
Research Article
Single-Round Pattern Matching Key Generation Using
Physically Unclonable Function

Yuichi Komano ,1 Kazuo Ohta,2 Kazuo Sakiyama,2

Mitsugu Iwamoto,2 and Ingrid Verbauwhede3

1Toshiba Corporation, Kawasaki, Japan
2The University of Electro-Communications, Tokyo, Japan
3KU Leuven, Leuven, Belgium

Correspondence should be addressed to Yuichi Komano; yuichi1.komano@toshiba.co.jp

Received 6 July 2018; Revised 9 November 2018; Accepted 12 December 2018; Published 1 January 2019

Guest Editor: Daniel Schneider

Copyright © 2019 Yuichi Komano et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Paral and Devadas introduced a simple key generation scheme with a physically unclonable function (PUF) that requires no error
correction, e.g., by using a fuzzy extractor. Their scheme, called a pattern matching key generation (PMKG) scheme, is based on
pattern matching between auxiliary data, assigned at the enrollment in advance, and a substring of PUF output, to reconstruct a
key. The PMKG scheme repeats a round operation, including the pattern matching, to derive a key with high entropy. Later, to
enhance the efficiency and security, a circular PMKG (C-PMKG) scheme was proposed. However, multiple round operations in
these schemes make them impractical. In this paper, we propose a single-round circular PMKG (SC-PMKG) scheme. Unlike the
previous schemes, our scheme invokes the PUF only once. Hence, there is no fear of information leakage by invoking the PUF with
the (partially) same input multiple times in different rounds, and, therefore, the security consideration can be simplified. Moreover,
we introduce another hash function to generate a check string which ensures the correctness of the key reconstruction. The string
enables us not only to defeat manipulation attacks but also to prove the security theoretically. In addition to its simple construction,
the SC-PMKG scheme can use a weak PUF like the SRAM-PUF as a building block if our system is properly implemented so that
the PUF is directly inaccessible from the outside, and, therefore, it is suitable for tiny devices in the IoT systems. We discuss its
security and show its feasibility by simulations and experiments.

1. Introduction

The Internet ofThings (IoT) is widely spread tomake usmore
intelligent, efficient, and comfortable. In IoT systems, devices
are located everywhere to exchange their sensing data and
their control information. On the other hand, lots of devices
in these systems are resource-constrained where it is hard to
implement security functions. Unlike the closed system with
a limited number of devices, in the IoT systems, attackers
are able to obtain devices to analyze them maliciously, and
therefore they can be weak points of these systems.

Let us consider the safety of the IoT systems. First of all,
the reliability of data is important because the devices work
unwillingly with the improper data, especially with the data
manipulated by the attacker. Moreover, the correctness of
the firmware including the safety functionalities, such as the

fail-stop and the fail-tolerance, is also important. In order to
avoid the manipulation of the firmware by attacker so that
the safe functionality does not work, the firmware should
be well protected and securely updated. Both for the data
reliability and for the firmware correctness, the security is
essential. Hence, securing such devices is one of our emerging
challenges. Particularly, the management of key is a crucial
task.

The physically unclonable function (PUF) is one of the
promising primitives to improve the security of tiny devices.
It derives a unique value for each device (function) from
its fine characteristics. For example, the SRAM-PUF [1–3]
uses initial states of the SRAM cells just after the power-on
as such characteristics; and, the Arbiter-PUF [4–6] uses the
logic delays of a dual-rail circuit as such ones. The unique
value derived is used as (a source of) an identity (ID) or a

Hindawi
Security and Communication Networks
Volume 2019, Article ID 1719585, 13 pages
https://doi.org/10.1155/2019/1719585

http://orcid.org/0000-0002-5121-3458
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/1719585

2 Security and Communication Networks

cryptographic key. The PUF is suitable for a tiny device for
the following two reasons. First, since these characteristics
naturally arise during the manufacturing process, we can
remove the process of embedding an ID or a key and decrease
the manufacturing cost. Second, since analyzing the unique
and fine characteristics is difficult, it can be regarded as a
secure and tamper- evident storage which proves the physical
manipulation for analyzing the key.

On the other hand, the output of PUFmay include a small
noise for each invocation, e.g., 5% or up to 15% noise in the
signal, because of external factors such as external/ambient
temperature variations and/or supplied voltage variations. In
order to use the output as a cryptographic key, the noise
should be removed by error correction techniques, such as
the fuzzy extractor [7, 8], because the cryptographic results
completely differ if the key differs by only one bit. The fuzzy
extractor, however, includes a complex error correction code
whose cost might be high for the tiny devices.

1.1. Pattern Matching Key Generation Using PUF. Paral and
Devadas [9] gave an interesting solution to remove the
noises without an error correcting code. Their proposal
uses a pattern matching which only estimates the Hamming
distance between two strings.Their main idea is to regard the
index (bit position) indicating a substring of the PUF output
as a secret, instead of the (sub)string of PUF output itself.This
scheme is called a pattern matching key generation (PMKG)
scheme.

The PMKG scheme consists of multiple rounds. In each
round of its enrollment phase, a key generation device
extracts a substring of PUF output indicated by a secret
index and stores the substring into the public (and maybe
insecure) nonvolatile memory (NVM) area, as auxiliary data.
The PMKG scheme regards a (hash value of a) concatenation
of the substrings as a secret key. In each round of its recon-
struction phase, the device compares a noisy PUF output
with the stored auxiliary data and recovers the corresponding
index and eventually the key.

Against the PMKG scheme, Delvaux and Verbauwhede
[10, 11] gave attacks, named snake attacks, to recover the secret
indices. Their attacks modify the auxiliary data stored in the
NVMbit by bit in each round and detect the index by running
the device with the modified data. To avoid the snake attacks,
they also suggested regarding the PUF output as circular data.
We call the scheme a circular PMKG (C-PMKG) scheme.

The PMKG (C-PMKG, respectively) scheme stores, for
each round, the substring (resp., circularly shifted string) of
PUF output into the NVM as auxiliary data. If two auxiliary
data pieces for different rounds have the same substring
(intersection), it might leak information on the secret indexes
for the corresponding rounds. To mitigate the leakage, there
are several solutions. The first one is to control the inputs
of PUF for rounds to avoid such intersection. Another one
is to enlarge the input/output space so as to neglect the
intersection. These solutions increase the implementation
cost and may be inappropriate for tiny devices.

1.2. Our Contribution. In this paper, we propose a simple
and efficient PMKG scheme, named a single-round circular

PMKG (SC-PMKG) scheme. Unlike the previous schemes,
the SC-PMKG scheme consists of a single-round operation
with multiple indexes. It divides a PUF output into multiple
substrings, circularly shifts each substring by each secret
index, and stores the shifted data into the NVM as auxiliary
data. Moreover, it also stores a hash value, as a check string
to check the correctness of the key reconstruction, into the
NVM.

By reducing the number of rounds in the (C-)PMKG
scheme to one, we need not care for the information
leakage from the PUF output strings in the auxiliary data
with the (partially) same input, and therefore the security
discussion can be simplified. In addition, the check string
not only disables the manipulation attacks but also ensures
the provable security of our scheme in the random oracle
model [12]. We give a security proof under the condition
(assumption), for simplicity, that there is no adversarial
interface to access the internal PUF. This condition also
provides our choice of the PUF candidates applicable to
the SC-PMKG scheme. Without such interfaces, machine
learning attacks to the PUF are impractical, and, hence,
various PUFs can be applicable to the SC-PMKG, including
a weak PUF such as the SRAM-PUF. (The modeling attack
requires challenge-response pairs (CRPs) of PUF, which is
applicable to PUF applications where adversaries can obtain
the PUF CRPs, such as an authentication with PUF. In the
application of the key generation, adversaries can obtain the
PUF outputs from auxiliary data. Against this application, the
modeling attack could be meaningless for the following two
reasons. First, the corresponding inputs for the auxiliary data
are unknown to adversaries. Second, the number of auxiliary
data is limited; for example, if the key generation device is
specific to a key of certain application, adversaries can obtain
PUF outputs only for the key.) Note that, on the provable
security, we can relax the assumption where there are adver-
sarial interfaces to the PUF except one to directly access
the output corresponding to the target key, as we discuss in
Section 4.3. Such discussions on the adversarial conditions
and the security show that the security coengineering for the
developments of the PUF devices and of the PUF application
is important.

Furthermore, we check its feasibility by simulations and
experiments. We also check the validity with theoretical
estimation. Our theoretical estimation can derive parameter
candidates not only for the SC-PMKG scheme but also for
the C-PMKG schemes. From our discussion, the SC-PMKG
scheme is secure and efficient rather than the previous PMKG
schemes; and, therefore, it is suitable for tiny devices to tackle
the emerging threats against the IoT systems.

1.3. Organization. In Section 2, we give the definitions of
PUF and PUF-based key generation scheme. We then review
the constructions of previous PMKG schemes and discuss
their drawbacks in Section 3. In Section 4, we present the
SC-PMKG scheme and discuss its security. We then test its
feasibility andmake comparisons among the PMKG schemes
in Sections 5 and 6, respectively. Finally, Section 7 concludes
this paper.

Security and Communication Networks 3

2. Definition

In this section, we review definitions of the PUF and PUF-
based key generation scheme.

2.1. PUF. References, such as [13, 14], gave a definition of the
PUFwith several properties. In this paper, we regard the PUF
as a physical function satisfying relaxed properties below, in
order for various types of PUF to be applicable to our PMKG.

Definition 1 (PUF). A family of physical functions is called
the family of PUFs if these functions satisfy the following
properties.

(1) Each function works within polynomial steps
(2) Each function produces an output including a small

noise; however, the signal-to-noise ratio is high
enough to remove the noise by using an error correct-
ing code. Hence, it acts as a function which provides
a particular output for an input

(3) It is practically hard to characterize or clone each
function

(4) Functions produce unique outputs per each of them

The third property does not ensure that it is hard to
characterize or clone the physical function.The functionmay
be characterized or cloned in future, if more sophisticated
physical equipment to analyze it appears. In this paper, we
regard the SRAM-PUF, Arbiter-PUF, and ring-oscillator PUF
(RO-PUF) with fine processes and careful designs as PUFs.

We give a security assumption of PUF, which is a formal
description of above third condition, to be used in the
security proof of the SC-PMKG scheme.

Definition 2 (indistinguishable PUF). Let ℓ𝑐 and ℓ𝑝 be input
and output lengths of PUF, respectively. We state that a
physically unclonable function PUF is indistinguishable in(𝜏, 𝑞, 𝜖) if any adversary A, within the time bound 𝜏, cannot
achieve an advantage more than 𝜖, even if A observes 𝑞
input-output pairs {(𝑥𝑖, 𝑦𝑖)}. The advantage is defined with
AdvInd−PUFA = Pr[A(𝑦) = 1 | A(1ℓ𝑐 , 1ℓ𝑝) = 𝑥; 𝑦 = PUF(𝑥)] −
Pr[A(𝑦) = 1 | A(1ℓ𝑐 , 1ℓ𝑝) = 𝑥; 𝑦 ←󳨀 {0, 1}ℓ𝑝]. Here, A is
allowed to output𝑥where there is no overlap between PUF(𝑥)
and the observed PUF outputs PUF(𝑥𝑖) for 𝑖 ∈ [1, 𝑞].

This indistinguishability captures the unpredictability
and unclonability, which relate to the third property of
Definition 1. Intuitively, the advantage AdvInd−PUFA is a metric
of adversary’s ability to distinguish the PUF output from a
random string. The distinguishing game is as follows: The
adversary A chooses an input 𝑥 for the PUF and receives
either an output 𝑦 = PUF(𝑥) or a random string 𝑦 ∈ {0, 1}ℓ𝑝 .
A outputs 1 ifA supposes that 𝑦 = PUF(𝑥). In this game,A
may collect input-output pairs of PUF, as hints, by accessing
the PUF oracle.

Let us assume the SRAM-PUF. In the SRAM-PUF, the
challenge is an ℓ𝑐-bit address 𝑥, and the output 𝑦 is a
sequence of initial states of ℓ𝑝 SRAM cells starting with an

address 𝑥. Definition 2 allows A to collect a pair {(𝑥𝑖, 𝑦𝑖)}
for 1 ≤ 𝑖 ≤ 𝑞. With these pairs, the A’s restriction stated
in Definition 2 means thatA is disallowed to output 𝑥 where
any subsequence of 𝑦 = PUF(𝑥) is included in {𝑦𝑖}𝑖∈[1,𝑞].
2.2. PUF-Based Key Generation. We then review a definition
of the PUF-based key generation (PBKG) scheme.

Definition 3 (PUF-based key generation, PBKG). A PBKG
scheme consists of the following two phases.

(i) Enrollment phase: A key generation device in the
PBKG scheme assigns a key and auxiliary data which
help to reconstruct the key from a noisy PUF output
in the next phase. The auxiliary data are stored into a
public (maybe insecure) nonvolatilememory (NVM).
Note that the device can generate the key inside itself
or receive the key from outside.

(ii) Reconstruction phase: The key generation device
regenerates the PUF output with some noises, loads
the auxiliary data from the NVM, and reconstructs
the key from these data.

We then review a definition of security for the PBKG
scheme. As Datta et al. [15] discussed, the indistinguishability
[16, 17] may be inadequate if the PBKG scheme is composed
of another cryptographic protocol, such as an encryption
scheme or message authentication code (MAC). This is
because even though a key derived from the PBKG scheme is
indistinguishable from a random string, the indistinguisha-
bility can be lost when the key is used, e.g., to encrypt a
(partially) known message. In order to ensure the security
for a combination of the PBKG scheme and a cryptographic
protocol, we should customize the definition of its security
by modeling an adversary to collect hints from both the
PBKG scheme and the cryptographic protocol; namely, to
access oracles of the scheme and the protocol, respectively.
In this paper, we propose a PBKG scheme for a general
purpose.Therefore, we discuss the indistinguishability [16, 17]
as follows.

Definition 4 (indistinguishable PBKG). Let ℓ𝑘 be a bit length
of a key derived from a PBKG scheme. We say that the PBKG
scheme is indistinguishable in (𝜏, 𝑞, 𝜖) if any adversary A,
within the time bound 𝜏, cannot achieve an advantage more
than 𝜖 even if A invokes a key generation device with a
(maybe intentionallymodified) auxiliary data atmost 𝑞 times.
Here, the advantage is definedwithAdvpbkg

A
= |𝑝1−𝑝2|, where𝑝1 = Pr[A(𝑦) = 1 | 𝑦 ←󳨀 PBKG(1ℓ𝑘)] and 𝑝2 = Pr[A(𝑦) =

1 | 𝑦 ←󳨀 {0, 1}ℓ𝑘].
3. Previous Works and Their Drawbacks

This section reviews the PMKG and C-PMKG schemes and
discusses their drawbacks.

3.1. PMKG Scheme. Figures 1 and 2 show the building blocks
of the PMKG scheme [9] in its enrollment and reconstruction

4 Security and Communication Networks

phases, respectively. They use the following functions.

(i) PUF: Physically unclonable function which, given anℓ𝑐-bit input 𝑥, outputs an ℓ𝑝-bit string 𝑦
(ii) CS: Challenge sequencer which, given at least oneℓ𝑖(= ⌈log2ℓ𝑝⌉)-bit index 𝑖𝑛𝑑 and a flag 𝑓𝑙𝑎𝑔 as inputs,

outputs the input of PUF 𝑥
(iii) KGF: Key generation function which, given a set ofℓ𝑖-bit indexes {𝑖𝑛𝑑𝑖}𝑖, outputs an ℓ𝑘-bit key 𝑘𝑒𝑦
(iv) pattern match: Comparator which, given ℓ𝑤-bit (ℓ𝑤 <ℓ𝑝) auxiliary data stored in a public NVM and anℓ𝑝-bit PUF output, looks for an index that leads anℓ𝑤-bit substring of PUF output near to the auxiliary

data. It may look for an index with which the distance
between auxiliary data and substring indicated by
the index is less than some predetermined threshold
and/or with which the distance is the smallest among
all substring candidates

Paral and Devadas [9] used the Arbiter-PUF as a building
block which outputs only one bit per an input. In order to
obtain an ℓ𝑝-bit output with the Arbiter-PUF, CS generatesℓ𝑝 inputs {𝑥𝑗}𝑗∈[1,ℓ𝑝] sequentially from index(es), instead of
one input 𝑥 as above, within each round. And then PUF

returns ℓ𝑝-bit output in total with the ℓ𝑝 inputs in the
round. More precisely, we extend the above notations; we
extend CS to output 𝑙𝑝 inputs (by regarding 𝑥 as {𝑥𝑗}𝑗∈[1,ℓ𝑝]),
and we extend PUF to output an ℓ𝑝-bit concatenation
PUF(𝑥1)‖ ⋅ ⋅ ⋅ ‖PUF(𝑥ℓ𝑝) for inputs {𝑥𝑗}𝑗. Note that the above
notations naturally cover the SRAM-PUF. Throughout this
paper, for simply, we use the above notations regardless of the
type of PUF.

The PMKG scheme uses four registers: an input register,
an output register, an index register, and a key register, as
depicted in Figures 1 and 2. The input register holds an input
of PUF. The output register holds an output of PUF and
it is randomly accessible. The index register holds a set of
indexes. The key register holds a recovered key to pass it to
the cryptographic protocol.

The PMKG scheme also uses the public NVM. In the
enrollment phase, a key generation device stores a set of
substrings of PUF outputs as a set of auxiliary data into the
NVM. In the reconstruction phase, the key generation device
loads the auxiliary data and uses it to reconstruct the key.
Note that the NVMmay be insecure and the stored auxiliary
data may be modified by an adversary.

Protocol 1 (PMKG). Let PUF,CS,KGF, and pattern match be
functions as above. A PMKG scheme consists of two phases:
an enrollment phase and a reconstruction phase below.

Enrollment phase: A key generation device repeats a
round operation 𝑟 times with indexes {𝑖𝑛𝑑𝑖}𝑖∈[0,𝑟]. The index𝑖𝑛𝑑0 is an initial input of CS andwe assume that it is fixed and
stored into the NVM in advance. (Since the NVM is public,
we assume that 𝑖𝑛𝑑0 is observable by adversaries. At the final
steps of enrollment and reconstruction phases, we remove𝑖𝑛𝑑0 from the input ofKGF, because its observable value does
not increase the entropy of a key.) Other indexes may be also

fixed in advance or randomly generated inside the device, and
we assume the former case here. This phase consists of the
following steps.

(1) The key generation device sets flag to one
(2) For 𝑖 ∈ [1, 𝑟], the device repeats the following steps:

(a) It inputs ({𝑖𝑛𝑑𝑘}𝑘<𝑖, 𝑓𝑙𝑎𝑔) intoCS to generate an
input of PUF 𝑥𝑖

(b) It inputs 𝑥𝑖 into PUF to generate a PUF output𝑦𝑖
(c) It stores a substring of PUF output 𝑧𝑖 = 𝑦𝑖[𝑖𝑛𝑑𝑖 :𝑖𝑛𝑑𝑖 + ℓ𝑤 − 1] into the NVM. Here, 𝑠[𝑎 : 𝑏]

denotes a substring of 𝑠, consisting of its 𝑎-th to𝑏-th bits

(3) It regards KGF({𝑖𝑛𝑑𝑖}𝑖∈[1,𝑟]) as 𝑘𝑒𝑦
Reconstruction phase: The key generation device repeats a
round operation 𝑟 times to recover the indexes and eventually
the key, assigned at the enrollment phase. Note that a PUF
output in this phase may differ from that in the enrollment
phase.We add primemarks to the variables in this phase.This
phase consists of the following steps.

(1) The key generation device sets flag to one
(2) For 𝑖 ∈ [1, 𝑟], the device repeats the following steps:

(a) It inputs ({𝑖𝑛𝑑󸀠𝑘}𝑘<𝑖, 𝑓𝑙𝑎𝑔) intoCS to generate an
input of PUF 𝑥󸀠𝑖

(b) It inputs 𝑥󸀠𝑖 into PUF to generate a PUF output
𝑦󸀠𝑖

(c) It loads auxiliary data 𝑧𝑖 from the NVM
(d) It looks for an index 𝑖𝑛𝑑󸀠𝑖 indicating the sub-

string of 𝑦󸀠𝑖 (from 𝑖𝑛𝑑󸀠𝑖-th bit to (𝑖𝑛𝑑󸀠𝑖 + ℓ𝑤 − 1)-
th bit) near to 𝑧𝑖 from the pattern match. If
a mismatch happens, namely, if such an index
is not detected or if more than one index is
detected, 𝑖𝑛𝑑󸀠𝑖 and 𝑓𝑙𝑎𝑔 are set with a constant
value, e.g., ℓ𝑤 and zero, respectively

(3) If 𝑓𝑙𝑎𝑔 = 1, then it inputs {𝑖𝑛𝑑󸀠𝑖 }𝑖∈[1,𝑟] into KGF to
recover 𝑘𝑒𝑦. Otherwise, it aborts.

Paral and Devadas [9] regarded PUF as a 4-XOR PUF
which blends outputs of four independent Arbiter-PUFs.The
blended PUF decreases a correlation between inputs and
outputs of PUF; and therefore it makes the machine learning
attacks [18] meaningless. The more the number of blend
increases, the more difficult the attack is. In this paper, we
assume that the PUF is ideal and indistinguishable as in
Definition 2 where there is no correlation between the inputs
and the outputs. To realize such PUF, the blending is one of
solutions.

ThePMKGschemehas several drawbacks as follows. First
of all, it requires lots of PUF output, and therefore it may
be unsuitable for tiny devices in the IoT systems. The key
generation device regards the ℓ𝑤-bit substring out of the ℓ𝑝-
bit PUF output as auxiliary data. In other words, it discards

Security and Communication Networks 5

the remaining (ℓ𝑝−ℓ𝑤)-bit in each round. In [9], they assumed
that, as an example, ℓ𝑝 = 1279, ℓ𝑤 = 256 and 𝑟 = 16. With
this example, the (1279 − 256) × 16 = 16368 bits, out of1279 × 16 = 20464 PUF output bits, are discarded. It makes
the PMKG scheme inefficient, by requiring the execution
time to generate the 16368 PUF output bits and the power
consumption more.

In addition to its inefficiency, it has a security vulnera-
bility, caused by attacks with an NVM manipulation. Such
a manipulation leads mismatches in its reconstruction and
these mismatches change the device’s behavior. Delvaux and
Verbauwhede [10, 11] gave attacks, named snake attacks,
which modify the auxiliary data in the NVM, invoke the key
generation with themodified one, and guess the index 𝑖𝑛𝑑𝑖 by
observing its behavior.

Specifically, their attacks repeatedly modify the auxiliary
data in the NVM to be (noncircularly) one bit shifted by
guessing the next bit of PUF output. If the modified auxiliary
data move out of the range of the PUF output with a
large amount of shift, a mismatch happens and the device’s
behavior changes; until the amount is less than or equal to
the distance to head or end, the device outputs a key, which
should be different from the assigned one because inputs
for CS and KGF differ; on the other hand, if it exceeds the
distance, the device aborts because the mismatch happens.
Namely, the snake attacks repeat the shift and guess by
increasing its amount of shift until the device’s behavior
changes and return the amount as its guess for the secret
index.

3.2. C-PMKG Scheme. To enhance the efficiency and/or the
security, a circular PMKG (C-PMKG) scheme was proposed
in [10, 19] independently and further discussed in [11, 20],
respectively. It regards PUF outputs circularly shifted by
secret indices {𝑖𝑛𝑑𝑖} as auxiliary data.

Figures 3 and 4 show its building blocks. As
for PUF, CS, pattern match, and KGF, we use the same
notations as ones for the PMKG scheme, while we set ℓ𝑤 = ℓ𝑝
in PUF. In addition to them, it also uses the function rotate:

(i) rotate: rotate function which, given an ℓ𝑤-bit string𝑦 and an amount of circularity 𝑖𝑛𝑑 ∈ [0, ℓ𝑤 − 1],
circularly shifts 𝑦 by 𝑖𝑛𝑑-bit

Protocol 2 (C-PMKG). Let PUF, CS, pattern match,
and KGF be functions as in the PMKG scheme, except that
the output length of the PUF is not ℓ𝑝-bit but ℓ𝑤-bit. Also
let rotate be a function as above. The C-PMKG scheme
consists of following two phases: an enrollment phase and a
reconstruction phase below.

Enrollment phase: A key generation device repeats a
round operation 𝑟 times with indexes {𝑖𝑛𝑑𝑖}𝑖∈[0,𝑟]. The index𝑖𝑛𝑑0 is an initial input of CS and we assume that it is fixed
in advance and stored in the NVM. Other indexes may be
also fixed in advance or randomly chosen inside the device,
and we assume the former case. This phase consists of the
following steps.

(1) The key generation device sets flag to one
(2) For 𝑖 ∈ [1, 𝑟], the device repeats the following steps:

(a) It inputs ({𝑖𝑛𝑑𝑘}𝑘<𝑖, 𝑓𝑙𝑎𝑔) intoCS to generate an
input of PUF 𝑥𝑖

(b) It inputs 𝑥𝑖 into PUF to generate a PUF output𝑦𝑖
(c) It stores a circularly shifted PUF output 𝑧𝑖 =

rotate(𝑦𝑖, 𝑖𝑛𝑑𝑖) into the NVM as auxiliary data

(3) It regards KGF({𝑖𝑛𝑑𝑖}𝑖∈[1,𝑟]) as 𝑘𝑒𝑦
Reconstruction phase: The key generation device repeats a
round operation 𝑟 times to recover the indexes and eventually
key, assigned at the enrollment phase. This phase consists of
the following steps.

(1) The key generation device sets flag to one
(2) For 𝑖 ∈ [1, 𝑟], the device repeats the following steps:

(a) It inputs ({𝑖𝑛𝑑󸀠𝑘}𝑘<𝑖, 𝑓𝑙𝑎𝑔) intoCS to generate an
input of PUF 𝑥󸀠𝑖

(b) It inputs 𝑥󸀠𝑖 into PUF to generate a PUF output
𝑦󸀠𝑖

(c) It loads auxiliary data 𝑧𝑖 from the NVM
(d) It looks for an index 𝑖𝑛𝑑󸀠𝑖 indicating the cir-

cularity shifted string rotate(𝑦󸀠𝑖 , 𝑖𝑛𝑑󸀠𝑖) near to𝑧𝑖 from the pattern match. If a mismatch hap-
pens, namely, if such an index is not detected
or if more than one index is detected, 𝑖𝑛𝑑󸀠𝑖 and𝑓𝑙𝑎𝑔 are set with a constant value ℓ𝑤 and zero,
respectively

(3) If 𝑓𝑙𝑎𝑔 = 1, then it inputs {𝑖𝑛𝑑󸀠𝑖 }𝑖∈[1,𝑟] into KGF to
recover 𝑘𝑒𝑦. Otherwise, it aborts

Unlike the PMKG scheme, the C-PMKG scheme uses
the whole (circularly shifted) PUF output as auxiliary data.
Removing the discarding of PUF outputs enhances its effi-
ciency compared to the PMKG scheme.Moreover, since there
is no head or end in the circularity, the snake attacks are
meaningless to the C-PMKG scheme.

However, in order for the C-PMKG scheme to be in
use, there are technical issues to be considered. The most
important one is a careful design ofCS. The circularly shifted
PUF outputs are stored in the public NVM as auxiliary data
in the C-PMKG scheme; and, here, if some of them have
intersections, the information of the corresponding indexes
may be leaked. Hence, to ensure the security of C-PMKG
scheme, CS should be designed leading to no intersection
over rounds.

4. Single-Round Circular PMKG Scheme

In this section, we propose a simple PMKG scheme, named
single-round circular PMKG (SC-PMKG), and show its
security against manipulation attacks.

4.1. Our Idea. We construct the SC-PMKG scheme, based
on the C-PMKG scheme, by improving the simplicity and
security as follows.

6 Security and Communication Networks

key
register

input
register

index
register

output
register

public non-volatile
memory

PUF

KGF CS

xi

xi

yi

indi−1

indi-th

{indi}

zi

Figure 1: Building blocks for enrollment phase in PMKG.

key
register

input
register

index
register

output
register

public non-volatile

pattern match

memory

PUF

KGF CS
zi

x
i

x
i

y
i

zi

ind
i−1

ind
i

ind
i -th

{ind
i }

Figure 2: Building blocks for reconstruction phase in PMKG.

(i) Simplicity: Unlike the previous PMKG schemes with𝑟 round operations, the SC-PMKG scheme is per-
formed within a single-round. In order to increase
the entropy of key efficiently, the previous schemes
prepare 𝑟 PUF output strings with ℓ𝑤-bit each. On
the other hand, the SC-PMKG scheme prepares an(𝑛 ⋅ ℓ𝑤)-bit PUF output string and divides it into 𝑛
substrings with ℓ𝑤-bit each. From this change, there
is no fear to overlap among the (sub)strings and the
security discussion can be simplified. Moreover, the
simple design helps us to develop devices.

(ii) Security: To detect and defeat themanipulation attack,
we introduce a check string 𝑐𝑠 to confirm the correct-
ness of the key reconstruction. The string is derived
from a cryptographic hash function with which, by
regarding it as a random oracle, we can theoretically
prove the security of the SC-PMKG scheme.

The following subsections give our construction and the
security consideration.

4.2. Construction. As for PUF, CS, rotate, pattern match,
and KGF, we use the same notations for the C-PMKG
scheme, except that we assume ℓ𝑝 > ℓ𝑤 for PUF as in
the PMKG scheme. Additionally, our scheme uses a hash
function hash, to check the integrity of a reconstructed key.

(i) hash: Cryptographic one-way hash function which,
given an ℓ𝑘-bit 𝑘𝑒𝑦, returns an ℓ𝑐𝑠-bit check string 𝑐𝑠

Protocol 3 (SC-PMKG). Let PUF, CS, rotate, pattern match,
and KGF be functions as in the C-PMKG scheme, except
that we assume ℓ𝑝 = 𝑛 ⋅ ℓ𝑤 for an integer 𝑛, and let hash

be a hash function as above. The SC-PMKG scheme consists
of the following two phases: an enrollment phase and a
reconstruction phase below.

Enrollment phase: A key generation device with indexes{𝑖𝑛𝑑𝑖}𝑖∈[0,𝑛] performs an enrollment as follows.The index 𝑖𝑛𝑑0
is an initial input for CS and we assume that it is fixed
in advance and stored in the NVM. Other indexes may be
also fixed in advance or randomly chosen inside the device,
and we assume the former case. This phase consists of the
following steps.

(1) The key generation device inputs 𝑖𝑛𝑑0 into CS to
generate an input of PUF 𝑥

(2) It inputs 𝑥 into PUF to generate a PUF output
(3) It divides the PUF output into 𝑛 substrings {𝑦𝑖}𝑖∈[1,𝑛]

with ℓ𝑤-bit each
(4) It stores {𝑧𝑖 = rotate(𝑦𝑖, 𝑖𝑛𝑑𝑖)} for 𝑖 ∈ [1, 𝑛] into the

NVM as auxiliary data
(5) It computes 𝑘𝑒𝑦 = KGF({𝑖𝑛𝑑𝑖}𝑖∈[1,𝑛])
(6) It computes 𝑐𝑠 = hash(𝑖𝑛𝑑0, {(𝑧𝑖, 𝑖𝑛𝑑𝑖)}𝑖∈[1,𝑛], 𝑘𝑒𝑦) and

stores it into the NVM as a check string

Reconstruction phase: The key generation device recovers
the indexes and eventually the key, assigned at the enrollment
phase. This phase consists of the following steps.

(1) The device sets flag to one
(2) It inputs 𝑖𝑛𝑑󸀠0 into CS to generate an input of PUF 𝑥󸀠
(3) It inputs 𝑥󸀠 into PUF to generate a PUF output
(4) It divides the PUF output into 𝑛 substrings {𝑦󸀠𝑖 }𝑖∈[1,𝑛]

with ℓ𝑤-bit each

Security and Communication Networks 7

key
register

input
register

index
register

output register

rotate

public non-volatile
memory

PUF

KGF CS

xi

xi
yi

yi

indi−1

indi

zi

{indi}

Figure 3: Building blocks for enrollment phase in C-PMKG.

key
register

input
register

index
register

output register

rotate

pattern match

public non-volatile
memory

PUF

KGF CS

zi

x
i

x
i y

i
y
i

zi

ind
i−1

ind
i

{ind
i }

Figure 4: Building blocks for reconstruction phase in C-PMKG.

(5) For 𝑖 ∈ [1, 𝑛], it repeats the following steps:
(a) It loads auxiliary data 𝑧󸀠𝑖 from the NVM
(b) It looks for an index 𝑖𝑛𝑑󸀠𝑖 indicating the circular-

ity shifted string rotate(𝑦󸀠𝑖 , 𝑖𝑛𝑑󸀠𝑖) near to 𝑧𝑖 from
the pattern match. If a mismatch happens, 𝑖𝑛𝑑󸀠𝑖
and flag are set with a constant value ℓ𝑤 and
zero, respectively

(6) If 𝑓𝑙𝑎𝑔 = 1, then it inputs {𝑖𝑛𝑑󸀠𝑖 }𝑖∈[1,𝑛] into KGF to
compute 𝑘𝑒𝑦󸀠. Otherwise, it aborts

(7) It loads a check string 𝑐𝑠󸀠 from the NVM
(8) If hash(𝑖𝑛𝑑󸀠0, {(𝑧󸀠𝑖 , 𝑖𝑛𝑑󸀠𝑖)}𝑖∈[1,𝑛], 𝑘𝑒𝑦󸀠) = 𝑐𝑠󸀠 holds, it

regards 𝑘𝑒𝑦󸀠 as the reconstructed key. Otherwise, it
aborts

There are two advantages in the SC-PMKG scheme.
The first one is that, from its simple construction with
a single-round, we do not need to pay attention to the
intersections of auxiliary data over rounds. It simplifies the
design of CS and the security consideration. The second one
is that, by introducing the check string, the security against
manipulation attacks of the NVM is ensured, if hash is an
ideal hash function (random oracle [12]). We discuss the
security in the following subsection.

4.3. Security Consideration. As in theC-PMKGscheme, since
the auxiliary data is obtained from the circularly shift of the
PUF output, the snake attacks are invalid for the SC-PMKG
scheme. In addition, we can prove that the SC-PMKG scheme

is an indistinguishable PBKG scheme in the random oracle
model [12]. As for the security, the following theorem holds.

Theorem 5. Assume that PUF is an indistinguishable PUF in(𝜏, 0, 𝜖) and that hash is the random oracle. Then, the SC-
PMKG scheme is an indistinguishable PBKG in (𝜏󸀠, 𝑞𝐾, 𝜖󸀠)
where

𝜖󸀠 = 𝜖 − 1
ℓ𝑛𝑤

and 𝜏󸀠 = 𝜏 + 𝑞𝐾𝑂 (T𝐾) .
(1)

Here, T𝐾 denotes an execution time of the SC-PMKG scheme.

The proof is done by the contradiction. Namely, we show
that if there exists an adversary A against the SC-PMKG
scheme, we can construct an algorithm B, which uses A
as a subroutine, to break the indistinguishability of PUF.
The construction of B is simple and we give a proof in the
Appendix.

Note that, in Theorem 5, we assume that (𝜏, 0, 𝜖) for the
underlying PUF. The condition of 𝑞 = 0 makes the PUF
strongly protected within the system, lest no PUF output for
an adversarial input is observable. However, there is a trade-
off between the assumptions for the secure system (𝑞 = 0) and
for a secure PUF (𝑞 > 0, see next paragraph). The condition
we assume relaxes the choice of PUF because we can neglect
the fear of the machine learning attacks [18], and because we
can use a weak PUF with a small input-output space, such as
SRAM-PUF.

We can extend the security model of Definition 4 so
that an adversary against the PBKG scheme is allowed to

8 Security and Communication Networks

collect input-output pairs of the underlying PUF; that is, we
can consider the security model with a powerful adversary.
In this case, the indistinguishability of the PBKG scheme
is defined with four-tuple (𝜏󸀠, 𝑞𝐾, 𝑞𝑃, 𝜖󸀠), instead of three-
tuple (𝜏󸀠, 𝑞𝐾, 𝜖󸀠), where the adversary accesses the PBKG and
PUF oracles at most 𝑞𝐾 and 𝑞𝑃 times, respectively. With this
extension, we can prove another theorem, if the underlying
PUF is indistinguishable in (𝜏, 𝑞𝑃, 𝜖), instead of (𝜏, 0, 𝜖). If 𝑞𝐾
is so large, a weak PUF may not be a possible choice for our
system. Note that, even with this extension, the adversary of
the SC-PMKG scheme should be restricted not to access the
PUF oracle on 𝑥 corresponding to the target key. To simplify
the security proof, this paper discusses the security without
the extension.

Regardless of whether the model is extended or not, we
require the PUF so that its output is unobservable by invalid
interface other than the interfaces in Definition 2. As for the
SRAM-PUF, for example, to avoid the physical probing attack
[21, 22], we should choose an appropriate PUF, with a fine
process [23], etc.

4.4. Notes on Parameters. The SC-PMKG scheme is parame-
terized with the following parameters: ℓ𝑤, 𝑛, ℓ𝑝 = 𝑛 ⋅ ℓ𝑤, ℓ𝑖 =
log2ℓ𝑤, and ℓ𝑐𝑠. If the pattern match in the reconstruction
phase looks for the index with a threshold, the threshold 𝑡ℎ is
also required.

Among them, 𝑛 and ℓ𝑖 (and, therefore, ℓ𝑤 and ℓ𝑝) relate to
the security.The (Shannon) entropy of key source is estimated
by 𝑛 ⋅ ℓ𝑖. To ensure the 160-bit entropy for the source, we set
them so that 𝑛 ⋅ ℓ𝑖 exceeds 160. In addition, ℓ𝑐𝑠 also relates
to the security. The larger it is, up to 𝑛 ⋅ ℓ𝑖, the harder the
manipulation attack is.

On the other hand, ℓ𝑤 and 𝑡ℎ relate to the correctness.
There are two failure scenarios in reconstructing the key: the
pattern match fails at Step (5)(b) or the hash value does not
match the check string at Step (8). Note that if the indexes are
correctly recovered at Step (5)(b), the verification at Step (8)
should succeed. Hence, let us discuss the failure at Step (5)(b).

The pattern match at Step (5)(b) looks for an index with
which the distance between a substring candidate and the
auxiliary data is less than 𝑡ℎ and/or the smallest, as stated in
Section 3.1. In order for the pattern match to be performed
with only the former criterion, 𝑡ℎ should be set with adequate
value (and additional criterion to narrow index candidates,
if necessary) so that only the correct index is detected.
With the latter criterion, it is easy to see that the index can
be correctly recovered if ℓ𝑤 is large. Note that, under the
condition that each bit of PUF output is independent of
other bits, the distances for correct and incorrect indexes are
expected about 𝑝𝑒 ⋅ ℓ𝑤 and ℓ𝑤/2, where 𝑝𝑒 is a bit error rate,
respectively. Namely, if ℓ𝑤 increases, the gap between these
distances also increases and the correct index is detectable.
In the next section, we check the relation between ℓ𝑤 and
the correctness of the recovered index (key).The combination
of the first and second criteria, first finding index candidates
with a loose threshold and then detecting the index with the
smallest distance, enables not only the recovery of correct
index but also the detection of system errors from faults and
manipulation attacks.

5. Feasibility Tests

In this section, we test the feasibility of the SC-PMKG scheme
by simulations and experiments, respectively.

5.1. Simulation. We first check the feasibility of the SC-
PMKG scheme by a simulation with an approximation
analysis. In this simulation, we estimate the failure probability
in the key reconstruction by changing parameters ℓ𝑤, 𝑛, and𝑝𝑒 where 𝑝𝑒 is a bit error rate in the PUF output. Following
Paral andDevadas [9], for each ℓ𝑤, we set 𝑛 so that the entropy
of input for KDF is 160-bit. For example, if we use ℓ𝑤 = 32,
we set 𝑛 = 32 as a minimum integer so that 𝑛 log2ℓ𝑤 ≥ 160.

Table 1 summarizes the failure probability for 𝑝𝑒 ∈{0.15, 0.035} and ℓ𝑤 from 32 to 160. Here, we assume 0.15 and0.035 for 𝑝𝑒 because 𝑝𝑒 = 0.15 is a well discussed parameter
for PUF instantiations and 𝑝𝑒 = 0.035 is an average of bit
error rate in our experiments below. As for 𝑛, we set 𝑛 for
each ℓ𝑤 by a minimum integer as in the above case for ℓ𝑤 =32. With ℓ𝑤 and 𝑛, ℓ𝑝 = ℓ𝑤 × 𝑛 is a length of the PUF
output. For each𝑝𝑒 and ℓ𝑤, the “prob. (sim)” shows the failure
probability from the simulation, which is estimated as shown
in Algorithm 1.

For each ℓ𝑤, we tried 𝑁 = 5, 000, 000 reconstructions, in
total. (In Table 1, “0” means that there is no error for 𝑁 =5, 000, 000, which means that prob. (sim) is less that 1/𝑁 =2 × 10−7.) From our simulation, ℓ𝑤 = 160 (𝑝𝑒 = 0.15) or ℓ𝑤 =48 (𝑝𝑒 = 0.15) should be enough for the key reconstruction
with the failure probability less than 10−6.

We also estimate the failure probability by an approxima-
tion analysis, as shown in “prob. (approx)” in Table 1.

Let us discuss the distance between a substring stored
in the NVM and one circularly shifted by the correct index.
The distance follows the binomial distribution 𝐵(ℓ𝑤, 𝑝𝑒). We
approximate it with the normal distribution𝑁(ℓ𝑤𝑝𝑒, ℓ𝑤𝑝𝑒(1−𝑝𝑒)). Similarly, we approximate the distribution of the dis-
tance related to an incorrect index with the normal distribu-
tion 𝑁(ℓ𝑤/2, ℓ𝑤/4).

In case the distance for the correct index is more than
one for the incorrect index, the wrong index is recovered. Let
us denote the probability by 𝑞. The difference between the
distances for correct and incorrect indexes follows the normal
distribution 𝑁(𝑚𝑒𝑎𝑛, V𝑎𝑟) where 𝑚𝑒𝑎𝑛 = ℓ𝑤𝑝𝑒 − ℓ𝑤/2 and
V𝑎𝑟 = ℓ𝑤𝑝𝑒(1 − 𝑝𝑒) + ℓ𝑤/4, which is a composite (difference)
of two normal distributions. With this notation, 𝑞 can be
estimated by

𝑞 ≈ ∫∞
𝑚𝑒𝑎𝑛/√V𝑎𝑟

1
√2𝜋 exp(𝑥2

2)𝑑𝑥. (2)

Note that there are ℓ𝑤−1wrong candidates for one index.
If 𝑞 is small enough, the probability where one of wrong index
is recovered is estimated by 1−(1−𝑞)ℓ𝑤−1 ≈ 1−{1−(ℓ𝑤−1)𝑞} =(ℓ𝑤 − 1)𝑞. Also note that there are 𝑛 indexes to be recovered.
Similarly, the probability where one of index is incorrectly
recovered among 𝑛 substrings is approximated by (ℓ𝑤 − 1)𝑛𝑞.
“prob. (approx)” in Table 1 summarizes the failure probability
for each 𝑝𝑒, ℓ𝑤 (and 𝑞), and 𝑛.

Security and Communication Networks 9

Table 1: Failure probability in SC-PMKG ((a)𝑝𝑒 = 0.15, (b)𝑝𝑒 = 0.035).
(a)

ℓ𝑤 𝑛 ℓ𝑝 prob. (sim) prob. (approx)
32 32 1024 0.538 0.630
48 29 1392 8.02 × 10−2 5.40 × 10−2
64 27 1728 8.29 × 10−3 4.41 × 10−3
96 25 2400 9.02 × 10−5 2.83 × 10−5
128 23 2944 1.00 × 10−6 1.69 × 10−7
160 22 3520 0 1.01 × 10−9

(b)

ℓ𝑤 𝑛 ℓ𝑝 prob. (sim) prob. (approx)
8 53 424 0.682 0.242
16 40 640 6.86 × 10−2 7.51 × 10−3
24 34 816 2.73 × 10−3 1.45 × 10−4
32 32 1024 1.29 × 10−4 2.54 × 10−6
48 29 1392 2.00 × 10−7 6.27 × 10−10
64 27 1728 0 1.36 × 10−13

Enrollment phase:
(1) Generate an ℓ𝑝-bit string at random.
(2) Divide the string into 𝑛 substrings {𝑦𝑖}𝑖∈[1,𝑛] with ℓ𝑤-bit each.
(3) For 𝑖 ∈ [1, 𝑛], choose 𝑖𝑛𝑑𝑖 ∈ [0, ℓ𝑤 − 1] at random.
(4) For 𝑖 ∈ [1, 𝑛], compute 𝑧𝑖 = rotate(𝑦𝑖, 𝑖𝑛𝑑𝑖).
(5) Store {(𝑦𝑖, 𝑖𝑛𝑑𝑖, 𝑧𝑖)}𝑖∈[1,𝑛].

Reconstruction phase:
(1) Set 𝑐𝑛𝑡 to 0.
(2) Repeat the following steps 𝑁 times:

(a) For 𝑖 ∈ [1, 𝑛], generate an ℓ𝑤-bit string 𝑒𝑖 where each bit of 𝑒𝑖 is 1 with probability 𝑝𝑒, independently.
(b) For 𝑖 ∈ [1, 𝑛], set 𝑦󸀠𝑖 = 𝑦𝑖 ⊕ 𝑒𝑖 and look for 𝑖𝑛𝑑󸀠𝑖 where rotate(𝑦󸀠𝑖 , 𝑖𝑛𝑑󸀠𝑖) is near to 𝑧𝑖.
(c) Increment 𝑐𝑛𝑡 if there exists 𝑖 ∈ [1, 𝑛] such that 𝑖𝑛𝑑𝑖 ̸= 𝑖𝑛𝑑𝑖.

(3) Compute the failure probability by 𝑐𝑛𝑡/𝑁.

Algorithm 1

Since the approximations are inappropriate for small
parameters, there are gaps between the failure probabilities
from simulation and our approximation analysis. However,
our analysis seems valid for large ℓ𝑤; namely, ℓ𝑤 = 160
and ℓ𝑤 = 64 are large enough, when 𝑝𝑒 is 0.15 and 0.035,
respectively, so that the failure probability is negligible.

5.2. Experiments with Nucleo Boards. We then test the
feasibility with two Nucleo-F401RE boards (http://www.st
.com/en/evaluation-tools/nucleo-f401re.html (accessible on
Nov. 9, 2018)) by STMicroelectronics. We load ℓ𝑝 = 𝑛 ⋅ ℓ𝑤
initial SRAMbits on each board and regard them as an output
of SRAM-PUF. The experiments are performed in the room
temperature and the power is supplied by the USB interface.
(The characteristics of PUF would change by environments
such as temperature and supplied power voltage. Refer to
Chapter 4 of [24], for instance. The success rate of the key
reconstruction depends on the bit error rate of PUF. We
should select adequate parameters, such as ℓ𝑤 and 𝑛, with

the worst error rate among the different environments.) The
averages of bit error rate for 4,096 SRAMbits on these boards
are 3.30% and 3.57%, respectively. Here, the bit error rate is
evaluated, in a simple manner, by a difference between the bit
for the first read and bits for the following 10,000 reads.

Similar to the above simulation, we estimate the failure
probability by changing ℓ𝑤. For each board, we try the
reconstruction 10,000 times. Table 2 summarizes the failure
probabilities for two boards, respectively. (Similar to Table 1,
“0” means that there is no error for 𝑁 = 10, 000 and that the
failure probability is less than 10−4.)

For small ℓ𝑤, the probabilities differ from those of Table 1.
This is because, different from the simulation, the initial
values of SRAM cells are not uniformly random, and their
stabilities are not constant for each bit. With larger ℓ𝑤, the
probabilities in our experiment are close to those in the
simulation. Note that since the initial values of SRAM cells
are not uniform, if we use this SRAM as SRAM-PUF directly,
the resulting SC-PMKG schememight be insecure. From our
observations, the initial values of SRAM cells have certain

http://www.st.com/en/evaluation-tools/nucleo-f401re.html
http://www.st.com/en/evaluation-tools/nucleo-f401re.html

10 Security and Communication Networks

Table 2: Failure probability in SC-PMKG with Nucleo-F401RE boards.

ℓ𝑤 𝑛 ℓ𝑝 board 1 board 2
8 53 424 1 1
16 40 640 0.137 0.434
24 34 816 8.00 × 10−4 4.20 × 10−3
32 32 1024 1.00 × 10−4 1.00 × 10−4
48 29 1392 0 0
64 27 1728 0 0

bit patterns; and therefore regarding either a concatenation
of first bits of each byte or an XORed value of different
cells like 4-XOR PUF as an output of the SRAM-PUF may
be a solution to enhance the security of the SC-PMKG
scheme.

5.3. Experiments with Open Dataset. In order to check
the feasibility with a different type of PUF, we use the
ring oscillators’ (ROs’) frequencies which are available at
the Secure Embedded Systems (SES) Lab at Virginia Tech
(http://rijndael.ece.vt.edu/puf/download.html (accessible on
Nov. 9, 2018)). We select “Full Standard Dataset Oscillator
Counts.” The dataset includes 100 oscillator counts for 512
ROs of 193 Xilinx Spartan-3E FPGA boards (XC3S500E)
under the standard temperature/voltage. Using these ROs’
counts, up to (5122) = 130816 bits of RO-PUF can be derived.
We implement the SC-PMKGwith someof them.The average
bit error rate for the first 1728 RO-PUF bits is 1.21%.

In the dataset, there are only 100 samples for each
board. In the feasibility test, we evaluate the average and
maximum of failure probabilities over 193 boards. Table 3
summarizes them. (Similar to Table 2, “0” means that the
failure probability is less than 1/(99 × 193) < 5.23 × 10−5.)

Since the bit error rate (1.21%) is smaller than that of
Nucleo boards (approx. 3%), the failure probabilities are also
small. That is, for the correctness, fewer PUF output bits are
required, for example, ℓ𝑝 = 1024.
6. Discussion

Table 4 summarizes the comparison among the PMKG, C-
PMKG, and SC-PMKG schemes. Let us discuss the detail of
each item below. We refer to [9, 25] for parameters of the
PMKG and C-PMKG schemes, respectively. As for C-PMKG,
we also add parameters, in parentheses, which we estimate
by the similar theoretical approximation of Section 5.1. Note
that the authors of [9, 25] decided the parameters so that
the failure in key reconstruction should be negligible (with
probability less that 10−6).

“|Key|” is a bit length of an output of KGF. References
[9, 25] set it to 128, and we follow them for the SC-PMKG
scheme. In order to generate the 128-bit key, the previous
works [9, 25] assumed that the source of the key had the 160-
bit entropy in preparation for the entropy loss of PUF output
and the randomness of indexes; i.e., the sum of index lengths

was supposed to be 160-bit. We also follow them for the SC-
PMKG scheme and give it in the second line “𝐻(Source)” as
the entropy of the source.

“𝐻(Index)” shows the entropy of an index. In the PMKG
scheme, the index is an address of the first bit of substring.
Paral and Devadas [9] set it with 10. In the C-PMKG and
SC-PMKG schemes, on the other hand, the index is the
amount of circular shift which is at most the length of
the substring. Reference [25] followed [9] to set the length
of the substring with 256, and therefore 𝐻(Index) was set
with 8. On the SC-PMKG scheme, from our simulation and
experiments, the length of substring seems enough with 160
and we set 𝐻(Index) with log2160. As in parentheses, the
length of substring for the C-PMKG scheme can be similarly
estimated with our approximation estimation, so that the
failure probability is less than 10−6.

“♯rounds” is a number of rounds. On the PMKG scheme,
to generate (ℓ𝑘 =)128-bit key with (ℓ𝑖 =)10-bit index
per round, 13 rounds may be enough. However, Paral and
Devadas [9] used 16 to make the entropy of source 160-bit.
Following them, we set the number of rounds to make the
entropy of source 160-bit or more. Similarly, in the C-PMKG
scheme, since the length of each index is eight, it is 160/8 = 20
(or ⌈160/log2160⌉ = 22 with our approximation). As for the
SC-PMKG scheme, the number of rounds is one.

“♯indexes/rounds” are a number of indexes per a round.
In the PMKG and C-PMKG schemes, they are one. On the
other hand, in the SC-PMKG scheme, it is ⌈160/log2160⌉ =22 to achieve the 160-bit entropy.

“|Pattern|” is a bit length of a (sub)string of a PUF output
to be pattern-matched. It is the same as the bit length of each
auxiliary data.They set it to 256which is expected to avoid the
mismatch. As for the SC-PMKG scheme, we set it to 160 from
our simulation. As in parentheses, the length of |Pattern| (and
ones of items below) for theC-PMKGscheme can be similarly
estimated as ours, with the approximation estimation.

“|PUF output|/round” is a bit length of PUF output in
each round.They set it with 1279(= 1024 + 256 − 1) and 256,
respectively. As for the SC-PMKG scheme, since it requires22(= 𝑛) substrings of 160-bit in a round as we discuss, the
length is 22 × 160 = 3520.

“|Total PUF output|” is a bit length of PUF output in
total, which is ℓ𝑝 × 𝑟 × 𝑛.

“|Storage|” means the total length of stored data in the
NVM, except 𝑖𝑛𝑑0. The total length of auxiliary data is
estimated with ℓ𝑤 ⋅ 𝑟 ⋅ 𝑛. In the SC-PMKG scheme, beside

http://rijndael.ece.vt.edu/puf/download.html

Security and Communication Networks 11

Table 3: Failure probability in SC-PMKG with ring oscillator (open dataset).

ℓ𝑤 𝑛 ℓ𝑝 prob. (ave) prob. (max)
8 53 424 0.592 1
16 40 640 0.461 1
24 34 816 0 0
32 32 1024 0 0

Table 4: Comparison of PMKG schemes.

Item PMKG [9] C-PMKG [25] SC-PMKG
|Key|, ℓ𝑘 128 128 128
H(Source) 160 160 160
H(Index) 10 8 (log2160) log2160♯rounds, 𝑟 16 20 (22) 1
♯indexes/round, 𝑛 1 1 22
|Pattern|, 𝑙𝑤 256 256 (160) 160
|PUF output|/round, ℓ𝑝 1279 256 (160) 3520
|Total PUF output| 20464 5120 (3520) 3520
|Storage| 4096 5120 (3520) 3776
Additional functions over PMKG – rotate rotate, hash
CS design Complicated Complicated Simple
Snake attacks Vulnerable Secure Secure
Provable security Unknown Unknown Yes

the auxiliary data, the check string is stored in the NVM.
We assume that SHA-256 is used as hash and the length is3520 + 256 = 3776.

Although the C-PMKG and SC-PMKG schemes require
fewer PUF outputs in total, they require additional functions,
which derive an implementation and computation overhead,
compared to the PMKG scheme. In the PMKG scheme,
the index search can be performed sequentially. On the
other hand, the C-PMKG and SC-PMKG schemes require
the additional function rotate. In addition, the SC-PMKG
scheme requires the hash function to compute the check
string.

The challenge sequencers CS for the PMKG and C-
PMKG schemes are carefully designed to avoid an intersec-
tion of auxiliary data over rounds as we discussed; however,
its design for the SC-PMKG scheme can be simple.

As for the security, the PMKG scheme is vulnerable
against the snake attacks. The C-PMKG and SC-PMKG
schemes are secure against the snake attacks. Let us discuss
the provable security. Although [20] discussed the provable
security of the C-PMKG scheme, the security model did not
take the manipulation attacks into consideration. It remains
an open problem whether the C-PMKG scheme is provably
securewithout a hash functionwhich, in the SC-PMKG, plays
an important role in the provable security. On the other hand,
the SC-PMKG scheme is provably secure as inTheorem 5.

To summarize, compared to the PMKG scheme, the C-
PMKG and SC-PMKG schemes are not only secure but also
efficient; namely, they require less PUF output. In addition,
the simple CS design to generate a challenge in the single-
round of the SC-PMKG scheme allows us to use even a

weak PUF, like the SRAM-PUF, as a building block. It is an
advantage for applications with tiny devices, such as the IoT
systems.

7. Conclusions

This paper proposes a secure and efficient PMKG scheme, the
SC-PMKG scheme, which saves the PUF output and allows a
simple construction. It can be realized with even a weak PUF,
such as the SRAM-PUF, and is suitable for tiny devices in the
IoT systems. Feasibility test with other types of PUF changing
the environments is one of our future works.

Appendix

A. Proof of Theorem 5

Proof sketch: We constructB as follows.

(1) B randomly generates 𝑖𝑛𝑑0, 𝑖𝑛𝑑1, . . . , 𝑖𝑛𝑑𝑛, where𝑖𝑛𝑑0 is with prefixed length and 𝑖𝑛𝑑𝑖 ∈ [0, ℓ𝑤 − 1] for𝑖 ∈ [1, 𝑛].
(2) B computes an input 𝑥 = CS(𝑖𝑛𝑑0).
(3) B outputs 𝑥 as a challenge to receive 𝑦 ∈ {0, 1}ℓ𝑝

as a target. If B is in the real game (the real game
is a challenge to B whether B can guess that the
key is correctly generated; it corresponds to 𝑝1 =
Pr[A(𝑦) = 1 | 𝑦 ←󳨀 PBKG(1ℓ𝑘)] in Definition 4), 𝑦
is an output PUF(𝑥); otherwise, ifB is in the random
game (the random game is a challenge toB whether

12 Security and Communication Networks

B fails to guess that the key is randomly generated; it
corresponds to 𝑝2 = Pr[A(𝑦) = 1 | 𝑦 ←󳨀 {0, 1}ℓ𝑘] in
Definition 4), 𝑦 is a random string over {0, 1}ℓ𝑝 . The
goal ofB is to distinguish these games.

(4) B proceeds to steps from (3) to (6) of the enrollment
phase in Protocol 3, by regarding 𝑦 as an output
of PUF. Note that, in the random oracle model,𝑐𝑠 = hash(𝑖𝑛𝑑0, {(𝑧𝑖, 𝑖𝑛𝑑𝑖)}𝑖∈[1,𝑛], 𝑘𝑒𝑦) is defined by the
random oracle through an oracle query.

(5) B givesA 𝑘𝑒𝑦 as a challenge.
(6) For a query fromA to the random oracle,B answers

it as follows.

(a) If the query includes {𝑖𝑛𝑑𝑖}𝑖∈[1,𝑛] whichB chose
at Step (1) above,B aborts and fails the proof.

(b) If the query does not include {𝑖𝑛𝑑𝑖}𝑖∈[1,𝑛] which
B chose at Step (1) above, B passes the
query/response betweenA and the oracle.

(7) For a query from A to the SC-PMKG scheme as a
PBKG scheme,B answers it as follows.

(a) If 𝑖𝑛𝑑0, {𝑧𝑖}𝑖∈[1,𝑛], or 𝑐𝑠 are not modified, B
returns 𝑘𝑒𝑦 toA.

(b) If at least one of 𝑖𝑛𝑑0, {𝑧𝑖}𝑖∈[1,𝑛], and 𝑐𝑠 is modi-
fied with different values,B returns nothing to
A.

(8) IfA returns 𝑏 ∈ {0, 1},B returns 𝑏.
In the above construction, B fails the proof at Step (6)(a),
with probability 1/ℓ𝑛𝑤. Otherwise, if A succeeds in dis-
tinguishing the games for the SC-PBKG scheme, B also
succeeds in distinguishing the games for the PUF. Therefore,
we have the theorem.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number
JP18H05289. We sincerely thank Dr. Jeroen Delvaux for his
invaluable comments.

References

[1] J. Guajardo, S. S. Kumar, G. J. Schrijen, and P. Tuyls, “FPGA
intrinsic PUFs and their use for IP protection,” inCryptographic
Hardware and Embedded Systems - CHES, 2007., Volume 4727
of Lecture Notes in Computer Science, P. Paillier and I. Ver-
bauwhede, Eds., pp. 63–80, Springer-Verlag, Berlin, Germany,
2007.

[2] D. E. Holcomb, W. P. Burleson, and K. Fu, “Initial SRAM state
as a fingerprint and source of true random numbers for RFID
tags,” in Proceedings of the Conference on RFID Security 2007,
IEEE, 1210 pages, 2007.

[3] D. E. Holcomb, W. P. Burleson, and K. Fu, “Power-up SRAM
state as an identifying fingerprint and source of true random
numbers,” Institute of Electrical and Electronics Engineers. Trans-
actions on Computers, vol. 58, no. 9, pp. 1198–1210, 2009.

[4] B. Gassend, D. Lim, D. Clarke, M. van Dijk, and S. Devadas,
“Identification and authentication of integrated circuits,” Con-
currency and Computation: Practice and Experience, vol. 16, no.
11, pp. 1077–1098, 2004.

[5] J. W. Lee, D. Lim, B. Gassend, G. E. Suh, M. Van Dijk, and
S. Devadas, “A technique to build a secret key in integrated
circuits for identification and authentication applications,” in
Proceedings of the Symposium on VLSI Circuits (VLSI ’04), pp.
176–179, Honolulu, Hawaii, USA, June 2004.

[6] D. Lim, Extracting secret keys from integrated circuits [Msc.
thesis], Institute of Technology (MIT), Massachusetts, Mass,
USA, 2004.

[7] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy
extractors: how to generate strong keys from biometrics and
other noisy data,” SIAM Journal on Computing, vol. 38, no. 1,
pp. 97–139, 2008.

[8] C. Herder, L. Ren, M. Van Dijk, M.-D. Yu, and S. Devadas,
“Trapdoor Computational Fuzzy Extractors and Stateless
Cryptographically-Secure Physical Unclonable Functions,”
IEEE Transactions on Dependable and Secure Computing, vol.
14, no. 1, pp. 65–82, 2017.

[9] Z. Paral and S. Devadas, “Reliable and efficient PUF-based key
generation using pattern matching,” in Proceedings of the 2011
IEEE International Symposium on Hardware-Oriented Security
and Trust, HOST 2011, pp. 128–133, USA, June 2011.

[10] J. Delvaux and I. Verbauwhede, “Attacking PUF-based pattern
matching key generators via helper data manipulation,” in
Topics in Cryptology – CT-RSA 2014, vol. 8366 of Lecture
Notes in Computer Science, pp. 106–131, Springer International
Publishing, Cham, 2014.

[11] J. Delvaux and I. Verbauwhede, “Attacking PUF-based pattern
matching key generators via helper data manipulation,” in
Topics in cryptology—CT-RSA 2014, vol. 8366 of Lecture Notes
in Comput. Sci., pp. 106–131, Springer, Cham, 2014.

[12] M. Bellare and P. Rogaway, “Random oracles are practical,” in
Proceedings of the the 1st ACM conference, pp. 62–73, Fairfax,
Virginia, United States, November 1993.

[13] R. Maes and I. Verbauwhede, “A discussion on the properties
of. physically unclonable functions,” in Proceedings of the 3rd
International Conference on Trust and Trustworthy Computing
(TRUST 2010), 2010.

[14] A. R. Sadeghi, Towards Hardware-Intrinsic Security, 2010.
[15] A. Datta, A. Derek, J. C. Mitchell, and B. Warinschi, “Key

exchange protocols: Security definition, proof method and
applications,” https://eprint.iacr.org/2006/056.pdf.

[16] M. Bellare and P. Rogaway, “Entity authentication and key
distribution,” in Advances in Cryptology—(CRYPTO ’93), vol.
773 of Lecture Notes in Computer Science, pp. 232–249, Springer,
Berlin, Germany, 1994.

[17] M. Bellare, R. Canetti, and H. Krawczyk, “Modular approach to
the design and analysis of authentication and key exchange pro-
tocols,” in Proceedings of the 1998 30th Annual ACM Symposium
onTheory of Computing, pp. 419–428, May 1998.

https://eprint.iacr.org/2006/056.pdf

Security and Communication Networks 13

[18] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and J.
Schmidhuber, “Modeling attacks on physical unclonable func-
tions,” in Proceedings of the 17th ACM Conference on Computer
and Communications Security (CCS ’10), pp. 237–249, Chicago,
Ill, USA, October 2010.

[19] Y. Komano, K. Ohta, and K. Sakiyama, “Encryption key gen-
erating apparatus and computer program product (Jan. 2017)
Original Japanese patent(5,710,460) was filed on Dec. 16, 2011”.

[20] Y. Komano, K. Ohta, K. Sakiyama, and M. Iwamoto, “Provably
secure pattern matching key generation using PUF,” in Proceed-
ings of the SCIS 2012, The 2012 Symposium on Cryptography and
Information Security, 2012 (Japanese).

[21] C. Helfmeier, C. Boit, D. Nedospasov, and J.-P. Seifert, “Cloning
physically unclonable functions,” in Proceedings of the 2013 6th
IEEE International Symposium on Hardware-Oriented Security
and Trust, HOST 2013, pp. 1–6, USA, June 2013.

[22] D. Nedospasov, J. Seifert, C. Helfmeier, and C. Boit, “Invasive
PUF Analysis,” in Proceedings of the 2013 Workshop on Fault
Diagnosis and Tolerance in Cryptography (FDTC), pp. 30–38,
Los Alamitos, CA, USA, August 2013.

[23] H. Mori, T. Nakagawa, Y. Kitahara et al., “An low-energy 8T
dual-port SRAM for image processor with selective sourceline
drive scheme in 28-nmFD-SOI process technology,” inProceed-
ings of the 23rd IEEE International Conference on Electronics,
Circuits and Systems, ICECS 2016, pp. 532–535,Monaco,Decem-
ber 2016.

[24] R. Maes, Physically Unclonable Functions: Constructions, Prop-
erties and Applications, Springer, New York, NY, USA, 2013.

[25] Y. Iwai, T. Fukushima, D. Moriyama et al., “Implementation
and evaluation of PUF-based pattern matching key generation
using circular shift,” in Proceedings of the SCIS 2013, The 2013
Symposium on Cryptography and Information Security, 2013.

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

