedicated hardware. This is in following
with the TCG Mobile Trusted Module (MTM) specification
[136] (TrustZone is capable of supporting software-only
MTM implementations, as demonstrated by Winter [137]).
ARM TrustZone technology is widely deployed on Android
devices and forms the basis of secure platform solutions
such as Samsung KNOX [138] and AMD Secure Technology
(Platform Security Processor) [139].

Intel Software Guard Extensions (Intel SGX) [8] is a
more recent technology that offers a different take on trusted
computing. SGX is implemented in microcode and only
requires trust in the processor package and several privileged
enclaves supplied by Intel. In other words, the processor
takes on the root-of-trust role; any privileged system software
is assumed untrusted. Enclaves are instantiated within the
enclave page cache in processor-reserved memory. Code and
data are partitioned, with trusted/security-sensitive portions
loaded into enclaves and protected from unauthorized access
or memory snooping by processor-enforced checks.

AMD Virtualization (AMD-V) [140], formerly known as
Secure Virtual Machine (SVM), provides hardware exten-
sions for secure, resource-guaranteed isolation and Virtual
Machine Monitor (VMM) functionality. Additional features
provided by AMD-V include attestation and clearing of sys-
tem memory on reset. AMD recently proposed augmenting
AMD-V with AMD Secure Encrypted Virtualization (SEV)
(141, 142] technology, which will protect virtual machines
from malicious hypervisors or virtual machine monitors.
Rather than providing CPU-enforced isolation like Intel SGX
or ARM TrustZone, SEV works by transparently encrypting
VMs with a secure processor implemented in hardware. Data
is encrypted but not integrity-protected. Similarly to SGX,
SEV only trusts the CPU, but SEV exposes a substantially
larger attack surface due to a large code base and seemingly
incomplete mediation of VMM functionality.

Security and Communication Networks

3.2. Formal Basis. Collectively, we may refer to technologies
such as TPM, TrustZone, and SGX as attested execution secure
processors. Formal abstractions and a rigorous exploration of
their expressive power are given by Pass, Shi, and Tramer
[143]. In their work, SGX-like secure processors are formally
abstracted as an ideal functionality & ,,, globally shared by all
users, applications, and protocols. &, is parametrized with a
registry reg. Enclave operations (e.g., install new and stateful
resume) may be invoked by a platform & in the registry, and
anonymous attestation is possible using group signatures and
other anonymous credential techniques.

Pass et al. confirm, through their investigation, that
attested execution processors are “indeed extremely pow-
erful” and allow realization of primitives such as stateful
obfuscation, which are otherwise impossible “even when
assuming stateless hardware tokens or virtual blackbox secure
cryptographic obfuscation” [143]. They also present a number
of findings concerning the feasibility of attested execution
processors for doing secure multiparty computation:

(i) Universal Composability (UC) secure multiparty
computation cannot be realized if at least one party
is not equipped with an attested execution processor,
which goes against the intuition that an attested
execution processor could fulfill the role of a true
trusted third party. However, the addition of a global
Augmented Common Reference String (ACRS) [144]
allows extraction of corrupt clients’ inputs by the
simulator, thus making UC-secure MPC realizable.

(ii) Assuming secure key exchange protocols exist, com-
posable 2-party computation can be achieved (with
all program-dependent evaluation performed in the
enclave (not cryptographically)) when both parties
have an attested execution processor.

(iif) Assuming secure key exchange protocols exist, if both
parties have an attested execution processor with
trusted clocks, fairness is achievable.

(iv) Fairness is impossible for general functionalities
when only one party’s processor is not clock-aware,
but certain functions can be computed fairly with the
help of ACRS.

These results are promising and confirm the hypothesis
that attested execution processors can be applied to secure
multiparty computation problems.

Barbosa et al. [145] also take a provable security approach
and define a similar notion. They define the notion of
attested computation, which demands that the user’s local
view of the execution meets expectations, and code is
actually executed in isolation within a prescribed remote
machine. The attested program should also ensure minimal
leakage. Another supporting notion is key exchange for
attested computation, which differs from key exchange in
a nonattested setting and must be built from a passively
secure key exchange protocol and an additional existentially
unforgeable signature scheme (which provides freshness).
Barbosa et al. prove, given a correct and secure attested
computation protocol and a correct and secure attested key
exchange that ensures minimal leakage (in accordance to

13

their definitions), the probability that an adversary violates
two-sided entity authentication is negligible, and so is the
key secrecy advantage. Barbosa et al. demonstrate that key
exchange for attested computation may be combined with
an authenticated symmetric encryption scheme and replay
protection to achieve secure outsourced computation that
offers both verifiability and privacy. Further, they identify
secure multiparty computation as an interesting next target
for applying their attested computation building blocks.

3.3. Adoption Considerations. Although the hardware-based
technologies described in Section 3.1 are attractive, they
should not be carelessly introduced to privacy-preserving
applications. Naive use of these technologies may give way
to unintended vulnerabilities.

For example, while true that a TPM can provide a root-
of-trust, Parno reveals the need to bootstrap trust in the
TPM itself [146]. In a cuckoo attack, malware may redirect
messages intended for a local TPM to a different adversary-
controlled TPM on a different machine. The adversary can
then, unknown to the victim, take control of all communica-
tion between victim and local TPM. To prevent this, a secure
channel to the local TPM should be established, possibly
using an alphanumeric hash (Parno’s preferred solution with
plausible deployability: the manufacturer affixes an encoding
of the hash of a platform’s identity on the platform’s case; to
lessen the burden on the user, who would manually enter this
string into a smartphone or dedicated fob, Parno specifically
suggests an alphanumeric string encoding of the hash) of the
TPM’s public key or (for strongest security) a special-purpose
hardware interface that opens up direct communication with
the TPM [146].

In the case of Intel SGX, an improper partitioning of
code into trusted (enclave) and untrusted components can
cause leakage of sensitive information. Automated partition-
ing tools such as Glamdring [147] may help to perform
proper, minimal-leakage partitioning. The partitioning can
be further inspected using verifiers such as Moat [148],
which uses automated theorem proving and information flow
analysis to formally verify the confidentiality properties of
SGX applications. Besides partitioning errors, Intel SGX is
vulnerable to a number of attacks. Side channels have been a
particularly large issue with SGX, and notably, Intel left these
attacks out of the threat model, considering their mitigation
to be the developer’s responsibility.

Even given this caveat, the vulnerable surfaces found
within SGX represent an area of serious concern. Controlled-
channel attacks [149] use memory access patterns to exfil-
trate information from enclaves, representing a cache-based
attack. Schwarz et al. demonstrate that it is possible to use
SGX itself as a means of concealing cache attacks that origi-
nate within enclaves that are malicious [150]. It is not just the
cache that is of concern, as subsequent work [151] shows how
side channels can be found throughout the memory hierarchy
when SGX is employed, from DRAM to transaction lookaside
buffer (TLB). Attacks against the microarchitecture have been
an area of intense recent interest, with Meltdown [152] and
Spectre [153] attacks that target speculative execution units

14

by allowing reads to privileged kernel memory. While SGX
has proven largely resilient to these attacks, more recent
Foreshadow attacks [154] also target speculative execution
and SGX specifically and demonstrate methods to expose
attestation keys within secure enclaves. Other recent attacks
demonstrate that SGX can be susceptible to code-reuse
attacks without requiring privileges from the kernel [155].
While there is substantial research into developing defenses
against these attacks, it is clear that assuring the security of
SGX against memory vulnerabilities will be an active area of
investigation for some time to come.

Several attacks have been demonstrated against AMD
SEV. The SEVered [156] attack leverages the lack of integrity
protection and allows the hypervisor to change the memory
layout of VMs and trick services into returning memory con-
tents in plaintext. Du et al. [157] show that a malicious/com-
promised hypervisor could arbitrarily modify a VM’s cipher-
text content using AMD’s physical address-based tweak
algorithm; these modifications go undetected due to the lack
of integrity checks of encrypted memory.

Intel TXT and ARM TrustZone invite attacks of their
own as well. Each technology has its individual strengths
and weaknesses, making it important to choose the right
technology (or technologies) for each particular threat-
model, computing environment, or application.

More generally, a primary drawback of trusted computing
primitives is the possible leakage that occurs during commu-
nication between trusted and untrusted components. Dang et
al. propose Scramble-then-Compute [158], an approach that
scrambles input before it is processed in order to eliminate
such leakage and is designed to achieve the same goals as
Oblivious RAM (ORAM). Proper use of hardware-based
technologies will require a careful assessment of whether the
chosen primitive meets all of the required security properties
of a particular domain; in cases where it cannot, techniques
such as ORAM need be applied.

3.4. Alternative Protection Systems. Certain computation set-
tings have additional requirements that cannot be met by
general solutions. To meet these demands, entirely new
protection systems are proposed, many of which are built atop
of TrustZone, SGX, etc. and provide additional guarantees.

Flicker [159] executes security-sensitive code (Piece of
Application Logic or PAL) in complete isolation while also
providing meaningful, fine-grained attestation of executing
code to a remote party. Developers provide the PAL and
define its interface with the rest of the application (this
process can be automated). Flicker is built atop AMD’s
Secure Virtual Machine (SVM) extensions to leverage its
late launch capabilities: Flicker pauses the current execution
environment, executes a PAL using the SKINIT instruction,
and then resumes the paused environment. Flicker uses the
TPM for sealed storage, allowing state to be maintained
across sessions; replay protection can be achieved using the
TPM’s nonvolatile storage and PCR-based access control.
TrustVisor [160] improves on Flicker, which incurs high
performance overhead from its frequent use of hardware sup-
port for a dynamic root of trust for measurement (DRTM).

Security and Communication Networks

TrustVisor is a hypervisor-based approach for fine-grained
code integrity and data integrity/secrecy that also supports
attestation of isolated execution. A measured, isolated exe-
cution environment is initialized via a DRTM-like process,
TrustVisor Root of Trust for Measurement (TRTM), which
interacts with a software-based micro-TPM (¢ TPM). (This
is different from an fTPM and is specific to TrustVisor.
The uTPM executes on the platform’s primary CPU and
provides only basic randomness, measurement, attestation,
and sealing. Other features require direct interaction with a
hardware TPM.)

Virtual Ghost [161] protects applications from a poten-
tially malicious OS by combining compiler instrumentation
and run-time checks on OS code, creating “ghost memory”
inaccessible by the OS (not just tamperproof). Virtual Ghost
introduces a thin hardware abstraction layer between the
kernel and hardware, but it is different from other hypervisor-
based solutions because no software runs at a higher privilege
level than the kernel, and compiler techniques are used
instead of hardware page protection. Haven [162] has similar
goals: protecting the confidentiality and integrity of code/data
from the executing platform. Haven realizes shielded exe-
cution of unmodified legacy applications by leveraging Intel
SGX. Haven defends against privileged code and physical
attacks.

SeCReT [163] seeks to fill the gap between rich exe-
cution environment (REE) and trusted execution environ-
ment (TEE). SeCReT implements an access control list that
restricts access to resources in TrustZone to certain REE
processes. Additionally, session keys are used to sign mes-
sages transferred between REE and TEE for authentication,
only allowing requests from the REE that originated from
authenticated processes while blocking malicious messages
crafted by attackers. Session keys are supplied only upon
verification of requestors’ code and control-flow integrity,
and keys are flushed from memory at every processor switch
into kernel mode. In particular, SeCReT is implemented for
ARM TrustZone, leveraging existing active monitoring (e.g.,
TIMA) that protects the kernel’s static region in the REE.

Ryoan [164] tackles the problem of protecting secret
data while being processed by untrusted services. Ryoan
is a distributed sandbox that uses hardware enclaves (e.g.,
Intel SGX) to protect sandbox instances. Applications are
confined by a trusted sandbox, Google Native Client (NaCl)
(https://developer.chrome.com/native-client), and each SGX
enclave contains a NaCl sandbox instance for loading and
executing untrusted modules; these instances can communi-
cate with each other for distributed processing. Ryoan follows
a request-oriented data model in which confined modules
process input once and have no persisting state tied to the
input. Use of SGX has also been explored in containerized
cloud environments. SCONE [165] is a secure container
mechanism for Docker (https://www.docker.com) that uses
SGX to protect container processes from outside attacks.
SCONE provides a secure C standard library interface for
encrypting and decrypting I/O data. SCONE also supports
user-level threading and asynchronous system calls to reduce
performance overhead. Unmodified applications can run
with 0.6x-1.2x native throughput with the help of SCONE.

Security and Communication Networks

Unlike SCONE, which requires placing the entire application
within the SGX enclave where memory in the enclave page
cache (ePC) is limited, lxcsgx is a solution that specifically
develops a mechanism for using containers which is built
upon the Intel SGX SDK, allowing for local and remote SGX-
based CPU attestation and enforcing limits on EPC memory
usage per container [166]. Alternative approaches to offering
SGX in a cloud environment are given by Graphene-SGX
[167] and Panoply [168] .

Rather than using SGX outright, Sanctum [169] takes
a principled approach to isolation and a system developed
in response to SGX, which provably defends against known
software side channels (SGX leaves side-channel defense
to application developers). For example, to defend against
attacks on memory access patterns, Sanctum uses a page-
coloring-based cache partitioning scheme that outperforms
ORAM. Designed for the Rocket RISC-V chip, most of its
logic is implemented in trusted software (adopting many
elements of SGX design, including enclaves and attestation).

3.5. Existing Hardware-Assisted Applications. In addition to
enabling new computational settings, as demonstrated by the
efforts described in the previous subsection, hardware has
also been integrated into a variety of applications to overcome
their specific challenges. These applications range from set
operations and trusted databases to program obfuscation and
functional encryption. This section analyzes the innovative
decisions made when extending hardware support to these
various applications.

3.5.1. Using ARM TrustZone. TrustShadow [170] shields
legacy applications from an untrusted OS using TrustZone.
Each application has two parts: a “zombie” part that runs
in the normal world and a “shadow” counterpart that runs
in the secure world. A lightweight runtime system in the
secure world maintains a TEE for applications by intercepting
exceptions and forwarding them to the normal world. System
services are provided by the normal world, reducing the
required TCB, and the runtime system verifies the correct-
ness of responses from the OS while introducing negligible
overhead. The normal world OS is prevented from directly
accessing the “shadow” application’s virtual memory.
Choetal. [171] investigate issues surrounding deployment
of TEEs on mobile devices and assert that TrustZone-
based approaches bloat the trusted computing base of a
system, while hypervisor-based approaches incur sizable
performance overhead. To defeat the limitations of either,
they propose a hybrid approach that combines the memory
protection of TrustZone with a hypervisor. The resulting
system, which they term On-Demand Software Protection,
activates the hypervisor only when a TEE is demanded by
security-critical code to avoid virtualization overhead.
Private membership tests may also benefit from Trust-
Zone, as demonstrated by Tamrakar et al. [172]. They develop
a carousel approach in which the entire dictionary is circled
through trusted hardware on the cloud server, with Kinibi OS
running in the trusted world. The carousel approach has the
advantage of efficient batch processing over ORAM, which

15

incurs 10x more latency when processing 2,000 queries. The
four nonoverlapping Cuckoo hashes on a carousel variant
are found most efficient, able to support a larger number of
queries than either ORAM or Bloom filters, and stable when
handling 1025 queries/second.

3.5.2. Using Intel SGX. Gupta et al. [173] propose that Intel
SGXisan enabler for efficient secure multiparty computation.
Rather than relying on SGX enclaves to process the entire
computation, they call for the splitting of computation into
separate garbled circuit and SGX components. Garbled cir-
cuits could be used to handle especially sensitive portions of
the computation, so secrets are safe in the event of enclave
compromise. They consider the semi-honest adversarial
model when one or both parties have access to SGX hardware
and suggest similar protocols could support the malicious
adversarial setting. Portela et al. [174] confirm the potential of
SGX to support secure multiparty computation and propose
a novel notion of labelled attested computation to capture this
setting. The intuition behind labelled attested computation
is as follows: code loaded into an isolated execution envi-
ronment such as SGX is marked with labels pertaining to
users, and individual users can get attestations of parts of
code corresponding to specific labels. This allows users to be
oblivious of other users’ interactions while making it possible
to get an indirect attestation of the overall execution of the
system. Portela et al. build a new SMC protocol from SGX
based on labelled attested computation by composing attested
key exchange procedures for each participant in parallel.
Once a secure channel is established with each participant,
the function is evaluated in the enclave (taking inputs and
releasing outputs to each party as needed). Portela et al.
essentially treat code within the enclave environment of SGX
as a trusted third party, relying on the attestation capability
of SGX to bootstrap secure communication between enclave
and participants.

Besides supporting secure multiparty computation, SGX
may also give added security and privacy to network appli-
cations (including software-defined inter-domain routing,
peer-to-peer anonymity networks, and middleboxes) [175].
Kim et al. claim the difficulty of transforming arbitrary
computations into secure multiparty versions when com-
pared to adopting SGX. For example, they suggest running
Tor’s directory authorities within SGX enclaves to safeguard
authority keys and lists of Tor nodes; attestation further
prevents attackers from altering directory behavior.

SGX has also been applied to distributed operations
in cloud environments. VC3 [176] supports distributed
MapReduce in the cloud while keeping code/data secret and
ensuring both the correctness and completeness of results.
By relying on SGX, Hadoop (http://hadoop.apache.org/),
the OS, and the hypervisor can all be pushed outside the
TCB. SGX is used to isolate memory regions on indi-
vidual computers, and region self-integrity invariants can
optionally be enforced for all MapReduce code running
in these isolated regions to prevent unsafe memory oper-
ations. VC3 introduces an additional quoting enclave to
attest that an application enclave is running on hardware

16

owned and certified by the cloud provider, in a certain data
center.

Iron [177] performs functional encryption (FE) and
multi-input FE using SGX. Functional encryption allows
authorized entities to perform selective computation on
encrypted data and learn results in the clear or gain partial
access to encrypted data (whereas traditional encryption
schemes strictly allow decryption of either all or none of the
ciphertext). FE schemes support many possible keys, each
with different decryption capabilities. In Iron, a key manager
enclave (KME) takes the role of the trusted authority who
generates (using a master key) secret keys associated with
a function, and these keys are used to decrypt ciphertexts.
A client, once authorized by the KME, receives a functional
secret key and performs decryption in its decryption and
function enclaves. By relying on SGX, Iron is able to out-
perform cryptographic implementations of FE for complex
functionalities.

OblivML [178] relies on SGX to perform privacy-pre-
serving multiparty machine learning. Algorithms are care-
fully selected, adapted, and implemented to prevent the
exploitation of side channels (e.g., memory access patterns).
As part of OblivML, Ohrimenko et al. provide data-oblivious
machine learning algorithms for support vector machines,
matrix factorization, neural networks, decision trees, and k-
means clustering. OblivML scales to large, realistic datasets
and lowers overhead by orders-of-magnitude by relying on
high-performance SGX-assisted execution.

Tamrakar et al. [172] provide a carousel implementation
for private membership tests using SGX. The SGX imple-
mentation can outperform its TrustZone-based counterpart,
because enclave entry/exit adds little overhead, and supports
a query arrival rate of 3720 queries/second. Unlike TrustZone,
SGX does not provide private memory, meaning an adversary
could observe memory access patterns at page-level gran-
ularity. To overcome this challenge, Tamrakar et al. design
trusted SGX applications in such a way that memory access
patterns are data-independent. When private data structures
span multiple oblivious pages, a memory access is made to
each of these pages to hide data dependencies.

FastBFT [179] is a byzantine fault-tolerant (BFT) protocol
that reduces message complexity by combining TEEs with
lightweight secret sharing. Further optimized by optimistic
execution, tree topology, and failure detection, FastBFT
achieves (near-optimal) low latency and high throughput
even in large networks; previous BFT protocols scaled poorly
due to O(n*) message complexity, where n denotes the
number of replicas. The TEE part of the FastBFT replica can
be implemented as an SGX enclave, and a virtual monotonic
counter is used to provide rollback-resistant memory.

Kurnikov et al. propose SafeKeeper [180], a remote
password manager that uses SGX. An add-on installed on
the client’s web browser first performs remote attestation of
the server’s password protection service. Passwords and other
sensitive input fields are sent encrypted to the server’s enclave
and are only processed within the enclave. Password and
salt are inputs to a keyed one-way function, with the result
stored in the server’s password database and the key available

Security and Communication Networks

exclusively in the enclave. This successful integration of pass-
word manager and SGX affirms the ability of SGX to support
a wide variety of applications. A more general database
implementation using SGX is given in EnclaveDB [181].
EnclaveDB works like a conventional relational database, but
all sensitive data (tables, indexes, queries, and intermediate
state) is hosted in enclave memory. Additionally, there is a
decoupling of query compilation from execution, allowing
precompiled queries to be deployed within the enclave while
query-parser/compiler/optimizer are hosted elsewhere in a
trusted environment. By using SGX, the TCB is 100x smaller
than that in a conventional database server.

SGX is also used by Sasy et al. to build ZeroTrace [182],
a library of oblivious memory primitives. ZeroTrace com-
bines state-of-the-art oblivious RAM techniques with SGX,
achieving improved performance over a pure cryptographic
implementation and resistance to software side-channels.
Sasy et al. also build the first oblivious memory controller
from SGX that is able to protect against active software
adversaries while also being able to handle the asynchronous
terminations of SGX enclaves.

3.5.3. Using Specialized Hardware. Fischlin et al. [183]
demonstrate that hardware can support secure set operations
(e.g., set intersection) even when tokens are not necessarily
trusted by both participants. They achieve the same level of
security as Hazay and Lindell [184], giving privacy guarantees
in a malicious adversarial setting and correctness guarantees
in a covert adversarial setting. Whereas preceding work
assumed tokens were tamperproof and provided by trusted
manufacturers (e.g., certified smartcards), Fischlin et al. claim
that even well-tested tokens may contain errors/backdoors.
The protocols they build require only the issuer’s trust in
hardware tokens to ensure privacy in the malicious and
correctness in the covert adversarial models.

TrustedDB [185] is motivated by the inherit limitations on
SQL query expressiveness imposed by software-based, cryp-
tographic constructs. TrustedDB instead leverages server-
hosted tamperproof trusted hardware for cost-efficient, crit-
ical query-processing. To get around the computational
and memory-capacity constraints of secure coprocessors
(e.g., IBM 4764), Bajaj and Sion propose max utilization
of common unsecured server resources to reduce cost by
orders-of-magnitude. They also propose installing multi-
ple secure coprocessors on a TrustedDB-hosting server for
simultaneous servicing of multiple clients. Cipherbase [186],
a full-fledged SQL database system that extends Microsoft’s
SQL Server (https://www.microsoft.com/en-us/sql-server/),
is another database solution that relies on trusted hardware
and builds on TrustedDB. Cipherbase aims to simulate
fully homomorphic encryption on top of nonhomomorphic
encryption schemes by shipping encrypted data (encrypted
using an application-specific secret key) to a trusted machine,
within which it is decrypted, processed, and reencrypted
before being sent back. Arasu et al. implement their trusted
machine for Cipherbase using Field Programmable Gate
Array (FPGA), which provides the flexibility of processor-
based systems alongside the security and performance of
dedicated hardware.

Security and Communication Networks

Canim et al. [187] argue that simple automation could be
used to reidentify biomedical data. Further, they point out
that practical cryptographic protocols for sharing/manag-
ing/analyzing biomedical data require the addition of mul-
tiple third parties. To remove this dependency, Canim et al.
propose colocating services to store and process sensitive data
using secure coprocessors. All data processing is performed
within the coprocessor, which also provides a secure Ethernet
channel for communication between hospitals and the data
processing/storage server. The secure coprocessor can also
facilitate secure auditing, which could be useful to show that
data handling satisfies regulations.

A special hardware recryption box [188] can be used to
speed up homomorphic function evaluation and encrypted
search. The recryption box does this by refreshing ciphertexts
and lowering noise, a limiting factor for SWHE operations;
once noise reaches a critical bound, no further operations can
be supported. FHE schemes perform an additional bootstrap-
ping operation to refresh noisy ciphertexts and enable eval-
uations of arbitrary depth, but the evaluation of decryption
circuits during refreshing is slow. (All SWHE schemes (and
FHE schemes built atop them) are noisy. PHE schemes vary
in noisiness: multiplicatively-homomorphic textbook RSA,
although not affected by noise, is not IND-CPA/semantically
secure; Paillier encryption [189], an additively homomorphic
PHE scheme, is IND-CPA/semantically secure but uses a
noise factor to mask messages.) Roy et al. implement the
recryption box on FPGA and demonstrate a 20x performance
improvement for encrypted search.

Jarvinen et al. [190] give a generic architecture for
using garbled circuits and one-time programs modularly to
achieve leakage resilience. Two FPGA-based prototypes are
provided, a system-on-a-programmable-chip paired with a
SHA-256 hardware accelerator (representative of next gen-
eration smartcards/smartphones) and a standalone hardware
implementation. They demonstrate that one-time programs
relying on hardware can provide leakage-resilient evaluation
of arbitrary functions in untrusted environments.

3.5.4. Using Existing Parts in New Ways. Husted et al.
[191] show how to use graphical processor units (GPUs) to
optimize two-party garbled circuit computation in both the
semi-honest and malicious (with 1 bit leaked) models. With
the help of a GPU, they are able to completely parallelize
the generation of garbled circuits, even with the Free-XOR
[42] optimization enabled. This generation using GPUs can
further be concurrently paired with evaluation on CPUs. To
remove the dependencies introduced by Free-XOR, Husted et
al. virtually generate labels for all a circuit’s wires and calculate
offsets unique to each XOR gate with which it becomes
possible to serially compute each gate in every XOR gate chain
of a circuit. Their approach allows generation of 75 million
gates per second, outperforming other CPU- and GPU-based
systems alike.

PixelVault [192] relies exclusively on GPUs for protecting
keys and performing cryptographic operations. Keys are
exposed only in GPU registers (never in observable memory),
and critical code only appears in the GPU instruction cache;

17

access to either from the host is prevented, even upon full
compromise of the host. The nonpreemptive execution mode
of the GPU prevents adversarial tampering of PixelVault’s
GPU code. Relying on GPUs for secure key storage comes
with added support for higher processing throughput of
cryptographic operations for server applications.

GhostRider [193] is a co-designed compiler and architec-
ture for privacy-preserving cloud computation that employs
nonoblivious encrypted RAM and scratchpad memory when
doing so would not compromise memory-trace oblivious-
ness (MTO). Otherwise, oblivious RAM (ORAM) banks
are used to contain sensitive access patterns. GhostRider
outperforms approaches to MTO that rely solely on ORAM.
The GhostRider compiler can also allocate to multiple ORAM
banks for further reduction of access times.

HOP [194] provides simulation-secure obfuscation for
RAM programs with the help of secure hardware, fol-
lowing impossibility results of software-only virtual black
box obfuscation of general programs. HOP puts trust only
in a hardware single-chip processor. HOP optimizations
include use of hardware ORAM, hardware scratchpad memo-
ries, and instruction-scheduling/context-switching improve-
ments. HOP improves on prior work by over three orders
of magnitude, bringing deployment of obfuscation closer to
practice.

OASIS [195] is a CPU instruction set extension for exter-
nally verifiable initialization, execution, and termination of
isolated execution environments (IEEs). OASIS leverages the
hardware components available on commodity CPUs and,
as a result, only includes the CPU in the TCB. Specifically,
OASIS assumes that the CPU contains a physically unclon-
able function (PUF) and a true random number generator
(TRNG). OASIS instantiates an IEE using several Mb of on-
die memory to create a Cache-as-RAM (CAR) execution
environment, typically used for system boot-up tasks.

TRESOR [196] is a Linux kernel patch that implements
AES (AES-NI) and key management solely on the micro-
processor. Under TRESOR, the secret key and all encryption
states are only stored in processor registers. x86 debug
registers are repurposed for cryptographic key storage, and
performance is comparable with standard AES. Despite
handling keys only within the CPU boundary, TRESOR was
demonstrated to be vulnerable to the TRESOR-HUNT [197]
direct memory access (DMA) attack, in which an adversary
injects code into the kernel that will transfer keys from the
CPU into RAM; this attack can be applied to any CPU-
bound encryption technique. The success of TRESOR-HUNT
suggests that “secure” systems may still be vulnerable due to
overlooked attacker capabilities and confirms that the secure
integration of hardware primitives in new ways is an attractive
but nontrivial endeavor.

3.5.5. Summary. Table 1 compares several properties of the
major SMC techniques presented in Section 2 with those of
TrustZone, SGX, and specialized hardware. In summary, the
protections offered by hardware-assisted trusted execution
environments (such as TrustZone and SGX) allow simplified
application and protocol design. Specialized hardware, or

Security and Communication Networks

18

(s10ss2001d0d
pauyuod-arempIey syuowa[d arempiey (Jooxdrodure; usyo) “82)
oIeMpIeL]) SIUDWI[D dIBMPIRE] arempIer]
jou J13dA10UD :sarrep o) uryym readde AJuo opod [eOTILID PUE BJep JANISUIS
paziferdads
s1301 snq pue ©7) JOIUOTA 91N suau0dwod plIom [eutou SIS QU0Z)SNI
MOT 101 snq pue NdO [[FD 1ONUON S £q 21qTs5900® A[}021Ip JOU P[IOM 2INDIS UL BJEP PUL PO PUB SO P[IOM 21N 2L NV
uonesaye STTVDH YySnoayy a[qrssadoe A[uo .
0dd Surmp 1as 301095 pareys SAB]OUD ‘SJUIJUOD IAB[OUD JO UOTJBISIIIB 9JOWRY/[EI0T P NdO XOS P
(proysa1ys)
R A M
usp P REN 1P JOU $32153§ PaUyap-[oM O} pajrul] s Tewtury

BIRp)) uondAidoug
AydexdoydL1o Suong pordhious uo suonessdo ur-)[Iing JoN AHMS/THJ :sdo paiornsay B

uSiH 2Bueyxa 9S00YD-pue-In 3S00Yd-pue-In [P $IMOII) pI[qie
Pa1qIes <IaysueI], SNOTAI[qO P-pUEAng P-pueano HIDIO PRITEO
peayIaAQ WISTUBYDIA] JUIWDIOJUH [PuueyD) 2IN293 Aya3ayug ereq Ayadayug opoD jsnuy, paxmbay anbruyoay,

"arempirey paysniy £q papraoxd asory) yamm sanbruypa) HINS [estssepd 4q papraoid serzedord oy jo uostreduwro)) ;7 a14V],

Security and Communication Networks

hardware repurposed for new uses (e.g., GPUs), can also sig-
nificantly improve performance in a variety of domains. Thus,
TEEs and specialized hardware are both promising directions
for realizing more practical secure multiparty computation, a
stance that is reinforced by several preliminary works [172-
174].

4. Open Challenges

After investigating the state of secure multiparty computa-
tion, we see that SMC has improved by leaps and bounds
in the past several decades and even saw real-world use
(Section 2.7). Given that SMC has already succeeded in
practice, perhaps the missing piece is a set of compelling
applications to make full use of the much-improved tech-
niques, rather than a fixation on improving the techniques
further. We have plans to revisit our previous work [198] on
transmitter localization in sensor networks as one such use
case for which SMC techniques may be mature enough.

We see as well the potential of trusted hardware to
contribute to the SMC space, and we are convinced of the
value in continued exploration of their combination. This
section identifies several remaining challenges that were
inspired by our investigation. These challenges are as follows:

(1) Do TEEs offer a shortcut for defending against mali-
cious adversaries?

(2) Are TEE-based solutions just as viable for mobile and
similarly resource-constrained platforms?

(3) Can we apply trusted hardware to other types of
privacy-preserving computation?

Each of these challenges is unpacked in more detail below.

4.1. Challenge 1: Defeating Malicious Adversaries. Defending
against malicious adversaries is significantly harder than
defending against semi-honest adversaries. When using gar-
bled circuits, a cut-and-choose [51] procedure is needed to
assure parties of the correctness of a circuit being evaluated;
this cut-and-choose substantially increases the computa-
tion/communication complexity, because many copies of the
same circuit need to be generated.

Symmetric cut-and-choose [56] and related optimiza-
tions (detailed in Section 2.5.1) have brought down the cost of
defense, but the attestation component of TEEs may allow us
to sidestep the cut-and-choose procedure altogether. This is
especially true in the context of Intel SGX. The SGX-provided
remote attestation capability allows computing parties to be
assured that the function code loaded into the evaluating
party’s enclave is as expected (prior to passing their sensitive
inputs into the enclave).

A downside of this reliance on TEE-provided attestation
is the shift in trust model from that of traditional crypto-
graphic approaches. For example, parties may be uncomfort-
able with Intel’s control over the attestation process in SGX
(with Intel potentially able to perform man-in-the-middle
attacks if they so choose). (A future version of Intel SGX is
expected to provide attestation capabilities that do not require
the direct involvement of Intel.) Using TrustZone implies the

19

(possibly large) OS running in the secure world needs to be
trusted. Moreover, though the normal and secure worlds are
isolated, they still share the same system resources. AMD’s
SEV, with its lack of integrity protections, means possibly
misplaced trust in arbitrarily modifiable code/data while also
requiring trust in an additional secure processor.

Besides trust concerns, TEE-provided attestation itself
may be insufficient. Considering again in the context of
SGX, attestation can only be used to confirm the contents of
the enclave-portion of an application, not of any untrusted
components outside of the enclave. Mechanisms provided by
other TEEs may be similarly incomplete. The modular design
of TEEs poses issues when any of their components are found
vulnerable. That is, the compromise of any single component
may lead to compromise of the entire TEE.

TEEs certainly have their own problems, but they may
provide a starting point for an alternative means of “lifting”
security in the semi-honest adversarial setting to the mali-
cious or covert settings. Despite the many recent advance-
ments in SMC performance in the presence of malicious
adversaries (as described in Section 2.5.6), a pure TEE-based
approach appears to be a worthwhile line of future work to
take advantage of their wide availability.

4.2. Challenge 2: Mobile-Friendly SMC. Conducting business
on mobile devices is on the rise, and mobile devices even
outnumber desktop PCs and laptops in some parts of the
world. Although mobile devices continue to become better-
provisioned, they are not as computationally powerful as
desktop- or server-class machines in general. Even as the
gap between desktop computer and smartphone diminishes
(e.g., modern smartphones are equipped with decent GPUs
to support their dense displays), mobile devices are still
held back by power constraints and limited space available
for functions such as efficient cooling. With this in mind,
can trusted hardware be even more of a boon for secure
computation on mobile devices?

Consider Samsung KNOX [138], which is Samsung’s
proprietary flavor of TEE for mobile devices that is built
atop ARM TrustZone [135]. KNOX is advertised as the
pinnacle of security on mobile devices, but Atamli-Reineh
et al. [199] show that KNOX is not without its faults. (The
work of Atamli-Reineh et al. [199] was published in 2016, and
the vulnerabilities stated therein have probably since been
patched. However, it serves as a reminder that the security
of a TEE-based system depends on proper usage of the TEE.
This point is echoed by Kanonov and Wool [200], who assert
“TrustZone’s mere existence is not enough.”) In particular,
Atamli-Reineh et al. point out several vulnerabilities of
KNOX resulting from improper use of TEE, including:

(i) Exposure of KNOX clipboard data.

(ii) Exposure of audio channels used by applications
running in KNOX space.

(iii) Exposure of KNOX-space SSL certificates.
Even when the TEE was used properly (e.g., processing of

user input in the secure world), a bug in KNOX’s eCryptES
allowed improper password verification for purposes of

20

authentication. As a takeaway, Atamli-Reineh et al’s study
shows that it is difficult to get TEE usage right.

Indeed, both Qualcomm’s QSEE (http://bits-please.blogs-
pot.com/2016/04/exploring-qualcomms-secure-execution
.html) and Trustonic’s Kinibi (https://trustonic.com/solu-
tions/trustonic-secured-platforms-tsp/), two major TEE im-
plementations for Android, are at risk due to the large
number of trustlets they load [201]. Any vulnerability found
within a trustlet can be easily exploited due to limited or
absent address space layout randomization (ASLR) for
trustlets; lack of guard pages between global variables, heap,
and stack; and lack of stack cookies in Kinibi. Compromising
the TEE, in turn, allows an attacker to compromise the
security of the entire device.

These identified vulnerabilities of Samsung KNOX (and
other mobile TEE implementations) and the underlying
TrustZone pose an obstacle to adoption of TEE-based SMC
on mobile devices, as TrustZone is currently the primary
mobile TEE offering. AMD Secure Technology [139], like
KNOX, is also dependent on TrustZone, while technolo-
gies such as Intel TXT are only available on desktop- and
server-class devices. Atamli-Reineh et al. propose SGX as
an appropriate countermeasure for several of the KNOX
vulnerabilities revealed by their study. This suggests an
SGX parallel is desirable for mobile devices; however,
it remains to be seen whether SGX-like solutions for
mobile will be equally ineffective or introduce a slew of
new problems. (Intel SGX is not currently available on
mobile; its availability is limited to desktop- and server-class
machines.)

Assuming it is possible to overcome the issues sur-
rounding TEE use in the mobile environment, a TEE-based
approach is certainly a promising direction for SMC on
mobile. Reduced computational resource demand will allow
mobile devices to handle more complicated SMC problems
on-device and will likely pair well with existing techniques
that leverage the cloud beyond the device.

The solutions presented in Section 2.6 required rewriting
of cryptography-backed SMC protocols to cater to mobile
devices. Regardless of the choice of mobile TEE instantiation,
similar efforts will be needed to port TEE-based SMC
solutions to mobile devices.

4.3. Challenge 3: Privacy-Preserving Computation. Secure
multiparty computation is just one specific example drawn
from a larger domain of privacy-preserving computation,
which spans a wide range of applications (from genomics to
data mining and set operations). Traditionally, applications
in this space have relied on cryptography- or obfuscation-
based techniques to provide the necessary privacy guarantees,
but these other types of privacy-preserving computation
may also benefit from alternative, hardware-based solutions.
This hypothesis is supported by existing hardware-based
approaches for privacy-preserving machine learning [178],
membership tests [172], medical data management [187], set
operations [183], and more.

Nevertheless, the coupling of hardware and privacy-
preserving computation is still a relatively new direction

Security and Communication Networks

of research that warrants further exploration. The specific
research challenge here is twofold:

(1) Can TEEs offer a general means of converting func-
tions into their privacy-preserving counterparts?

(2) Can these TEE-backed solutions outperform custom
protocols without weakening security?

In the following, we examine select subdomains of
privacy-preserving computation to determine how receptive
they may be to integration of trusted hardware. Overall, this
coupling appears to be a promising direction for a more
principled building of privacy-preserving applications.

4.3.1. Genomic Privacy. Genomic data contains a wealth of
information and is now more available than ever before due
to decreasing costs and commoditization of genomic analysis.
Genomic data supports domains ranging from personalized
medicine to forensics. Some of the things that can be revealed
by the genome include phenotypic traits, risk of contracting
certain diseases, identity, and family relationships. Genomic
data comes with significant privacy concerns, and there is no
telling what additional information will be extractable from
the genome in the future. Naveed et al. [202] identify several
challenges specific to genomics:

(i) Consumer-driven genomics makes genomic data
available outside controlled/well-regulated healthcare
systems (i.e., freely available on the Internet).

(ii) Privacy is in contention with utility.

(iii) Privacy requirements vary depending on context. For
example, quick access to accurate genomic data is
needed in life-threatening situations; genetic testing
is far more delay-tolerant.

(iv) Privacy mechanisms may fail to prevent association
with identity information found on other platforms.

Privacy-preserving solutions for genomic computation
should tackle these challenges while minimizing negative
effects on performance or accuracy of computed results.

Prior work includes homomorphic encryption for secure
storage/processing of genomic, clinical, and environmental
data [203]; splitting raw genomic data into millions of short
reads (each short read contains 100-400 nucleotides; requests
for subsets of short reads do not reveal the nature of the
genetic test they support) for finer-grained access [204]; and
symbolic execution on sensitive user data [205]. Another
direction of work builds privacy-preserving versions of the
underlying techniques, some examples being: private edit
distance [206, 207], Smith-Waterman similarity [206], and
set-operation inspired techniques [208].

The addition of hardware may help further bolster these
existing techniques or provide an alternative means for
privacy to medical professionals not well-versed in security.
TEEs may be especially desirable in this subdomain, given
that despite the availability of SMC techniques for performing
potentially interesting studies on genomic data, the applica-
tion of SMC is largely hindered by current practices and legal
restrictions. Secure processing of genomic data at trusted

Security and Communication Networks

TEE-supported servers with restricted output may be an
approach more amenable to tight regulation.

4.3.2. Data Mining and Machine Learning. The availabil-
ity of data is increasing, but this data is owned/managed
by different principals who do not necessarily trust one
another. Privacy-preserving techniques are needed to extract
information from these large, heterogeneous collections
of data. Mohassel et al. [209] propose privacy-preserving
implementations of linear regression, logistic regression, and
neural networks, while Lindell and Pinkas [210] demonstrate
privacy-preserving decision tree-based data mining. In par-
ticular, Miyaji et al. [211] explore using the homomorphic
property of Paillier encryption [189] together with the two-
party secure computation scheme of Aumann et al. [19];
Chabanne et al. [212] present CryptoNets, which combines
fully homomorphic encryption with neural networks.

Bogdanov et al. [72] design Rmind, a collection of
algorithms supporting the complete statistical analysis of data
from various sources in a privacy-preserving manner. The
Rmind algorithms are claimed compatible with hardware
isolation platforms such as SGX. Not just Rmind, but privacy-
preserving machine learning on the whole, with its many
parallels with general secure computation, has potential for
improvement with the help of trusted hardware.

4.3.3. Miscellaneous. A number of privacy-preserving prob-
lems have been explored that do not fall under the major
areas identified above. These include (this is not and does
not attempt to be an exhaustive list): anonymous messaging
[213], joint graph computation and distance metrics [214,
215], street navigation [216], data outsourcing and compli-
ance checking [217], computation outsourcing [25], one-time
programs [24], controlled functional encryption [218], and
private cloud payments [219]. Private set operations may
also benefit from coupling with hardware; these include
intersection (PSI) [220, 221], union [221], pattern matching
[220], and element reduction [221].

It would be interesting to see how many of these prob-
lems, if any, can benefit from the introduction of trusted
hardware. One example of this coupling is given by Zhao et
al. [222]; they investigate how TEEs may be used to realize
one-time programs, ultimately building a system that uses
Intel TXT in conjunction with the TPM. A unique and
tailored approach to hardware-assisted computation may be
necessary for each of the above problems, or it may be the case
that several problems share characteristics that allow them to
be tackled in a similar manner; such exploration would be an
interesting direction for future work.

5. Conclusion

Secure multiparty computation refers to a powerful set of
techniques that enable mutually distrusting parties to com-
pute a common result without exposing sensitive inputs to
one another. Although powerful, even the best circuit-based
techniques remain impractical for most real-time online
computations. This paper surveyed recent improvements

21

in SMC techniques and explored trusted hardware (in the
form of TEEs) as an enabler for further improvement; this
direction is promising overall. Several challenges specific to
the joining of SMC and TEEs were also addressed, these being
(1) defeating malicious adversaries, (2) mobile friendly TEE-
supported SMC, and (3) a more general coupling of trusted
hardware and privacy-preserving computation.

Disclosure

Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science
Foundation.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this article.

Acknowledgments

Special thanks are due to Patrick Traynor and Thomas
Shrimpton for their interest in and constructive criticisms of
this work. This work is supported in part by the US National
Science Foundation under grant CNS-1540217.

References

[1] A.C.Yao, “Protocols for secure computations,” in Proceedings of
the 23rd Annual Symposium on Foundations of Computer Science
(SFCS ’82), pp. 160-164, 1982.

[2] A.C. Yao, “How to generate and exchange secrets,” in Proceed-
ings of the 27th Annual Symposium on Foundations of Computer
Science, pp. 162-167, Toronto, Canada, October 1986.

[3] T. Araki, A. Barak, J. Furukawa et al., “Optimized honest-
majority MPC for malicious adversaries - breaking the 1 billion-
gate per second barrier;” in Proceedings of the 2017 IEEE
Symposium on Security and Privacy, SP ’17, IEEE, May 2017.

[4] M. Joemets, “Use Sharemind to Build Location Services With-
out Breaking Privacy Laws,” 2015, https://sharemind.cyber
.ee/location-services/.

[5] C.Gentry, “Fully homomorphic encryption using ideal lattices,”
in Proceedings of the 41st annual ACM symposium on Theory of
Computing (STOC 09), pp. 169-178, ACM, Bethesda, Md, USA,
2009.

[6] A.Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612-613, 1979.

[7] G.R.Blakley, “Safeguarding cryptographic keys,” in Proceedings
of the AFIPS National Computer Conference, pp. 313-317, 1979.

[8] V. Costan and S. Devadas, “Intel SGX Explained,” Tech. Rep.,
2016, Cryptology ePrint Archive, Report 2016/086, http://
eprint.iacr.org, 2016.

[9] E. Bresson, D. Catalano, N. Fazio, A. Nicolosi, and M. Yung,
“Output privacy in secure multiparty computation,” in Proceed-
ings of the 3rd Yet Another Conference on Cryptography (YACC
'06),2006.

[10] C. Dwork, “Differential privacy: a survey of results,” in Pro-
ceedings of the Annual Conference on Theory and Applications
of Models of Computations (TAMC °08), 2008.

https://sharemind.cyber.ee/location-services/
https://sharemind.cyber.ee/location-services/
http://eprint.iacr.org
http://eprint.iacr.org

22

(11]

(12]

(13]

(14]

[15

(16]

[17

[20]

(21]

(22]

(23]

(24]

[25]

[26]

I. Mironov, O. Pandey, O. Reingold, and S. Vadhan, “Compu-
tational Differential Privacy;” in Proceedings of the 29th Annual
International Cryptology Conference (CRYPTO ’09), 2009.

P. Kairouz, S. Oh, and P. Viswanath, “Secure multi-party
differential privacy;,” in Proceedings of the 28th International
Conference on Neural Information Processing Systems (NIPS ’15),
2015.

V. Bindschaedler, S. Rane, A. Brito, V. Rao, and E. Uzun,
“Achieving differential privacy in secure multiparty data aggre-
gation protocols on star networks,” in Proceedings of the 7th
ACM Conference on Data and Application Security and Privacy

(CODASPY ’17), 2017.

X. He, A. MacHanavajjhala, C. Flynn, and D. Srivastava,
“Composing differential privacy and secure computation: a case
study on scaling private record linkage,” in Proceedings of the
ACM SIGSAC Conference on Computer and Communications
Security (CCS ’17), 2017.

A. Acar, Z. B. Celik, H. Aksu, A. S. Uluagac, and P. McDaniel,
“Achieving secure and differentially private computations in
multiparty settings,” in Proceedings of the IEEE Symposium on
Privacy-Aware Computing (PAC ’17), 2017.

S. Mazloom and S. D. Gordon, “Secure computation with
differentially private access patterns,” in Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security
(CCS ’18), 2018.

M. Pettai and P. Laud, “Combining differential privacy and
secure multiparty computation,” in Proceedings of the 3lst
Annual Computer Security Applications Conference (ACSAC’’15),
2015.

R. Cohen, I. Haitner, E. Omri, and L. Rotem, “From fairness
to full security in multiparty computation,” in Proceedings of
the International Conference on Security and Cryptography for
Networks (SCN ’18), 2018.

Y. Aumann and Y. Lindell, “Security against covert adversaries:
efficient protocols for realistic adversaries,” in Proceedings of the
Theory of Cryptography Conference (TCC *07), 2007.

D. Beaver, S. Micali, and P. Rogaway, “The round complexity
of secure protocols,” in Proceedings of the ACM Symposium on
Theory of Computing (STOC *90),1990.

M. O. Rabin, How to Exchange Secrets with Oblivious Transfer
TR-81, Aiken Computation Lab, Harvard University, 1981.

M. Bellare, V. T. Hoang, and P. Rogaway, “Foundations of
garbled circuits,” in Proceedings of the 2012 Conference on
Computer and Communications Security (CCS ’12), ACM, 2012.

M. Bellare, V. T. Hoang, and P. Rogaway, “Adaptively secure
garbling with applications to one-time programs and secure
outsourcing,” in Proceedings of the International Conference
on the Theory and Applications of Cryptology and Information
Security (ASIACRYPT ’12), vol. 7658, 2012.

S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, “One-time pro-
grams,” in Proceedings of the Annual International Cryptology
Conference (CRYPTO ’08), 2008.

S. Hohenberger and A. Lysyanskaya, “How to securely out-
source cryptographic computations,” in Proceedings of the 2nd
International Conference on Theory of Cryptography (TCC ’05),
2005.

B. Hemenway, Z. Jafargholi, R. Ostrovsky, A. Scafuro, and D.
Wichs, “Adaptively secure garbled circuits from one-way func-
tions,” in Proceedings of the Annual International Cryptology
Conference (CRYPTO ’16), 2016.

[27]

(28]

[29]

[30]

(31]

(33

(34]

[35

(36]

(37]

(38]

(39]

(40

[41]

[42]

(43]

Security and Communication Networks

Z. Jafargholi and D. Wichs, “Adaptive security of Yao’s garbled
circuits,” in Proceedings of the Theory of Cryptography Confer-
ence (TCC ’16), 2016.

O. Goldreich, S. Micali, and A. Wigderson, “How to play ANY
mental game or a completeness theorem for protocols with
honest majority;” in Proceedings of the Annual ACM Symposium
on Theory of Computing (STOC "87), 1987.

R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data
banks and privacy homomorphisms,” in Foundations of Secure
Computation, pp. 169-180, 1978.

M. Tto, A. Saito, and T. Nishizeki, “Secret sharing scheme
realizing general access structure,” in Proceedings of the IEEE
Global Communications Conference (GLOBECOM °87), 1987.

J. Benaloh and J. Leichter, “Generalized secret sharing and
monotone functions,” in Proceedings of the Conference on the
Theory and Application of Cryptography (CRYPTO), 1988.

A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung, “Proactive
secret sharing or: how to cope with perpetual leakage,” in
Proceedings of the Annual International Cryptology Conference
(CRYPTO),1995.

B. Choc, S. Goldwasser, S. Micali, and B. Awerbuch, “Verifiable
secret sharing and achieving simultaneity in the presence
of faults,” in Proceedings of the 26th Annual Symposium on
Foundations of Computer Science (SFCS), 1985.

P. Feldman, “A practical scheme for non-interactive verifiable
secret sharing,” in Proceedings of the 28th Annual Symposium
on Foundations of Computer Science, pp. 427-437, IEEE, Los

Angeles, Calif, USA, 1987.

M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness
theorems for non-cryptographic fault-tolerant distributed com-
putation,” in Proceedings of the 20th Annual ACM Symposium on
Theory of Computing (STOC ’88), pp. 1-10, USA, May 1988.

D. Chaum, C. Crépeau, and I. Damgard, “Multiparty uncon-
ditionally secure protocols,” in Proceedings of the 20th Annual
ACM Symposium on Theory of Computing, STOC 1988, pp. 11-
19, USA, May 1988.

R. Cramer, I. B. Damgard, and J. B. Nielsen, Secure Multiparty
Computation and Secret Sharing, Cambridge University Press,
Cambridge, Mass, USA, 2015.

I. Damgard, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P.
Smart, “Practical covertly secure MPC for dishonest majority
—or: breaking the SPDZ limits,” in Proceedings of the Annual
International Cryptology Conference (CRYPTO ’12), 2012.

N. Buescher, A. Weber, and S. Katzenbeisser, “Towards practical
RAM based secure computation,” in Proceedings of the European
Symposium on Research in Computer Security (ESORICS ’18),
2018.

M. Keller and A. Yanai, “Efficient maliciously secure multi-
party computation for RAM,” in Proceedings of the Annual
International Conference on the Theory and Application of
Cryptographic Techniques (EUROCRYPT ’18), 2018.

O. Goldreich and R. Ostrovsky, “Software protection and
simulation on oblivious RAMs,” Journal of the ACM, vol. 43, no.
3, pp. 431-473,1996.

V. Kolesnikov and T. Schneider, “Improved garbled circuit: Free
XOR gates and applications,” in Proceedings of the International
Colloquium on Automata, Languages and Programming (ICALP
08), vol. 5126 of Lecture Notes in Computer Science, pp. 486498,
Springer, Berlin, Germany, 2008.

V. Kolesnikov, P. Mohassel, and M. Rosulek, “FleXOR: Flexible
garbling for XOR gates that beats free-XOR,” in Proceedings of

Security and Communication Networks

(44

(45]

[46]

[47

[48

[49

[50]

=)
=

(52]

(54]

[55]

(56]

the Annual International Cryptology Conference (CRYPTO ’14),
2014.

Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, “Extending
oblivious transfers efficiently,’ in Proceedings of the Annual
International Cryptology Conference: (CRYPTO 03),vol. 2729 of
Lecture Notes in Computer Science, pp. 145-161, Springer, 2003.

M. Naor, B. Pinkas, and R. Sumner, “Privacy preserving auc-
tions and mechanism design,” in Proceedings of the 1st ACM
Conference on Electronic Commerce, EC 1999, pp. 129-139, USA,
November 1999.

B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams,
“Secure two-party computation is practical,” in Proceedings of
the International Conference on the Theory and Applications of
Cryptology and Information Security (ASIACRYPT °09), vol. 5912
of Lecture Notes in Computer Science, pp. 250-267, Springe,
Berlin. Germany, 20009.

M. Kiraz and B. Schoenmakers, “A protocol issue for the mali-
cious Case of Yao’s garbled circuit construction,” in Proceedings
of the 27th Symposium on Information Theory in the Benelux,
2006.

P. Mohassel and M. Franklin, “Efficiency tradeoffs for malicious
two-party computation,” in Proceedings of the International
Conference on Practice and Theory of Public Key Cryptography
(PKC ’06), vol. 3958 of Lecture Notes in Computer Science, pp.
458-473, Springer, Berlin, Germany, 2006.

Y. Lindell and B. Pinkas, “An efficient protocol for secure two-
party computation in the presence of malicious adversaries,”
in Proceedings of the 26th Annual International Conference
on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT °07), vol. 4515 of Lecture Notes in Computer
Science, pp. 52-78, Springer, Berlin, Germany, 2007.

D. P. Woodruff, “Revisiting the efficiency of malicious two-
party computation,” in Proceedings of the Annual International
Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT °07), vol. 4515 of Lecture Notes in
Computer Science, pp. 79-96, Springer, Berlin, Germany, 2007.
Y. Lindell and B. Pinkas, “Secure two-party computation via
cut-and-choose oblivious transfer;” in Proceedings of the Theory
of Cryptography Conference (TCC ’11), vol. 6597 of Lecture Notes
in Computer Science, pp. 329-346, Springer, Berlin, Germany,
2011

S. a. Jarecki and V. Shmatikov, “Efficient two-party secure
computation on committed inputs,” in Proceedings of the Annual
International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT ’07), vol. 4515 of Lec-
ture Notes in Computer Science, pp. 97-114, Springer, Berlin,
Germany, 2007.

J. B. Nielsen and C. Orlandi, “LEGO for two party secure
computation,” in Proceedings of the Theory of Cryptography
Conference (TCC 09), vol. 5444 of Lecture Notes in Computer
Science book, pp. 368-386, Springer, Berlin, Germany, 2009.

Y. Ishai, M. Prabhakaran, and A. Sahai, “Founding cryptography
on oblivious transfer — efficiently;” in Proceedings of the Annual
International Cryptology Conference (CRYPTO °08), vol. 5157 of
Lecture Notes in Computer Science, pp. 572-591, Springer, Berlin,
Germany, 2008.

Y. Lindell, “Fast cut-and-choose based protocols for malicious
and covert adversaries,” in Proceedings of the Annual Interna-
tional Cryptology Conference (CRYPTO ’13), vol. 8043 of Lecture
Notes in Computer Science, pp. 1-17, Springer, 2013.

Y. Huang, J. Katz, and D. Evans, “Efficient secure two-party
computation using symmetric cut-and-choose,” in Proceedings

(57]

(58]

(59]

(60]

(61

[62]

(63]

[64]

[65]

[66]

(67]

(68

[69]

23

of the Annual International Cryptology Conference (CRYPTO
’13), vol. 8043 of Lecture Notes in Computer Science, pp. 18-35,
Springer, 2013.

Y. Huang, J. Katz, and D. Evans, “Quid Pro Quo-tocols:
strengthening semi-honest protocols with dual execution,” in
Proceedings of the 2012 IEEE Symposium on Security and Privacy
(SP’12), IEEE, 2012.

D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella, “Fairplay-a secure
two-party computation system,” in Proceedings of the USENIX
Security Symposium, 2004.

A. Tliev and S. W. Smith, “Small, stupid, and scalable: secure
computing with faerieplay;,” in Proceedings of the ACM Work-
shop on Scalable Trusted Computing (STC ’10), pp. 41-51, USA,
October 2010.

Y. Huang, D. Evans, J. Katz, and L. Malka, “Faster secure two-
party computation using garbled circuits,” in Proceedings of the
USENIX Security Symposium, 2011.

A. Holzer, M. Franz, S. Katzenbeisser, and H. Veith, “Secure
two-party computations in ANSI C,” in Proceedings of the 2012
ACM Conference on Computer and Communications Security,
CCS 12, pp. 772-783, October 2012.

S. Kamara, P. Mohassel, and B. Riva, “Salus: a system for server-
aided secure function evaluation,” in Proceedings of the 2012
ACM Conference on Computer and Communications Security,
CCS ’12, pp. 797-808, October 2012.

B. Mood, D. Gupta, H. Carter, K. Butler, and P. Traynor, “Frigate:
a validated, extensible, and efficient compiler and interpreter
for secure computation,” in Proceedings of the IEEE European
Symposium on Security and Privacy (Euro SP), pp. 112-127, IEEE,
Saarbrucken, Germany, March 2016.

V. Kolesnikov, J. B. Nielsen, M. Rosulek, N. Trieu, and R.
Trifiletti, “DUPLO: unifying cut-and-choose for garbled cir-
cuits,” in Proceedings of the 24th ACM SIGSAC Conference on
Computer and Communications Security, CCS ’17, pp. 3-20,
November 2017.

D. Bogdanov, S. Laur, and J. Willemson, “Sharemind: a frame-
work for fast privacy-preserving computations,” in Proceedings
of the European Symposium on Research in Computer Security
(ESORICS ’08), 2008.

W. Henecka, A.-R. Sadeghi, T. Schneider, I. Wehrenberg et al.,
“TASTY: tool for automating secure two-party computations,”
in Proceedings of the 17th ACM Conference on Computer and
Communications Security (CCS ’10), pp. 451-462, USA, October
2010.

L. Malka, “VMCrypt: modular software architecture for scalable
secure computation,” in Proceedings of the 18th ACM Conference
on Computer and Communications Security (CCS ’11), pp. 715
724, USA, October 2011.

Y. Ejgenberg, M. Farbstein, M. Levy, and Y. Lindell, “SCAPI:
the secure computation application programming interface,”
Cryptology ePrint Archive, Report 2012/629, 2013.

D. Bogdanov, P. Laud, and J. Randmets, “Domain-polymorphic
programming of privacy-preserving applications,” in Proceed-
ings of the Ninth Workshop on Programming Languages and
Analysis for Security (PLAS ’14), 2014.

D. Demmler, T. Schneider, and M. Zohner, “ABY-a framework
for efficient mixed-protocol secure two-party computation,’
in Proceedings of the Network and Distributed System Security
Symposium (NDSS ’15), 2015.

24

(71]

(72]

(73]

[74]

[75]

[76]

(77]

(78]

[79]

(80]

(81]

(82]

(84]

(85]

C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi, “ObliVM: a
programming framework for secure computation,” in Proceed-
ings of the IEEE Symposium on Security and Privacy (SP ’15),
1EEE, 2015.

D. Bogdanov, L. Kamm, S. Laur, and V. Sokk, “Rmind: a tool for
cryptographically secure statistical analysis,” IEEE Transactions
on Dependable and Secure Computing, vol. 15, no. 3, 2018.

N. Biischer, D. Demmler, S. Katzenbeisser, D. Kretzmer, and T.
Schneider, “HyCC: compilation of hybrid protocols for practical
secure computation,” in Proceedings of the ACM SIGSAC Con-
ference on Computer and Communications Security (CCS ’18),
2018.

R. Zhu, D. Cassel, A. Sabry, and Y. Huang, “NANOPI: extreme-
scale actively-secure multi-party computation,” in Proceedings
of the ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS ’18), pp. 862-879, ACM, Toronto, Canada,
October 2018.

A. Aly, M. Kelly, D. Rotaru et al., “SCALE and MAMBA,” https://
github.com/KULeuven-COSIC/SCALE-MAMBA, 2018.

R. Bendlin, I. Damgard, C. Orlandi, and S. Zakarias, “Semi-
homomorphic encryption and multiparty computation,” in
Annual International Conference on the Theory and Applications
of Cryptographic Techniques (EUROCRYPT ’11), pp. 169-188,
2011.

]. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra, “A new
approach to practical active-secure two-party computation,” in
Proceedings of the Annual International Cryptology Conference
(CRYPTO ’12), 2012.

M. Hastings, B. Hemenway, D. Noble, and S. Zdancewic, “SoK:
general-purpose compilers for secure multi-party computa-
tion,” in Proceedings of the IEEE Symposium on Security and
Privacy (SP’19), IEEE, 2019.

L.Kruger, S. Jha, E.-J. Goh, and D. Boneh, “Secure function eval-
uation with ordered binary decision diagrams,” in Proceedings of
the ACM Conference on Computer and Communications Security
(CCS °06), 2006.

B. Kreuter, B. Mood, A. Shelat, and K. Butler, “PCF: a portable
circuit format for scalable two-party secure computation,” in
Proceedings of the USENIX Security Symposium, 2013.

B. Kreuter, A. Shelat, and C.-H. Shen, “Billion-gate secure
computation with malicious adversaries,” in Proceedings of the
USENIX Security Symposium, 2012.

T. Schneider and M. Zohner, “GMW vs. Yao? efficient secure
two-party computation with low depth circuits,” in Proceedings
of the International Conference on Financial Cryptography and
Data Security (FC ’13), 2013.

C. Hazay, E. Orsini, P. Scholl, and E. Soria-Vazquez, “TinyKeys:
a new approach to efficient multi-party computation,” in
Proceedings of the Annual International Cryptology Conference
(CRYPTO ’18), 2018.

G. Dessouky, F. Koushanfar, A. Sadeghi, T. Schneider, S.
Zeitouni, and M. Zohner, “Pushing the communication barrier
in secure computation using lookup tables,” in Proceedings of
the Network and Distributed System Security Symposium (NDSS
17), 2017.

A. Shelat and C.-H. Shen, “Fast two-party secure computation
with minimal assumptions,” in Proceedings of the ACM Confer-
ence on Computer and Communications Security (CCS ’13), 2013.
J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra, “A new
approach to practical active-secure two-party computation,’
in Proceedings of the 32nd Annual International Cryptology
Conference (CRYPTO ’12), 2012.

(87]

[91]

[92]

(93]

(94]

[95]

[96]

[99]

Security and Communication Networks

S. Zahur, M. Rosulek, and D. Evans, “Two halves make a whole:
reducing data transfer in garbled circuits using half gates,
in Proceedings of the 34th Annual International Conference
on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT ’15), vol. 9057, 2015.

I. Damgérd, V. Pastro, N. Smart, and S. Zakarias, “Multiparty
computation from somewhat homomorphic encryption,” in
Proceedings of the Annual International Cryptology Conference
(CRYPTO ’12), 2012.

S. Garg and A. Srinivasan, “Two-round multiparty secure
computation from minimal assumptions,” in Proceedings of the
Annual International Conference on the Theory and Applications
of Cryptographic Techniques (EUROCRYPT ’18), 2018.

E Benhamouda and H. Lin, “k-round multiparty computation
from k-round oblivious transfer via garbled interactive circuits,”
in Proceedings of the Annual International Conference on the
Theory and Applications of Cryptographic Techniques (EURO-
CRYPT ’18), 2018.

S. Garg, P. Miao, and A. Srinivasan, “Two-round multiparty
secure computation minimizing public key operations,” in
Proceedings of the Annual International Cryptology Conference
(CRYPTO ’18), 2018.

P. Ananth, A. R. Choudhuri, A. Goel, and A. Jain, “Round-
optimal secure multiparty computation with honest majority;’
in Proceedings of the Annual International Cryptology Confer-
ence (CRYPTO ’18), 2018.

S. Halevi, C. Hazay, A. Polychroniadou, and M. Venkitasubra-
maniam, “Round-optimal secure multi-party computation,” in
Proceedings of the Annual International Cryptology Conference
(CRYPTO ’18), 2018.

Y. Ishai, M. Mittal, and R. Ostrovsky, “On the message com-
plexity of secure multiparty computation,” in Proceedings of the
TACR International Workshop on Public Key Cryptography (PKC
’18), 2018.

B. Mood, D. Gupta, K. R. B. Butler, and J. Feigenbaum, “Reuse
it or lose it: more efficient secure computation through reuse
of encrypted values,” in Proceedings of the ACM Conference on
Computer and Communications Security (CCS ’14), 2014.

S. Goldwasser, Y. Kalai, R. A. Popa, V. Vaikuntanathan, and N.
Zeldovich, “Reusable Garbled Circuits and Succinct Functional
Encryption,” in Proceedings of the 45th Annual Symposium on
Theory of Computing (STOC ’13), 2013.

S. Agrawal, “Stronger security for reusable garbled circuits,
general definitions and attacks,” in Proceedings of the Annual
International Cryptology Conference (CRYPTO ’17), 2017.

J. Garay, Y. Ishai, R. Ostrovsky, and V. Xikas, “The price of
low communication in secure multi-party computation,” in
Proceedings of the Annual International Cryptology Conference
(CRYPTO ’17), 2017.

D. Harnik, J. Kilian, M. Naor, O. Reingold, and A. Rosen, “On
robust combiners for oblivious transfer and other primitives,”
in Proceedings of the 24th Annual International Conference
on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT °05), 2005.

[100] J. Furukawa, Y. Lindell, A. Nof, and O. Weinstein, “High-

throughput secure three-party computation for malicious
adversaries and an honest majority;,” in Proceedings of the 36th
Annual International Conference on the Theory and Applications
of Cryptographic Techniques (EUROCRYPT ’17), 2017.

[101] P. Mohassel, M. Rosulek, and Y. Zhang, “Fast and secure three-

party computation: the garbled circuit approach,” in Proceedings

https://github.com/KULeuven-COSIC/SCALE-MAMBA
https://github.com/KULeuven-COSIC/SCALE-MAMBA

Security and Communication Networks

of the 22nd ACM Conference on Computer and Communications
Security (CCS ’15), 2015.
[102] X. Wang, S. Ranellucci, and J. Katz, “Global-scale secure
multiparty computation,” in Proceedings of the ACM Conference
on Computer and Communications Security (CCS ’17), 2017.
[103] J. Katz, S. Ranellucci, M. Rosulek, and X. Wang, “Optimizing
authenticated garbling for faster secure two-party computa-
tion,” in Proceedings of the Annual International Cryptology
Conference (CRYPTO ’18), 2018.
S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge
complexity of interactive proof-systems,” in Proceedings of the
17th Annual ACM Symposium on Theory of Computing (STOC
’85),1985.
R. Ostrovsky and M. Yung, “How to withstand mobile virus
attacks,” in Proceedings of the 10th Annual ACM Symposium on
Principles of Distributed Computing (PODC *91), 1991.
K. Eldefrawy, R. Ostrovsky, S. Park, and M. Yung, “Proactive
secure multiparty computation with a dishonest majority;,” in
Proceedings of the International Conference on Security and
Cryptography for Networks (SCN ’18), 2018.
S. Halevi, Y. Lindell, and B. Pinkas, “Secure computation
on the web: computing without simultaneous interaction,” in
Proceedings of the Annual International Cryptology Conference
(CRYPTO ’I1), 2011.
D. Harnik, Y. Ishai, and E. Kushilevitz, “How many oblivious
transfers are needed for secure multiparty computation?” in
Proceedings of the Annual International Cryptology Conference
(CRYPTO ’07), 2007.
S. G. Choi, A. Elbaz, T. Malkin, and M. Yung, “Secure multi-
party computation minimizing online rounds,” in Proceedings
of the International Conference on the Theory and Applications
of Cryptology and Information Security (ASTACRYPT ’09), 2009.
B. Mood, L. Letaw, and K. Butler, “Memory-efficient garbled
circuit generation for mobile devices,” in Proceedings of the
International Conference on Financial Cryptography and Data
Security (FC’12), 2012.
H. Carter, C. Amrutkar, I. Dacosta, and P. Traynor, “For your
phone only: Custom protocols for efficient secure function
evaluation on mobile devices;,” Security and Communication
Networks, vol. 7, no. 7, pp. 1165-1176, 2014.
H. Carter, B. Mood, P. Traynor, and K. Butler, “Secure out-
sourced garbled circuit evaluation for mobile devices;” in
Proceedings of the USENIX Security Symposium, 2013.
H. Carter, C. Lever, and P. Traynor, “Whitewash: outsourcing
garbled circuit generation for mobile devices,” in Proceedings of
the Annual Computer Security Applications Conference (ACSAC
’14), 2014.
H. Carter, B. Mood, P. Traynor, and K. Butler, “Outsourcing
secure two-party computation as a black box,” in Proceedings
of the International Conference on Cryptology and Network
Security (CANS ’15), 2015.
P. Bogetoft, D. L. Christensen, I. Damgard et al., “Secure multi-
party computation goes live,” in Proceedings of the International
Conference on Financial Cryptography and Data Security (FC
’09), 2009.
N. Nipane, I. Dacosta, and P. Traynor, ““Mix-in-Place’ anony-
mous networking using secure function evaluation,” in Proceed-
ings of the Annual Computer Security Applications Conference
(ACSAC ’11), 2011.
D. Bogdanov, M. Joemets, S. Siim, and M. Vaht, “How the
estonian tax and customs board evaluated a tax fraud detection

[104]

[105]

(106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

3

[116]

[117]

(18]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

(132]

[133]

25

system based on secure multi-party computation,” in Proceed-
ings of the International Conference on Financial Cryptography
and Data Security (FC ’15), 2015.

A. Lapets, E. Dunton, K. Holzinger, F. Jansen, and A. Bestavros,
Web-Based Multi-Party Computation with Application to
Anonymous Aggregate Compensation Analytics, Computer
Science Department, Boston University, 2015.

C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Y. Zhu,
“Tools for privacy preserving distributed data mining,” ACM
SIGKDD Explorations Newsletter, vol. 4, no. 2, pp. 28-34, 2002.

B. Hemenway, S. Lu, R. Ostrovsky, and W. Welser, “High-
precision secure computation of satellite collision probabilities,”
in Proceedings of the International Conference on Security and
Cryptography for Networks (SCN ’16), 2016.

D. W. Archer, D. Bogdanov, Y. Lindell et al, “From keys
to databases — real-world applications of secure multi-party
computation,” The Computer Journal, vol. 6, no. 12, pp. 1749-
1771, 2018.

R. Wyden, M. Rubio, and M. Warner, “Student right to know
before you go act of 2017 United States Congress S.B. 2169/H.B.
4479, 2017.

K. Toldsepp, P. Pruulmann-Vengerfeldt, and P. Laud, “Deliv-
erable dl.2: requirements specification based on the inter-
views,” UaESMC project, 2012, http://usable-security.eu/files/
di2final.pdf.

D. Evans, V. Kolesnikov, and M. Rosulek, “A pragmatic intro-
duction to secure multi-party computation,” Foundations and
Trends in Privacy and Security, vol. 2, no. 2-3, pp. 70-246, 2018.

M. van Dijk and A. Juels, “On the impossibility of cryptography
alone for privacy-preserving cloud computing,” in Proceedings
of the USENIX Summit on Hot Topics in Security (HotSec ’10),
2010.

W. A. Arbaugh, D. J. Farber, and J. M. Smith, “A secure and
reliable bootstrap architecture,” in Proceedings of the IEEE
Symposium on Security and Privacy (SP °97), IEEE, 1997.

R. Mori and M. Kawahara, “Superdistribution: the concept and
the architecture,” Transactions of the Institute of Electronics,
Information, and Communication Engineers, vol. E73, no. 7, pp.
1133-1146, 1990.

R. Mori and M. Kawahara, “Superdistribution: an electronic
infrastructure for the economy of the future,” Transactions of
Information Processing Society of Japan, vol. 38, no. 7, pp. 1465—
1472,1997.

J. G. Dyer, M. Lindemann, R. Perez et al., “Building the IBM
4758 secure coprocessor,” The Computer Journal, vol. 34, no. 10,
pp. 57-66, 2001.

Trusted Computing Group, “TPM main specification version
1.2: part 1 design principles,” 2011, https://trustedcomput-
inggroup.org/wp-content/uploads/TPM-Main-Part-1-Design-
Principles_v1.2_rev116_01032011.pdf.

R. Sailer, T. Jaeger, X. Zhang, and L. van Doorn, “Design
and implementation of a TCG-based integrity measurement
architecture,” in Proceedings of the USENIX Security Symposium,
2004.

S. Berger, R. Céceres, K. A. Goldman et al., “vTPM: virtualizing
the trusted platform module,” in Proceedings of the 15th USENIX
Security Symposium, 2006.

H. Raj, S. Saroiu, A. Wolman et al., “€TPM: a software-only
implementation of a TPM chip,” in Proceedings of the 25th
USENIX Security Symposium, 2016.

http://usable-security.eu/files/d12final.pdf
http://usable-security.eu/files/d12final.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Main-Part-1-Design-Principles_v1.2_rev116_01032011.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Main-Part-1-Design-Principles_v1.2_rev116_01032011.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Main-Part-1-Design-Principles_v1.2_rev116_01032011.pdf

26

[134] J. Greene, “Intel Trusted Execution Technology; Intel Technol-
ogy White Paper, 2012.

[135] ARM Ltd, Building a Secure System using TrustZone Technol-
ogy, 2009.

[136] Trusted Computing Group, “TCG Mobile Trusted Module
Specification Version 1.0 Revision 6,” 2008, https://trustedcom-
putinggroup.org/wp-content/uploads/ TCG-Mobile-Trusted-
Module-Specification-V1-R6-26-June-2008.pdf.

[137] J. Winter, “Trusted computing building blocks for embedded
linux-based arm trustzone platforms,” in Proceedings of the 3rd
ACM Workshop on Scalable Trusted Computing (STC '08),2008.

[138] Samsung Research America, Samsung Knox Security Solution,
version 2.2, 2017.

[139] Advanced Micro Devices, “AMD secure technology,” 2018,
https://www.amd.com/en/technologies/security.

[140] Advanced Micro Devices, “AMD64 virtualization technology:
secure virtual machine architecture reference manual rev. 3.02,”
2005.

[141] Advanced Micro Devices, Secure encrypted virtualization API
Version 0.16: technical preview, Advanced Micro Devices, 2018.

[142] D. Kaplan, J. Powell, and T. Woller, AMD Memory Encryption,
Advanced Micro Devices, 2016.

[143] R. Pass, E. Shi, and E. Tramér, “Formal abstractions for attested
execution secure processors,” in Proceedings of the Annual
International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT ’17), 2017.

[144] R. Canetti, Y. Dodis, R. Pass, and S. Walfish, “Universally
composable security with global setup,” in Proceedings of the
IACR Theory of Cryptography Conference (TCC *07), 2007.

[145] M. Barbosa, B. Portela, G. Scerri, and B. Warinschi, “Founda-
tions of hardware-based attested computation and application
to SGX,” in Proceedings of the IEEE European Symposium on
Security and Privacy (Euro SP), 2016.

[146] B. Parno, “Bootstrapping Trust in a ’Trusted Platform,” in
Proceedings of the USENIX Summit on Hot Topics in Security
(HotSec ’08), 2008.

[147] J. Lind, C. Priebe, D. Muthukumaran et al., “Glamdring:
automatic application partitioning for intel SGX,” in Proceedings
of the USENIX Annual Technical Conference (ATC ’17), 2017.

[148] R. Sinha, S. Rajamani, S. A. Seshia, and K. Vaswani, “Moat:
verifying confidentiality of enclave programs,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS ’15, 2015.

[149] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks:
deterministic side channels for untrusted operating systems,” in
Proceedings of the IEEE Symposium on Security and Privacy (SP
’15), 2015.

[150] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard,
“Malware guard extension: using SGX to conceal cache attacks,”
in Proceedings of the 14th Conference on Detection of Intrusions
and Malware & Vulnerability Assessment (DIMVA ’17), 2017.

[151] W. Wang, G. Chen, X. Pan et al., “Leaky cauldron on the dark
land: Understanding memory side-channel hazards in SGX,” in
Proceedings of the 24th ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, pp. 2421-2434, USA,
November 2017.

[152] M. Schwarz, M. Lipp, and D. Gruss, “Meltdown: reading kernel
memory from user space,” in Proceedings of the USENIX Security
Symposium, 2018.

[153] P. Kocher, J. Horn, A. Fogh et al., “Spectre attacks: exploiting
speculative execution,” in Proceedings of the IEEE Symposium

on Security and Privacy (SP’19), IEEE, 2019.

Security and Communication Networks

[154] J. Van Bulck, M. Minkin, O. Weisse et al., “Foreshadow:
extracting the keys to the intel SGX kingdom with transient out-
of-order execution,” in Proceedings of the 27th USENIX Security
Symposium, 2018.

[155] A. Biondo, M. Conti, L. Davi, T. Frassetto, and A.-R. Sadeghi,
“The guard’s dilemma: efficient code-reuse attacks against intel
SGX;” in Proceedings of the 27th USENIX Security Symposium,
2018.

[156] M. Morbitzer, M. Huber, J. Horsch, and S. Wessel, “SEVered:
subverting AMD’s virtual machine encryption,” in Proceedings
of the 11th European Workshop on Systems Security (EuroSec’18),
2018.

[157] Z.-H.Du, Z.Ying, Z. Ma et al,, “Secure Encrypted Virtualization
is Unsecure,” ArXiv e-prints, 2017.

[158] H. Dang, T. T. Dinh, E. Chang, and B. C. Ooi, “Privacy-
preserving computation with trusted computing via scramble-
then-compute,” in Proceedings of the Privacy Enhancing Tech-
nologies Symposium (PETS ’17), 2017.

[159] J.M. McCune, B.J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki,
“Flicker: an execution infrastructure for TCB minimization,” in
Proceedings of the 3rd ACM European Conference on Computer
Systems (EuroSys "08), 2008.

[160] J. M. McCune, Y. Li, N. Qu et al., “TrustVisor: efficient
TCB reduction and attestation,” in Proceedings of the IEEE
Symposium on Security and Privacy (SP ’10), IEEE, 2010.

[161] J.Criswell, N. Dautenhahn, and V. Adve, “Virtual ghost: protect-
ing applications from hostile operating systems,” in Proceedings
of the International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’14),
2014.

[162] A.Baumann, M. Peinado, and G. Hunt, “Shielding applications
from an untrusted cloud with haven,” in Proceedings of the
USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI ’14), 2014.

[163] J. Jang, S. Kong, M. Kim, D. Kim, and B. B. Kang, “SeCReT:
secure channel between rich execution environment and
trusted execution environment,” in Proceedings of the Network
and Distributed System Security Symposium (NDSS ’15), 2015.

[164] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, “Ryoan: a
distributed sandbox for untrusted computation on secret data,”
in Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’16), 2016.

[165] S. Arnautov, B. Trach, F. Gregor et al., “SCONE: secure linux
containers with intel SGX,” in Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation
(OSDI ’16), 2016.

[166] D. J. Tian, J. I. Choi, G. Hernandez, P. Traynor, and K. R. B.
Butler, “A practical intel SGX setting for linux containers in the
cloud,” in Proceedings of the 9th ACM Conference on Data and
Application Security and Privacy (CODASPY ’19), 2019.

[167] C.-C. Tsai, D. E. Porter, and M. Vij, “Graphene-SGX: a practical
library OS for unmodified applications on SGX,” in Proceedings
of the USENIX Annual Technical Conference (ATC), 2017.

S. Shinde, D. Le Tien, S. Tople, and P. Saxena, “Panoply: low-
TCB Linux applications with SGX enclaves,” in Proceedings of
the 24th Network and Distributed System Security Symposium
(NDSS), 2017.

[169] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: minimal hard-
ware extensions for strong software isolation,” in Proceedings of
the 25th USENIX Security Symposium, 2016.

(168

https://trustedcomputinggroup.org/wp-content/uploads/TCG-Mobile-Trusted-Module-Specification-V1-R6-26-June-2008.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG-Mobile-Trusted-Module-Specification-V1-R6-26-June-2008.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG-Mobile-Trusted-Module-Specification-V1-R6-26-June-2008.pdf
https://www.amd.com/en/technologies/security

Security and Communication Networks

[170] L. Guen, P. Liu, X. Xing et al., “TrustShadow: secure execution of
unmodified applications with ARM TrustZone,” in Proceedings
of the International Conference on Mobile Systems, Applications,
and Services (MobiSys ’17), 2017.
Y. Cho, J. Shin, D. Kwon et al., “Hardware-assisted on-demand
hypervisor activation for efficient security critical code execu-
tion on mobile devices,” in Proceedings of the USENIX Annual
Technical Conference (ATC ’16), 2016.
S. Tamrakar, J. Liu, A. Paverd, J.-E. Ekberg, B. Pinkas, and N.
Asokan, “The circle game: scalable private membership test
using trusted hardware,” in Proceedings of the ACM Asia Confer-
ence on Computer and Communications Security (AsiaCCS ’17),
2017.
D. Gupta, B. Mood, J. Feigenbaum, K. Butler, and P. Traynor,
“Using intel software guard extensions for efficient two-party
secure function evaluation,” in Proceedings of the International
Conference on Financial Cryptography and Data Security (FC
’16), 2016.
R. Bahmani, M. Barbosa, F. Brasser et al., “Secure multiparty
computation from SGX,” in Proceedings of the 2Ist International
Conference on Financial Cryptography and Data Security (FC
17), 2017.
S. Kim, Y. Shin, J. Ha, T. Kim, and D. Han, “A first step
towards leveraging commodity trusted execution environments
for network applications,” in Proceedings of the ACM Workshop
on Hot Topics in Networks (HotNets ’15), 2015.
E Schuster, M. Costa, C. Fournet et al., “VC3: trustworthy data
analytics in the cloud using SGX,” in Proceedings of the IEEE
Symposium on Security and Privacy (SP ’15), IEEE, 2015.
[177] B. Fisch, D. Vinayagamurthy, D. Boneh, and S. Gorbunov, “Iron:
Functional Encryption using Intel SGX,” IACR eprint, 2016.
[178] O. Ohrimenko, E. Schuster, C. Fournet et al., “Oblivious multi-
party machine learning on trusted processors,” in Proceedings of
the 25th USENIX Security Symposium, 2016.
[179] J. Liu, W. Li, G. O. Karame, and N. Asokan, “Scalable Byzantine
Consensus via Hardware-assisted Secret Sharing,” arXiv.org,
2017.
[180] A. Kurnikov, K. Krawiecka, A. Paverd, M. Mannan, and N.
Asokan, “Using safekeeper to protect web passwords,” in Pro-
ceedings of The Web Conference (WWW ’18), 2018.
C. Priebe, K. Vaswani, and M. Costa, “EnclaveDB: a secure
database using SGX,” in Proceedings of the IEEE Symposium on
Security and Privacy (SP ’18), IEEE, 2018.
S. Sasy, S. Gorbunov, and C. W. Fletcher, “ZeroTrace: oblivious
memory primitives from intel SGX,” in Proceedings of the
Network and Distributed System Security Symposium (NDSS ’18),
2018.
M. Fischlin, B. Pinkas, A.-R. Sadeghi, T. Schneider, and T.
Visconti, “Secure set intersection with untrusted hardware
tokens,” in Proceedings of the Cryptographers’ Track at the RSA
Conference (CT-RSA ’11), 2011.
C.Hazayand Y. Lindell, “Constructions of truly practical secure
protocols using standard smartcards,” in Proceedings of the 15th
ACM Conference on Computer and Communications Security
(CCS *08), 2008.
S. Bajaj and R. Sion, “TrustedDB: a trusted hardware-based
database with privacy and data confidentiality,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 26, no. 3, pp. 752-
765, 2014.
A. Arasu, S. Blanas, K. Eguro et al., “Orthogonal security with
cipherbase,” in Proceedings of the Conference on Innovative Data
Systems Research (CIDR ’13), 2013.

171

[172]

(173]

[174]

[175]

[176]

[181]

[182]

(183]

[184]

[185]

[186]

27

[187] M. Canim, M. Kantarcioglu, and B. Malin, “Secure management
of biomedical data with cryptographic hardware,” IEEE Trans-
actions on Information Technology in Biomedicine, vol. 16, no. 1,
pp- 166-175, 2012.

S. S. Roy, E Vercauteren, J. Vliegen, and I. Verbauwhede,
“Hardware assisted fully homomorphic function evaluation and
encrypted search,” IEEE Transactions on Computers, vol. 66, no.
9, pp. 1562-1572, 2017.

P. Paillier, “Public-key cryptosystems based on composite
degree residuosity classes,” in Proceedings of the Annual Inter-
national Conference on the Theory and Applications of Crypto-
graphic Techniques (EUROCRYPT ’99),1999.

K. Jarvinen, V. Kolesnikov, A. Sadeghi, and T. Schneider,
“Garbled circuits for leakage-resilience: hardware implementa-
tion and evaluation of one-time programs,” in Proceedings of
the International Conference on Cryptographic Hardware and
Embedded Systems (CHES ’10), 2010.

N. Husted, S. Myers, A. Shelat, and P. Grubbs, “GPU and
CPU parallelization of honest-but-curious secure two-party
computation,” in Proceedings of the 29th Annual Computer
Security Applications Conference (ACSAC ’13), 2013.

G. Vasiliadis, E. Athanasopoulos, M. Polychronakis, and S.
Ioannidis, “PixelVault: using GPUs for securing cryptographic
operations,” in Proceedings of the ACM Conference on Computer
and Communications Security (CCS ’14), 2014.

C. Liu, A. Harris, M. Maas, M. Hicks, M. Tiwari, and E.
Shi, “GhostRider: a hardware-software system for memory
trace oblivious computation,” in Proceedings of the International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’15), 2015.

K. Nayak, C. W. Fletcher, L. Ren et al., “HOP: hardware
makes obfuscation practical,” in Proceedings of the Network and
Distributed System Security Symposium (NDSS ’17), 2017.

E. Owusuy, J. Guajardo, J. McCune, J. Newsome, A. Perrig, and
A. Vasudevan, “OASIS: on achieving a sanctuary for integrity
and secrecy on untrusted platforms,” in Proceedings of the ACM
Conference on Computer and Communications Security (CCS
’13), 2013.
M. Green, S. Hohenberger, and B. Waters, “TRESOR runs
encryption securely outside RAM, in Proceedings of the
USENIX Security Symposium, 2011.
E. Blass and W. Robertson, “TRESOR-HUNT: attacking CPU-
bound encryption,” in Proceedings of the 28th Annual Computer
Security Applications Conference (ACSAC ’12), 2012.
T. Ward, J. I. Choi, K. Butler, J. M. Shea, P. Traynor, and T.
FE. Wong, “Privacy preserving localization using a distributed
particle filtering protocol,” in Proceedings of the 2017 IEEE
Military Communications Conference, MILCOM 17, pp. 835-
840, USA, October 2017.
A. Atamli-Reineh, R. Borgaonkar, R. A. Balisane, G. Petracca,
and A. Martin, “Analysis of trusted execution environment
usage in samsung KNOX,” in Proceedings of the Ist Workshop
on System Software for Trusted Execution (SysTEX ’16), 2016.
[200] U. Kanonov and A. Wool, “Secure Containers in Android: the
Samsung KNOX Case Study;,” ArXiv e-prints, 2016.
[201] G. Beniamini, “Trust Issues: Exploiting TrustZone TEEs)
Google Project Zero Blog, 2017.
[202] M. Naveed, E. Ayday, E. W. Clayton et al., “Privacy in the
genomic era,” ACM Computing Surveys, vol. 48, no. 1, 2015.
[203] E. Ayday, J. L. Raisaro, U. Hengartner, A. Molyneaux, and J.
Hubaux, “Privacy-preserving processing of raw genomic data,’

(188]

(189]

(190]

[191]

[192]

(193]

[194]

[195]

[196]

[197]

[198]

[199]

28

in Proceedings of the International Workshop on Data Privacy
Management (DPM ’14), 2014.

E. Ayday, J. L. Raisaro, P. J. McLaren, J. Fellay, and J.-P.
Hubaux, “Privacy-preserving computation of disease risk by
using genomic, clinical, and environmental data,” in Proceed-
ings of the USENIX Security Workshop on Health Information
Technologies (HealthTech ’13), 2013.

R. Wang, X. Wang, Z. Li, H. Tang, M. K. Reiter, and Z. Dong,
“Privacy-preserving genomic computation through program
specialization,” in Proceedings of the ACM Conference on Com-
puter and Communications Security (CCS ’09), 2009.

S. Jha, L. Kruger, and V. Shmatikov, “Towards practical privacy
for genomic computation,” in Proceedings of the IEEE Sympo-
sium on Security and Privacy (SP °08), IEEE, 2008.

[207] X. S. Wang, Y. Huang, Y. Zhao, H. Tang, X. Wang, and D.
Bu, “Efficient genome-wide, privacy-preserving similar patient
query based on private edit distance,” in Proceedings of the ACM
Conference on Computer and Communications Security (CCS
15), 2015.

P. Baldi, R. Baronio, E. De Cristofaro, P. Gasti, and G. Tsudik,
“Countering GATTACA: efficient and secure testing of fully-
sequenced human genomes,” in Proceedings of the 18th ACM
Conference on Computer and Communications Security (CCS
’11), 2011.

P. Mohassel and Y. Zhang, “SecureML: a system for scalable
privacy-preserving machine learning,” in Proceedings of the
IEEE Symposium on Security and Privacy (SP ’17), IEEE, 2017.

»

[210] Y. Lindell and B. Pinkas, “Privacy preserving data mining,” in
Proceedings of the Annual International Cryptology Conference
(CRYPTO "00), 2000.

[211] A. Miyaji and M. S. Rahman, “Privacy-preserving data mining
in presence of covert adversaries,” in Proceedings of the Inter-
national Conference on Advanced Data Mining and Applications
(ADMA °10), vol. 6440, 2010.

H. Chabanne, A. de Wargny, J. Milgram, C. Morel, and E. Prouff,
“Privacy-preserving classification on deep neural network,” in
Proceedings of the Real World Crypto Symposium (RWC ’17),
2017.

N. Alexopoulos, A. Kiayias, R. Talviste, and T. Zacharias,
“MCMix: anonymous messaging via secure multiparty compu-
tation,” in Proceedings of the USENIX Security Symposium, 2017.
[214] J. Brickell and V. Shmatikov, “Privacy-preserving graph algo-
rithms in the semi-honest model,” in Proceedings of the Interna-
tional Conference on Theory and Applications of Cryptology and
Information Security (ASIACRYPT ’05), 2005.

[215] J. Bringer, H. Chabanne, M. Favre, A. Patey, T. Schneider,
and M. Zohner, “GSHADE: Faster Privacy-Preserving Distance
Computation and Biometric Identification,” in Proceedings of
the 2nd ACM Workshop on Information Hiding and Multimedia
Security, 2014.

D. J. Wu, J. Zimmerman, J. Planul, and J. C. Mitchell, “Privacy-
preserving shortest path computation,” in Proceedings of the
Network and Distributed System Security Symposium (NDSS ’16),
2016.

G. Di Crescenzo, J. Feigenbaum, D. Gupta, E. Panagos, J. Perry,
and R. N. Wright, “Practical and privacy-preserving policy
compliance for outsourced data,” in Proceedings of the Workshop
on Applied Homomorphic Cryptography (WAHC ’14), 2014.

M. Naveed, S. Agrawal, M. Prabhakaran et al., “Controlled
functional encryption,” in Proceedings of the ACM Conference
on Computer and Communications Security (CCS ’14), 2014.

[204]

[205]

[206]

[208

[209]

[212]

[213]

[216]

(217]

[218]

Security and Communication Networks

[219] M. Pirker, D. Slamanig, and J. Winter, “Practical privacy

preserving cloud resource-payment for constrained clients,” in

Proceedings of the International Symposium on Privacy Enhanc-

ing Technologies (PETS ’12), 2012.

C. Hazay and Y. Lindell, “Efficient protocols for set intersection

and pattern matching with security against malicious and covert

adversaries,” in Proceedings of the International Conference on

Theory of Cryptography (TCC °08), 2008.

L. Kissner and D. Song, “Privacy-preserving set operations,” in

Proceedings of the Annual International Cryptology Conference

(CRYPTO ’05), 2005.

[222] L. Zhao, J. I. Choi, D. Demirag et al., “One-time programs
made practical,” in Proceedings of the International Conference
on Financial Cryptography and Data Security (FC’19), 2019.

[220]

[221]

International Journal of

Rotating

Machinery

The Scientific . 35
WorldJournal —— Sensors BRI~

Journal of
Control Science
and Engineering

sin

Civil Ehgineering

Hindawi

Submit your manuscripts at
www.hindawi.com

2 1 Journal of
Journal of Electrical and Computer
Robotics Engineering

Advances in
OptoElectronics

International Journal of

Modelling & Aerospace

\r‘\tf}m_at\'g;wla\ Journal of Simulation q o
Navigation and in Engineering Engmeerlng

Observation

International Journal of) :
International Journal of Antennas and Active and Passive T
Chemical Engineering Propagation Flectronic Components Shock and Vibration A and Vibration

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

