
Research Article
Dynamic Nonparametric Random Forest Using Covariance

Seok-Hwan Choi , Jin-Myeong Shin, and Yoon-Ho Choi

School of Computer Science and Engineering, Pusan National University, Busan, 26241, Republic of Korea

Correspondence should be addressed to Yoon-Ho Choi; yhchoi@pusan.ac.kr

Received 2 November 2018; Accepted 6 March 2019; Published 27 March 2019

Academic Editor: Mamoun Alazab

Copyright © 2019 Seok-Hwan Choi et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

As the representative ensemble machine learning method, the Random Forest (RF) algorithm has widely been used in diverse
applications on behalf of the fast learning speed and the high classification accuracy. Research on RF can be classified into two
categories: (1) improving the classification accuracy and (2) decreasing the number of trees in a forest. However, most of papers
related to the performance improvement of RF have focused on improving the classification accuracy. Only some papers have
focused on reducing the number of trees in a forest. In this paper, we propose a new Covariance-Based Dynamic RF algorithm,
called C-DRF. Compared to the previous works, while ensuring the good-enough classification accuracy, the proposed C-DRF
algorithm reduces the number of trees. Specifically, by computing the covariance between the number of trees in a forest and𝐹-measure at each iteration, the proposed algorithm determines whether to increase the number of trees composing a forest.
To evaluate the performance of the proposed C-DRF algorithm, we compared the learning time, the test time, and the memory
usage with the original RF algorithm under the different areas of datasets. Under the same or higher classification accuracy, it
is shown that the proposed C-DRF algorithm improves the performance of the original RF algorithm by as much as 58.68% at
learning time, 47.91% at test time, and 68.06% in memory usage on average. As a practical application area, we also show that
the proposed C-DRF algorithm is more efficient than the state-of-the-art RF algorithms in Network Intrusion Detection (NID)
area.

1. Introduction

As one of the classification modeling approaches, decision
tree learning has widely been used in various learning
fields such as statistics, data mining, and machine learning.
When classifying the optimal value of an output variable
based on input variables, decision tree learning uses a single
decision tree or multiple decision trees. By using the Hill
Climbing method [1–3] and the Greedy method [4, 5], the
single decision tree method has obtained optimal solutions.
However, since the classified output value is sensitive to the
size of the learning sample, the single decision tree method
can be applied to find only a local optimum.

To solve such a limitation, there has been a lot of interest
in an ensemble machine learning method, which generates
multiple classifiers and aggregates their results, since the late
1990s [6–8]. The ensemble machine learning method has
been designed by using various methods such as bagging,
boosting, and stacking [9–11]. As a representative ensemble

machine learning method, the Random Forest (RF) algo-
rithmwas proposed by Breiman [12].TheRF algorithm grows
many decision trees for classification and regression analysis
[13]. RF grows by combining randomized node optimization
(RNO) and bootstrap aggregating (bagging). Each tree is
independently constructed using a bootstrap sample of the
dataset and added into a forest.

Based on Breiman’s paper [12], let us overview the overall
operation of the RF algorithm. To classify the output value
usingmultiple decision trees, theRF algorithmconsists of two
operational phases: (1) training and (2) test. In the training
phase, a randomly sampled dataset, called the inBag dataset,
from the training dataset is selected. Note that the remaining
training dataset different from the inBag dataset is called
the out-of-bag (OoB) dataset. By using the inBag dataset, a
decision tree is grown. This process is repeated to generate𝑘(≥ 1) number of decision trees and, then, an RF is grown.
When growing an RF, the OoB dataset can be used to evaluate
the classification accuracy of a decision tree. In the test phase,

Hindawi
Security and Communication Networks
Volume 2019, Article ID 3984031, 12 pages
https://doi.org/10.1155/2019/3984031

http://orcid.org/0000-0003-3590-6024
http://orcid.org/0000-0002-3556-5082
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/3984031

2 Security and Communication Networks

Total
learning
datasets

Split
datasets

OoB
dataset

Stop
growing the

forestSet the
number of

trees, k

Learning
datasetIf the

number of
trees < k

Tree
Generation

Grow
Forest

YES

NO

(a) Original RF algorithm

Total
learning
datasets

Split
datasets

OoB
dataset

Stop
growing the

forest

Learning
dataset

Tree
Generation

Grow
Forest

F-measure
calculation

Covariance
calculation

Covariance
> 0 NO

YES

(b) Proposed C-DRF algorithm

Figure 1: Overall learning operation of the original RF algorithm and the proposed C-DRF algorithm.

the RF algorithm classifies the input data into an output value
by voting the result of all decision trees.

On behalf of the fast learning speed and the high
classification accuracy, the RF algorithm has been widely
used in diverse applications such as image recognition and
information security [20–22]. For example, as a practical
application, the RF algorithm has frequently been used as
the core engine of intrusion detection system because of
the fast learning speed and the high detection accuracy [23,
24]. Also, because the classification accuracy and learning
speed of RF can mainly vary according to the operational
details in the learning phase, multiple variances have been
proposed. To improve the classification accuracy of RF, Cutler
et al. proposed an algorithm which modified how to create a
decision tree [14]. Rodriguez et al. proposed the RF induction
algorithm based on the readjustment of the learning data [15].
Also, in [16, 17], new algorithms that assign weight to each
tree were proposed. Even though these algorithms focused on
improving the classification accuracy of RF, the classification
accuracy can be decreased according to the number of trees,
denoted into 𝑘, composing the forest.

To find the optimal value of 𝑘, Cuzzocrea et al. proposed
an algorithm that gradually increased the number of trees
[18] and found the best classifiers than the others. Even
though Cuzzocrea et al.’s algorithm minimizes the number
of trees composing the forest, it requires much learning time
and much memory usage. P. Latinne et al. also proposed
an algorithm where the forest was grown based on a direct
nonparametric test of comparison, that is, the McNemar test
[19, 25]. By determining the minimum number of weakened
classifiers, P. Latinne et al.’s algorithm reduced the number of
trees composing the forest. It was shown that a gain for time
and memory could be obtained.

In this paper, we propose a new Covariance-Based
Dynamic RF algorithm, called C-DRF. While keeping the

best classification accuracy close to that of the original RF
algorithm [12], the proposed algorithm reduces the number
of trees composing the forest. Compared to Cuzzocrea et
al.’s algorithm [18], the proposed algorithm does not need to
know the predefined number of trees 𝑘 and a certain a priori
information. Also, compared to P. Latinne et al.’s algorithm
[19], the proposed algorithm uses the covariance between the
number of trees and 𝐹-measure for a forest at each iteration.
Here, 𝐹-measure is a measure of the test accuracy and the
covariance is a measure of the joint variability of two random
variables or vectors.

As shown in Figure 1(a), the original RF algorithm
iteratively splits the learning dataset into inBag and OoB
datasets and, then, generates 𝑘 trees using inBag dataset.
On the other hand, the proposed algorithm determines
whether to increase the number of trees based on a direct
nonparametric test of comparison dynamically. That is, as
shown in Figure 1(b), according to the sign of the computed
covariance between the number of trees in a forest and 𝐹-
measure for the OoB dataset at each iteration, the proposed
algorithm determines whether to increase the number of
trees composing a forest.

The main contributions of this paper can be summarized
as follows. (1) To the best of our knowledge, we propose
the first RF learning algorithm that generates the minimum
number of trees using covariance, while keeping the best
classification accuracy close to the original RF algorithm.(2) By analyzing the computational time complexity of
the proposed C-DRF algorithm, we show that C-DRF can
reduce the computational time complexity of the original RF
algorithm in practice. (3)We evaluate the proposed C-DRF
algorithm with datasets collected from diverse applications.
From the experimental results, we show that the proposed
algorithm reduces the number of trees in a forest while
keeping the best accuracy close to the original RF algorithm

Security and Communication Networks 3

[12, 19]. Also, we show that the proposed C-DRF algorithm
reduces the learning time, the memory usage, and the test
time compared to the other RF algorithms under various
applications such as network intrusion detection.

The rest of the paper is organized as follows. In Section 2,
we overview research works related to the RF algorithm. In
Section 3, after showing the overall operation of the proposed
algorithm, we describe the operation in detail. We also
show the computational complexity for learning in Section 4.
After showing the experimental results for evaluating the
performance of C-DRF in Section 5, we discuss the limitation
of C-DRF in Section 6. Finally, we summarize this paper in
Section 7.

2. Related Works

In this section, we overview the characteristics of the RF
algorithms according to their goals: (1) improving the classi-
fication accuracy and (2) optimizing the number of trees. We
summarize the characteristics of the various RF algorithms in
Table 1.

To improve the classification accuracy of the original
RF algorithm, Cutler et al. proposed a new tree creation
algorithm that sets the cut point between randomly selected
two learning instances, called PERT [14]. Even though the
PERT algorithm has shortened learning time and improved
the classification accuracy, the performance of the PERT
algorithm can be degraded for certain datasets such as DNA
[26]. In Rodriquez et al.’s paper [15], the Rotation Forest algo-
rithm was proposed. The Rotation Forest algorithm grows
a forest after rotating the data axis while applying principal
component analysis (PCA) to the learning data. Even though
the Rotation Forest algorithm improved the classification
accuracy by constructing an oblique decision boundary, the
classification accuracy for dataset with unclear direction of
dispersion is strictly degraded. Robnik also proposed an
algorithm that assigns weight to each tree composing the
forest [16]. Robnik’s algorithm showed higher classification
accuracy than the original RF algorithm. However, Robnik’s
algorithm has a limitation that the classification accuracy
varies depending on a well-formed tree and the accuracy
variation is very large. In [17], Bernard et al. proposed a
dynamic RF algorithm that dynamically derived the forest
while adding the most appropriate tree to the already con-
figured forest. The weight values are assigned to the training
instance based on the OoB error rate. Based on the weight
values, a new tree is generated using randomly selected
training data. Bernard et al.’s algorithm showed the good
classification accuracy in the pattern recognition area even
though a specific dataset contains a lot of noise. However,
Bernard et al.’s algorithm has a disadvantage that the tree
generation time increases when reflecting the weight value
of the learning instance. Also, the greater the number of
trees composing the forest is, the higher the possibility of
overfitting to the learning data.

To optimize the number of trees while keeping the classi-
fication accuracy close to or higher than that of the original
RF algorithm, Cuzzocrea et al. proposed a new algorithm

Require: 𝑖𝑠𝐵𝑟𝑒𝑎𝑘 = 𝐹𝐴𝐿𝑆𝐸
Require: 𝑖 = 0
(1) procedure C-DRF(𝐷)
(2) while 𝑖𝑠𝐵𝑟𝑒𝑎𝑘 == 𝐹𝐴𝐿𝑆𝐸 do
(3) 𝑖 = 𝑖 + 1;
(4) 𝐹𝑜𝑟𝑒𝑠𝑡𝑖 = SubForestGeneration(𝐷, 𝑖);
(5) 𝐶𝑖 = CovCalculation(𝐹𝑜𝑟𝑒𝑠𝑡𝑖);
(6) 𝑖𝑠𝐵𝑟𝑒𝑎𝑘 = LearnTermination(𝐶𝑖)
(7) end while
(8) end procedure

Algorithm 1: Overall Operation.

[18]. Based on the relationship between the predictive power
which means the percentage of positively classified cases
of instances of that dataset and the number of trees in a
forest, they proposed how to optimize the number of trees
in RF using an information-theoretic approach. However,
the performance of Cuzzocrea et al.’s method was limited
because, while estimating the predictive power for the large
dataset, a large amount of memory and much learning time
were required. As an alternative to reduce memory usage and
learning time, P. Latinne et al. proposed a new algorithm
that limits the number of trees by using the McNemar test
[19]. P. Latinne et al.’s algorithm [19] grows a forest with
fewer number of trees than the maximum number of trees
of the original RF algorithm. However, since the maximum
number of trees could not guarantee an optimal result, the
performance of P. Latinne et al.’s algorithm varies depending
on the predefined maximum number of trees.

To overcome the performance degradation of the previ-
ous RF algorithms due to the dependency on learning data
and the number of trees, we propose a new learning algorithm
that dynamically derives the optimal number of trees by using
the covariance between the number of trees in a forest and 𝐹-
measure for a forest from each iteration.

3. C-DRF Algorithm

In this section, we overview the operation of the proposed C-
DRF algorithm in detail.

3.1. Overall Operation. To determine whether to increase
the number of trees based on a direct nonparametric test
of comparison dynamically, the proposed C-DRF algorithm
consists of three functional modules: (1) subforest genera-
tion; (2) covariance calculation; and (3) learning termination.
We show the overall operation of C-DRF in Algorithm 1. In
Table 2, we also summarize the terms and notation used in
this paper.

3.1.1. Subforest Generation. By using 𝐷𝐿 for each iteration, a
decision tree is generated and, then, included in a forest.Here,
we call an intermediate forest before learning termination
into “subforest” because the complete forest satisfying the
termination condition is not driven.

4 Security and Communication Networks

Ta
bl
e
1:
Ch

ar
ac
te
ris
tic
so
fv
ar
io
us
RF

al
go
rit
hm

s.

G
oa
l

Le
ar
ni
ng

Ch
ar
ac
te
ris
tic
s

D
ra
w
ba
ck

PE
RT

[14
]

Ac
cu
ra
cy
Im
pr
ov
em

en
t

To
se
tt
he

cu
tp
oi
nt
be
tw
ee
n
ra
nd
om

ly
se
le
ct
ed

tw
o
le
ar
ni
ng

in
sta
nc
es

Ac
cu
ra
cy
va
rie
sd
ep
en
di
ng

on
le
ar
ni
ng

da
ta

Ro
dr
ig
ue
ze
ta
l.’s
al
go
rit
hm

[1
5]

Ac
cu
ra
cy
Im
pr
ov
em

en
t

To
fin
d
ke
y
at
tr
ib
ut
es
us
in
g
PC

A
be
fo
re
le
ar
ni
ng

Ac
cu
ra
cy
va
rie
sd
ep
en
di
ng

on
le
ar
ni
ng

da
ta

Ro
bn
ik
-S
ik
on
ja’
sa
lg
or
ith
m

[1
6]

Ac
cu
ra
cy
Im
pr
ov
em

en
t

To
ge
tt
he

ta
rg
et
va
lu
eu

sin
g
we
ig
ht
ed

vo
tin
g

Ac
cu
ra
cy
va
rie
sd
ep
en
di
ng

on
a

we
ll-
fo
rm

ed
tre
e

Be
rn
ar
d
et
al
.’s
al
go
rit
hm

[1
7]

Ac
cu
ra
cy
Im
pr
ov
em

en
t

To
as
sig
n
we
ig
ht
st
o
le
ar
ni
ng

in
sta
nc
es

M
uc
h
ca
lc
ul
at
io
n
tim

ea
nd

th
ep

os
sib
ili
ty

of
ov
er
fit
tin
g

A
.C
uz
zo
cr
ea
et
al
.’s

al
go
rit
hm

[1
8]

O
pt
im
al
N
um

be
ro
fT
re
es

To
se
le
ct
th
en

um
be
ro
ft
re
es
th
ro
ug
h
m
an
y
te
sts

W
as
te
of
m
em

or
y
an
d
hi
gh

co
m
pu
ta
tio
n

co
sts

P.
La
tin
ne

et
al
.’s
al
go
rit
hm

[19
]

O
pt
im
al
N
um

be
ro
fT
re
es

To
us
e𝑘

as
an

in
pu
tp
ar
am

et
er

Th
en

um
be
ro
ft
re
es
va
rie
sd
ep
en
di
ng

on
𝑘

Security and Communication Networks 5

Table 2: Terms and Notation.

Terms Notation
𝐷 Total dataset for training
𝐷𝐿 Learning dataset consisting of 𝑝% of random samples from𝐷
𝐷𝑂𝑜𝐵 OoB dataset, i.e.,𝐷𝑂𝑜𝐵 = 𝐷 -𝐷𝐿𝑇𝑟𝑒𝑒𝑖 A decision tree generated by using 𝐷𝐿 at the 𝑖𝑡ℎ iteration𝐹𝑜𝑟𝑒𝑠𝑡𝑖 A forest consisting of trees generated by the 𝑖𝑡ℎ iteration
𝑥𝐿 A single data instance in𝐷𝐿𝑥𝑂𝑜𝐵 A single data instance in𝐷𝑂𝑜𝐵𝐼𝑏 Information-theoretic criteria for finding best attributes
𝐴𝑏 Best attributes based on 𝐼𝑏𝐷𝑏 A subset of 𝐷𝐿 induced by 𝐴𝑏𝑥𝑏 A single data instance in𝐷𝐿𝑁𝑜𝑑𝑒𝑏 A decision node for testing 𝐴𝑏
𝑁 A row vector consisting of numbers of decision trees by the 𝑖𝑡ℎ iteration, i.e.,𝑁 = [1, . . . , 𝑖]
𝑁𝑚𝑎𝑥 Maximum number of trees composing a forest
𝑇𝑃 Number of true positives for 𝐷𝑂𝑜𝐵 from each iteration
𝐹𝑃 Number of false positives for 𝐷𝑂𝑜𝐵 from each iteration
𝐹𝑁 Number of false negatives for 𝐷𝑂𝑜𝐵 from each iteration
𝑅𝐶𝑝 Precision for 𝐷𝑂𝑜𝐵 from each iteration
𝑅𝐶𝑟 Recall for 𝐷𝑂𝑜𝐵 from each iteration
𝐹𝑖 𝐹-measure for 𝐷𝑂𝑜𝐵 at the 𝑖𝑡ℎ iteration𝐹 A row vector consisting of 𝐹𝑗s by the 𝑖𝑡ℎ iteration, i.e., 𝐹 = [𝐹1, . . . , 𝐹𝑖].𝐶𝑖 Covariance between𝑁 and 𝐹 at the 𝑖𝑡ℎ iteration

(1) procedure SubForestGeneration(𝐷, 𝑖)
(2) 𝐷𝐿 = RandomSelection(𝐷);
(3) 𝐷𝑂𝑜𝐵 = 𝐷 -𝐷𝐿;
(4) 𝑇𝑟𝑒𝑒𝑖 = CreateTree(𝐷𝐿);
(5) 𝐹𝑜𝑟𝑒𝑠𝑡𝑖 = 𝐹𝑜𝑟𝑒𝑠𝑡𝑖 + 𝑇𝑟𝑒𝑒𝑖;
(6) return 𝐹𝑜𝑟𝑒𝑠𝑡𝑖;
(7) end procedure

Algorithm 2: Sub-Forest Generation.

3.1.2. Covariance Calculation. For each iteration, C-DRF
calculates the F-measure value of the current subforest for𝐷𝑂𝑜𝐵. Given the F-measure value, covariance between the
number of trees and the F-measure value for the current
subforest is computed.

3.1.3. Learning Termination. By inspecting 𝐶𝑖, C-DRF deter-
mines whether to generate an additional tree for RF or not.

3.2. Generation of Subforest. To generate a new subforest, a
new decision tree is generated from 𝐷𝐿 and added to the
existing subforest.

As shown in Algorithm 2, subforest generation works as
follows. After selecting an inBag dataset𝐷𝐿 for learning from𝐷 (Line (2)), the subforest generation module determines an

(1) procedure CreateTree(𝐷𝐿)
(2) for all 𝑥𝐿 ∈ 𝐷𝐿 do
(3) 𝐼𝑏 = ComputeCriteria(𝑥𝐿);
(4) end for
(5) 𝐴𝑏 = CalBestAttribute(𝐼𝑏);
(6) 𝑇𝑟𝑒𝑒𝑖 = CreateDecisionNode(𝐴𝑏);
(7) 𝐷𝑏 = SplitData(𝐷𝐿, 𝐴𝑏);
(8) for all 𝑥𝑏 ∈ 𝐷𝑏 do
(9) 𝑁𝑜𝑑𝑒𝑏 = CreateTree(𝑥𝑏);
(10) 𝑇𝑟𝑒𝑒𝑖 = 𝑇𝑟𝑒𝑒𝑖 +𝑁𝑜𝑑𝑒𝑏;
(11) end for
(12) return 𝑇𝑟𝑒𝑒𝑖;
(13) end procedure

Algorithm 3: Creation of a Decision Tree Using C4.5.

OoB dataset D𝑂𝑜𝐵 for evaluating the covariance (Line (3)).
For the given 𝐷𝐿, a new decision tree 𝑇𝑟𝑒𝑒𝑖 is generated and,
then, the existing forest is combined with 𝑇𝑟𝑒𝑒𝑖 (Line (4)
to (5)). Finally, the subforest generation module returns the
updated forest (Line (6)).

As the function CreateTree (𝐷𝐿) in Algorithm 2, the C4.5
algorithm [27] in Algorithm 3 is used. The C4.5 algorithm
works as follows.The information gains for all attributes in𝐷
are computed (Lines (2) to (4)). After the best attribute with
the highest information gain is chosen (Line (5)), a decision

6 Security and Communication Networks

(1) procedure CovCalculation(𝐹𝑜𝑟𝑒𝑠𝑡𝑖)
(2) if 𝑖 == 1 then
(3) for all 𝑥𝑂𝑜𝐵 ∈ 𝐷𝑂𝑜𝐵 do
(4) Count either 𝑇𝑃, 𝐹𝑃 or 𝐹𝑁 from the return
(5) value of Test4Classification(𝑥𝑂𝑜𝐵, 𝑇𝑟𝑒𝑒𝑖);
(6) end for
(7) 𝑅𝐶𝑝 = 𝑇𝑃/(𝑇𝑃+𝐹𝑃);
(8) 𝑅𝐶𝑟 = 𝑇𝑃/(𝑇𝑃+𝐹𝑁);
(9) 𝐹𝑖 = F Measure(𝑅𝐶𝑝, 𝑅𝐶𝑟);
(10) 𝐹 ← 𝐹𝑖;
(11) else
(12) for all 𝑥𝑂𝑜𝐵 ∈ 𝐷𝑂𝑜𝐵 do
(13) for all 1 ≤ 𝑗 ≤ 𝑖 do
(14) Count either 𝑇𝑃, 𝐹𝑃 or 𝐹𝑁 from the return
(15) value of Test4Classification(𝑥𝑂𝑜𝐵, 𝑇𝑟𝑒𝑒𝑗);
(16) end for
(17) end for
(18) 𝑅𝐶𝑝 = 𝑇𝑃/(𝑇𝑃+𝐹𝑃);
(19) 𝑅𝐶𝑟 = 𝑇𝑃/(𝑇𝑃+𝐹𝑁);
(20) 𝐹𝑖 = F Measure(𝑅𝐶𝑝, 𝑅𝐶𝑟);
(21) 𝐹 ← 𝐹𝑖;
(22) 𝑁 ← 𝑖;
(23) 𝐶𝑖 = cov(𝑁, 𝐹);
(24) end if
(25) return 𝐶𝑖
(26) end procedure

Algorithm 4: Covariance Calculation.

node based on the best attribute is included into 𝑇𝑟𝑒𝑒𝑖 (Line(6)). Based on the best attribute, C4.5 splits 𝐷𝐿 and, thus,
generates 𝐷𝑏. From every 𝑥𝑏, a decision tree is generated to
get a subtree (Lines (9) to (11)). Finally, C4.5 returns a new
decision tree 𝑇𝑟𝑒𝑒𝑖 (Line (12)).
3.3. Covariance Calculation. In this section, we describe how
to compute the covariance between the number of trees 𝑁𝑖
and a set of F1-measures 𝐹 at the 𝑖𝑡ℎ iteration in detail. As
shown in Algorithm 4, the covariance can be computed into
two cases: (1) for the 1𝑠𝑡 iteration and (2) for the other
iterations.

After a decision tree𝑇𝑟𝑒𝑒1 is generated at the 1𝑠𝑡 iteration,
each 𝑥𝑂𝑜𝐵 is tested with 𝑇𝑟𝑒𝑒1 and, thus, 𝑇𝑃, 𝐹𝑃, and 𝐹𝑁 are
computed (Lines (3) to (6)). By using 𝑇𝑃, 𝐹𝑃, and 𝐹𝑁, the
precision 𝑅𝐶𝑝 and the recall 𝑅𝐶𝑟 for 𝐹𝑜𝑟𝑒𝑠𝑡1 are computed
(Lines (7) and (8)). Since the precision and the recall are
commonly used to evaluate machine learning algorithms, we
compute 𝐹1, which composes 𝐹, with the parameters 𝑅𝐶𝑝
and 𝑅𝐶𝑟 (Lines (9) and (10)), and continues to grow the
forest (Line (11)). In the following equation, we show how
to compute 𝐹-measure (Line (9)):

𝐹 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 (𝑅𝐶𝑝, 𝑅𝐶𝑟)
= 1
𝛼 (1/𝑅𝐶𝑝) + (1 − 𝛼) (1/𝑅𝐶𝑟) ,

(1)

where 𝛼 and 1 − 𝛼 are the relative weights for precision
and recall, respectively. Here, when 𝛼 is 0.5, 𝐹-measure is

especially called 𝐹1-measure, which is the harmonic mean of
precision and recall. Since 𝐹1-measure is the most frequently
used for evaluating the accuracy of machine learning algo-
rithms, we set 𝛼 into 0.5 in the proposed C-DRF algorithm.
Thus, 𝐹-measure indicates 𝐹1-measure in this paper.

Different from the 1𝑠𝑡 iteration, 𝐹𝑜𝑟𝑒𝑠𝑡𝑖 consists of multi-
ple numbers of tress. Thus, each 𝑥𝑂𝑜𝐵 is tested with 𝑖 number
of decision trees and, then, 𝑇𝑃, 𝐹𝑃, and 𝐹𝑁 are computed
from every 𝑇𝑟𝑒𝑒𝑗 (Lines (13) to (18)). By using 𝑇𝑃, 𝐹𝑃, and𝐹𝑁, the precision 𝑅𝐶𝑝 and the recall 𝑅𝐶𝑟 for 𝐹𝑜𝑟𝑒𝑠𝑡𝑖 are
computed (Lines (19) and (20)). From Equation (1),𝐹𝑖, which
composes 𝐹, is computed with the parameters 𝑅𝐶𝑝 and 𝑅𝐶𝑟
(Lines (21) and (22)). After including 𝑖 into𝑁 (Line (23)), the
covariance 𝐶𝑖 is computed by using 𝑁 and 𝐹 (Line (24)). To
understand why the covariance is used to determine whether
to terminate growing the forest or not, let us consider the
covariance between two random vectors 𝑋 and 𝑌 as follows:

cov (𝑋, 𝑌) = 1𝑁
𝑁∑
𝑗=1

(𝑥𝑗 − 𝑥) (𝑦𝑗 − 𝑦) , (2)

where 𝑁 is the number of elements composing a random
vector and 𝑥 and 𝑦 are the average values of the random
vectors 𝑋 and 𝑌, respectively. Note that if the covariance is
larger than zero, it implies that 𝑌 increases as the random
variable 𝑋 increases. If the covariance is less than zero, 𝑌
decreases as 𝑋 increases. Also, if the covariance is zero,
it implies that the two random vectors are independent
from each other [28]. In this regard, many studies have

Security and Communication Networks 7

Att1 Att2 Att3 Class

Item1 1 2 3 A

Item2 4 1 2 B

Item3 3 2 1 A

Itme4 2 1 1 C

Randomly selected learning data

70%

F-measure calculating data

30%

Tree1

#tree F-measure Covariance

1 F1 -

Calculate
F-measure

(a) Case 1: 1st tree generation)

F-measure

F-measure

Randomly selected
learning data

70%

F-measure calculating data

30%

Tree2

#tree Covariance

1 F1 -

2 F2

Tree1 Tree2

Add
forestAtt1 Att2 Att3 Class

Item1 1 2 3 A

Item2 4 1 2 B

Item3 3 2 1 A

Itme4 2 1 1 C

Subforest

#tree Covariance

1 F1 -

2 F2 X(>0)

Calculate
Covariance

Calculate

F-measure

(b) Case 2: subforest generation for covariance > 0

F-measure

F-measure

Randomly selected
learning data

70%

F-measure calculating data
30%

Tree3

#tree Covariance

1 F1 -

2 F2 X

3 F3Tree3Tree1 Tree2

Add
forestAtt1 Att2 Att3 Class

Item1 1 2 3 A

Item2 4 1 2 B

Item3 3 2 1 A

Itme4 2 1 1 C

Tree1 Tree2

Save
forest

Subforest

Subforest

Delete Tree

#tree Covariance

1 F1 -

2 F2 X

3 F3 Y(<0)

Calculate
F-measure

Calculate
Covariance

Final Forest

(c) Case 3: subforest generation for covariance ≤ 0

Figure 2: Operational example of the proposed C-DRF algorithm.

already proven that these characteristics of the covariance are
effective for data analysis [29, 30]. From these characteristics
of the covariance, we use the covariance to determinewhether
to terminate growing the forest or not.

The proposed C-DRF algorithm defines two row vectors𝑁 and 𝐹 as follows:
𝑁 = [1, 2, 3, . . . , 𝑖 − 1, 𝑖]

𝑎𝑛𝑑 𝐹 = [𝐹1, 𝐹2, . . . , 𝐹𝑖−1, 𝐹𝑖] , (3)

where 1 ≤ 𝑖 ≤ 𝑁𝑚𝑎𝑥.
By following the characteristics of the covariance, if the

covariance between𝑁 and𝐹 is positive, the𝐹-measure trends
to increase as the forest grows at the 𝑖𝑡ℎ iteration. It implies
that the forest can grow with a new decision tree. However,
if the covariance is negative or equal to zero, the 𝐹-measure
trends to decrease as the forest grows at the 𝑖𝑡ℎ iteration.
Since the classification accuracy trends to decrease after
adding a new tree, it implies that the forest should not grow
further.

3.4. Learning Termination. Note that after the covariance has
been computed, the learning termination module decides
whether to grow the forest or not. As shown in Algorithm 5,
if 𝐶𝑖 is less than or equal to zero, the forest does not grow
with a decision tree generated at the 𝑖𝑡ℎ iteration (Lines (2) to(6)). That is, the learning phase stops growing the forest and,
thus, the variable 𝑖𝑠𝐵𝑟𝑒𝑎𝑘 at Algorithm 1 is set into 𝑇𝑅𝑈𝐸.
Otherwise, the forest continues to grow. Also, in order to
generate a new decision tree from the 𝑖 + 1𝑡ℎ iteration, the
learning termination modules return the value 𝐹𝐴𝐿𝑆𝐸 (Line(7)).
3.5. Example. In Figure 2, we show an example of how
the proposed C-DRF algorithm dynamically generates a
subforest. Let us assume that 𝐷 consists of four numbers of𝑥𝐿, that is, {𝑥𝐿1, 𝑥𝐿2, 𝑥𝐿3, 𝑥𝐿4}. Here, each 𝑥𝐿 consists of four
numbers of attributes. We also assume that 𝑝 is set into 70.
Thus,𝐷𝐿 consists of the randomly selected 70% datasets in𝐷
and, then, 𝐷𝑂𝑜𝐵 consists of the remaining 30% datasets in𝐷.

As shown in Figure 2(a) for the 1st iteration, the proposed
C-DRF algorithm generates the 1st decision tree 𝑇𝑟𝑒𝑒1 for

8 Security and Communication Networks

(1) procedure LearnTermination(𝐶𝑖)
(2) if 𝐶𝑖 ≤ 0 then
(3) 𝐹𝑜𝑟𝑒𝑠𝑡𝑖 = 𝐹𝑜𝑟𝑒𝑠𝑡𝑖 - 𝑇𝑟𝑒𝑒𝑖;
(4) SaveForest(𝐹𝑜𝑟𝑒𝑠𝑡𝑖);
(5) return 𝑇𝑅𝑈𝐸
(6) end if
(7) return 𝐹𝐴𝐿𝑆𝐸
(8) end procedure

Algorithm 5: Learning Termination.

a new random sample dataset 𝐷𝐿. At the 1st iteration for
a decision tree, 𝐹1 is set into 𝐹1 but the covariance is
not computed because there is no comparative 𝐹𝑖. Here, a
subforest consists of only𝑇𝑟𝑒𝑒1. After the 1st tree is generated,
the C-DRF algorithm iteratively selects𝐷𝐿 to generate the 𝑖𝑡ℎ
decision tree.

In Figure 2(b), we show how to generate the 2nd decision
tree and add it to a subforest. As the 1st decision tree is
generated, the 2nd decision tree, 𝑇𝑟𝑒𝑒2, is generated for a
new random sample dataset𝐷𝐿 and is ensembled with 𝑇𝑟𝑒𝑒1.
After 𝐹2 is updated with the 𝐹1-measure for a subforest
consisting of 𝑇𝑟𝑒𝑒1 and 𝑇𝑟𝑒𝑒2, 𝐹1 and 𝐹2 are set into 𝐹1 and𝐹2, respectively. Next, from the given 𝐹𝑖, the covariance 𝑋
between the number of trees, that is, 2, and 𝐹𝑖 is computed.
Here, if 𝑋 is larger than zero, a subforest consists of an
ensemble of 𝑇𝑟𝑒𝑒1 and 𝑇𝑟𝑒𝑒2. However, if the covariance 𝑌
for the 3rd iteration is less than zero as shown in Figure 2(c),
the proposed C-DRF algorithm does not grow a subforest.
After removing a new decision tree 𝑇𝑟𝑒𝑒3 from subforest, the
previous subforest is set into a final forest.

4. Complexity Analysis

Note that while keeping the same classification accuracy as
the original RF algorithm, the proposed C-DRF algorithm
shows faster learning time than the original RF algorithm. In
this section, we analyze the time complexity of the proposed
C-DRF algorithm and, then, compare it with the original RF
algorithm.

From Louppe et al.’s paper [34], the time complexity for
learning of the original RF algorithm is given into

Θ(𝑀𝑁2𝐿log2𝑁𝐿) , (4)

where 𝑀 is the number of trees composing the forest and𝑁𝐿 is the number of data in 𝐷𝐿. Compared to the original
RF algorithm, the proposed C-DRF algorithm generates𝑚 number of trees while computing covariance of each
subforest using 𝑝% dataset of 𝐷. Thus, the time complexity
of the proposed C-DRF algorithm is expressed as follows:

Θ(𝑚𝑁2𝐿log2𝑁𝐿 + 𝑚 (𝑚 + 1)2 log(𝑁𝐿 (1 − 𝑝)(𝑝))) , (5)

where 𝑚𝑁2𝐿log2𝑁𝐿 represents the time complexity for con-
structing 𝑚 numbers of trees. The time complexity for

computing covariance of each subforest is given as the
multiplication of the ratio of 𝐷𝑂𝑜𝐵 to 𝐷𝐿 (: (1 − 𝑝)/(𝑝)) and
the time complexity for covariance computationwhile a forest
consists of𝑚 numbers of trees (: 𝑚(𝑚+1)/2). If𝑚 is less than𝑀 and 𝑁𝐿 is large enough, the proposed C-DRF algorithm
is faster than the original RF algorithm because the ratio of
Equation (4) over Equation (5) approximates as follows:

lim
𝑁𝐿→∞

𝑀𝑁2𝐿log2𝑁𝐿𝑚𝑁2𝐿log2𝑁𝐿 + (𝑚 (𝑚 + 1) /2) log𝑁𝐿 (1 − 𝑝) /𝑝
≈ 𝑀𝑚 .

(6)

If 𝑀 is equal to 𝑚, the proposed C-DRF algorithm
is slower than the original RF algorithm by as much asΘ((𝑚(𝑚 + 1)/2) log(𝑁(1 − 𝑝)/(𝑝))), which is the additional
time complexity caused by the covariance calculation. How-
ever, if 𝑁𝐿 is larger than or equal to 2500, which is achieved
by the numerical analysis, the proposed C-DRF algorithm
shows the same time complexity as the original RF algorithm
because 𝑀/𝑚 approximates to 0.99. Note that 𝑁𝐿 is larger
than 2500 in general. Sincemost learning data consist ofmore
than 2500 number of data, the proposed C-DRF algorithm
takes less learning time than the original RF algorithm in
practice.

5. Experimental Evaluation

In this section, we show the experimental results of the
proposed C-DRF algorithm by comparing with the previous
RF algorithms. To evaluate the performance of the proposed
C-DRF algorithm, we compared accuracy, memory usage,
learning time, and test time of the proposedC-DRF algorithm
with the original RF algorithm and P. Latinne e al.’s algorithm
[19] by using different areas of datasets. Since P. Latinne et al.’s
algorithm is the best algorithm to reduce the number of trees
while maintaining the same classification accuracy, we used
it as a comparison algorithm for the performance evaluation
of the proposed C-DRF algorithm. Also, since the 100 trees
showed the best result in our experiment for the original RF
algorithm, the number of trees composing the forest of the
original RF algorithm is fixed to 100.

5.1. Experimental Environment. We evaluated the perfor-
mance of the proposed C-DRF algorithm by using three
areas of datasets. The first dataset is the MNIST dataset
[31], which is commonly used to verify the performance of
machine learning algorithms related to image processing.
The second dataset is the data for the building property,
which is used to evaluate the value of the building. This
real estate dataset is generated by preprocessing some real
estate information at Korea MOLIT [32]. As the third dataset,
we used the UNSW-NB15 dataset [33], which complements
the probability distribution problem of the KDDCup99
[35] dataset. The UNSW-NB15 dataset includes the recently
reported attack traces and, thus, is used primarily to verify
the performance of machine learning algorithms in the field
ofNetwork IntrusionDetection.Thedetails of the datasets are

Security and Communication Networks 9

10 20 30 40 50 60
0.000
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008

co
va

ria
nc

e

the number of trees
(a) UNSW-NB15 dataset

20 40 60 80 100
0.000

0.002

0.004

0.006

0.008

0.010

co
va

ria
nc

e

the number of trees
(b) MNIST dataset

5 10 15 20 25 30 35
0.000

0.002

0.004

0.006

0.008

0.010

0.012
co

va
ria

nc
e

the number of trees
(c) Real estate dataset

Figure 3: Covariance change for different numbers of trees for various datasets.

Table 3: Experimental Datasets.

Dataset #Training data #Feature #Class
MNIST [31] 60000 784 10
real estate [32] 41700 29 9
UNSW-NB15 [33] 97278 42 10

described in Table 3. Also, we measured the performance of
the proposed C-DRF algorithms on the Ubuntu 14.04.5 LTS
machine with kernel version 4.2.0-27-generic, 2.40GHz CPU
clock(Intel Xeon CPU E5-2630 v3), and 32GB memory.

5.1.1. Comparison of Classification Accuracy and Number of
Trees. In Figure 3, we show how the number of trees for
each dataset was determined based on the covariance in the
proposed C-DRF algorithm. For the UNSW-NB15 dataset, as
shown in Figure 3(a), the covariance is less than zero after
the 61𝑡ℎ decision tree is generated. Thus, the forest consists
of 60 trees for the UNSW-NB15 dataset. For the real estate
dataset, the covariance is less than zero after the 37𝑡ℎ decision
tree is generated in Figure 3(c).Thus, the forest consists of 36
trees for the real estate dataset. In Table 4, we summarize the
number of trees for each dataset.

In Table 4, we also show the accuracy of each algorithm
with the different number of trees under different datasets.
For the UNSW-NB15 dataset, while the forest consists of 60
trees in the proposed C-DRF algorithm, the forest consists
of 100 trees and 70 trees in the original RF algorithm and P.
Latinne et al.’s algorithm, respectively. From Table 4, we can
observe that, even though the proposed C-DRF algorithm

UNSW-NB15 real estate
0

1000

2000

3000

4000

5000

6000

m
em

or
y

us
ag

e (
M

B)

learning dataset
RF algorithm
P. Latinne et al.'s algorithm
C-DRF algorithm

Figure 4: Comparison of memory usage under different datasets.

composes the forest with the smallest number of trees, the
proposed C-DRF algorithm shows the classification accuracy
of 76.322% close to 76.314% of the original RF algorithm and
76.293% of P. Latinne et al.’s algorithm.

5.1.2. Memory Usage. In Figure 4, we show compared mem-
ory usage of each algorithm under different datasets. For
the UNSW-NB15 dataset, the proposed C-DRF algorithm
used the memory space of 3,212.65MB, which is smaller than

10 Security and Communication Networks

Table 4: Experimental Results.

RF algorithm C-DRF algorithm P. Latinne et al.’s algorithm [19]
of Trees (UNSW-NB15) 100 60 70
Accuracy (UNSW-NB15) 76.314% 76.322% 76.293%
of Trees (real estate dataset) 100 36 30
Accuracy (real estate dataset) 90.72% 90.73% 90.71%

UNSW-NB15 real estate
0

500

1000

1500

2000

2500

3000

3500

tim
e (

se
c)

learning dataset
RF algorithm
P. Latinne et al.'s algorithm
C-DRF algorithm

Figure 5: Comparison of learning time under different datasets.

6,368.08MB of the RF algorithm by as much as 49.55%.
Also, the proposedC-DRF algorithm used lessmemory space
than P. Latinne et al.’s algorithm by as much as 1.84%. Next,
compared to 1,601.15 MB of the original RF algorithm and
214.48 MB of P. Latinne et al.’s algorithm, the proposed C-
DRF algorithm used 215.104MB ofmemory space for the real
estate dataset.

5.1.3. Learning Time. In Figure 5, we show the learning time
of each algorithm under the UNSW-NB15 dataset. For the
UNSW-NB15 dataset, the learning time of the proposed
C-DRF algorithm was 1,987.48 seconds on average, which
was faster than 3,363.02 seconds and 2,258.81 seconds of
the original RF algorithm and P. Latinne et al.’s algorithm,
respectively.

In Figure 5, we show the learning time of the proposed C-
DRF algorithm, RF algorithm, and P. Latinne et al.’s algorithm
for the real estate dataset. For the real estate dataset, the
learning time of P. Latinne et al.’s algorithmwas 47.137 seconds
on average faster than the other two algorithms.

5.1.4. Test Time. To evaluate the test time of the proposed C-
DRF algorithm, wemeasured the time spending from loading
of the forest into the memory to the output file creation.
In Figure 6, we show the test time of the proposed C-DRF
algorithm, the RF algorithm, and P. Latinne et al.’s algorithm
under different datasets. For the UNSW-NB15 dataset, the
test time of the proposed C-DRF algorithm was 4.45 seconds,

UNSW-NB15 real estate
0

1

2

3

4

5

6

7

tim
e (

se
c)

learning dataset
RF algorithm
P. Latinne et al.'s algorithm
C-DRF algorithm

Figure 6: Comparison of test time under different datasets.

which is faster than the other two algorithms by as much as
38.85% and 10.28%, respectively. For the real estate dataset,
the proposed C-DRF algorithm showed the test time of
1.2 seconds, which is faster than 17.66 seconds of the RF
algorithm by 56.98%.

6. Discussion

6.1. A MNIST Dataset. Note that, by using the covariance,
the proposed C-DRF algorithm dynamically determines the
number of trees composing a forest under different datasets.
However, as shown in Table 5, the number of trees of the
proposed C-DRF algorithm under the MNIST dataset can
be larger than the original RF algorithm and P. Latinne
et al.’s algorithm under the same classification accuracy.
Also, we can observe that the proposed C-DRF algorithm
uses 12,854.79MB of memory more than 6,542.73MB and
8,773.15MB of the original RF algorithm and P. Latinne et
al.’s algorithm, respectively. That is, the proposed C-DRF
algorithm requires more memory space than the original
RF algorithm by as much as 49.11% and P. Latinne et al.’s
algorithm by as much as 31.75%. For the learning time
and test time, the proposed C-DRF algorithm also showed
the learning time of 10,736.8 seconds and the test time of
7.84 seconds on average. The learning time was larger than
8,664.95 seconds and 7,322.52 seconds of the original RF
algorithm and P. Latinne et al.’s algorithm, respectively. The

Security and Communication Networks 11

Table 5: Experimental results for the MNIST dataset.

RF algorithm C-DRF algorithm P. Latinne et al.’s algorithm [19]
of Trees 100 115 90
Accuracy 94% 94.35% 94.33%
Memory usage 6542.736 MB 12854.79 MB 8773.15 MB
Learning Time 8664.952 sec 10736.8 sec 7322.52 sec
Test Time 6.91 sec 7.84 sec 6.09 sec

test time was larger than 6.91 seconds and 6.09 seconds of
the original RF algorithm and P. Latinne et al.’s algorithm,
respectively.

This is because the MNIST dataset consists of many
correlated data, each of which is represented with the combi-
nation of 0 and 1. Since the proposed algorithm is designed
by using the covariance as a metric for determining the
classification accuracy while increasing the number of trees,
this observation implies that the performance of the proposed
C-DRF algorithm has a limitation when analyzing the dataset
including the highly correlated data from each other.

6.2. A Distributed Environment. Compared to other machine
learning algorithms, there is another advantage of the RF
algorithm that many trees can be derived independently
in distributed computing or multicore environment. This
advantage has enhanced the computational efficiency of the
RF algorithm. In this paper, it seems that the proposedC-DRF
algorithm can not be applied to a distributed computing or
multicore environment because it creates a forest in a sequen-
tial manner. Note that this sequential manner maximizes
the memory efficiency of the proposed C-DRF algorithm by
not deriving unused trees. In fact, the covariance calculation
result does not affect the tree generation algorithm. That is,
the C-DRF algorithm can derive the tree independently for
a certain unit such as the number of cores and then perform
the covariance calculation at once to obtain the same result.
However, since the trees are derived by a specific unit, unused
trees may occur in the last iteration, which may cause some
memory waste. Therefore, if the user focuses on learning
time efficiency, the C-DRF algorithm can be applied in the
abovementioned method. On the contrary, if the user focuses
onmemory efficiency, the C-DRF algorithm can be applied in
a sequential manner.

7. Conclusion

As a representative ensemble machine learning algorithm,
the RF algorithm has been widely used in various applica-
tions. In this paper, to decrease the number of trees in the
RF algorithm, we proposed a new dynamic RF algorithm
which reduces the number of trees composing the forest. By
analyzing the covariance between the number of trees in a
forest and the 𝐹1-measure at each iteration, the proposed C-
DRF algorithmcomposed a forestwith theminimumnumber
of trees while ensuring the good-enough classification accu-
racy. While generating a decision tree at each iteration, the
proposed C-DRF algorithm determines whether to increase

the number of trees based on a direct nonparametric test for
OoB dataset. We evaluated the performance of the proposed
C-DRF algorithm in theory and in practice. That is, from
the mathematical analysis of the learning time complexity of
the proposed C-DRF algorithm, we showed that the learning
time of the proposed C-DRF algorithm is faster than the
original RF algorithm in practice. From the experimental
results under different areas of datasets, we observed that,
compared to the original RF algorithm, the proposed C-
DRF algorithm showed the fast learning time by as much as
58.68% on average and the fast test time by as much as 47.91%
on average. We also showed that, compared to the original
RF algorithm, the proposed C-DRF algorithm significantly
reduced the memory usage by as much as 68.06% on average
while keeping the same classification accuracy. Compared to
the best algorithm for decreasing the number of trees, that is,
P. Latinne et al.’s algorithm, the proposed C-DRF algorithm
showed the fast learning time by as much as 1.55% on average
and the fast test time by as much as 0.45% on average. Also,
it was shown that, compared to P. Latinne et al.’s algorithm,
the proposed C-DRF algorithm reduced the memory usage
by as much as 0.35% on average and reduced the number of
trees 2.00% while keeping the same classification accuracy.
From these observations, we believe that the proposed C-
DRF algorithm can be used as an alternative to the original
RF algorithm in various fields.

Data Availability

The data used to support the findings of this study have
been deposited in https://github.com/S3lab-pnu/Real-estate-
dataset and [33].

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by Basic Science Research Pro-
gram (NRF-2018R1D1A3B07043392) and Capacity Enhance-
ment Program for Scientific and Cultural Exhibition Ser-
vices (NRF-2018X1A3A1069642) through National Research
Foundation Korea (NRF) funded by the Ministry of Science,
ICT, and Future Planning. This work was also supported
by BK21PLUS, Creative Human Resource Development Pro-
gram for IT Convergence.

https://github.com/S3lab-pnu/Real-estate-dataset
https://github.com/S3lab-pnu/Real-estate-dataset

12 Security and Communication Networks

References

[1] X. Sun, S. Y. Chiu, and L. A. Cox, “A hill-climbing approach for
optimizing classification trees,” in Learning from Data, vol. 112
of Lecture Notes in Statistics, pp. 109–117, Springer, New York,
NY, USA, 1996.

[2] J. Oliver, Decision Graphs: An Extension of Decision Trees,
Monash University, Department of Computer Science, 1992.

[3] T. K. Ho, “The random subspace method for constructing
decision forests,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 20, no. 8, pp. 832–844, 1998.

[4] A. Alkhalid, I. Chikalov, and M. Moshkov, “Decision tree con-
struction using greedy algorithms and dynamic programming
comparative study,” in Proceedings of the 20th International
Workshop on Concurrency, Specification and Programming,
Bialystok University of Technology, Pultusk, Poland, 2011.

[5] S. K. Murthy and S. Salzberg, Decision Tree Induction: How
Effective Is the Greedy Heuristic? KDD, 1995.

[6] L. Xu, A. Krzyzak, and C. Y. Suen, “Methods of combining
multiple classifiers and their applications to handwriting recog-
nition,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 22, no. 3, pp. 418–435, 1992.

[7] W. Fan, S. Stolfo, and P. Chan, “Using conflicts among multiple
base classifiers to measure the performance of stacking,” in
Proceedings of the ICML-99 Workshop on Recent Advances in
Meta-Learning and Future Work, pp. 10–17, 1999.

[8] K.Woods,W. Philip Kegelmeyer, andK. Bowyer, “Combination
of multiple classifiers using local accuracy estimates,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol.
19, no. 4, pp. 405–410, 1997.

[9] L. Breiman, “Bagging classifiers,”Machine Learning, vol. 24, no.
2, pp. 123–140, 1996.

[10] E. Bauer and R. Kohavi, “Empirical comparison of voting clas-
sification algorithms: bagging, boosting, and variants,”Machine
Learning, vol. 36, no. 1, pp. 105–139, 1999.

[11] G. Tsoumakas and I. Vlahavas, “Effective stacking of distributed
classifiers,” in Proceedings of the 15th European Conference on
Artificial Intelligence, pp. 340–344, 2002.

[12] L. Breiman, “Random forests,”Machine Learning, vol. 45, no. 1,
pp. 5–32, 2001.

[13] A. Liaw and M. Wiener, “Classification and regression by
random forest,”�e R Journal, vol. 2, no. 3, pp. 18–22, 2002.

[14] A. Cutler and G. Zhao, “Pert-perfect random tree ensembles,”
Computing Sciences and Statistics, vol. 33, pp. 490–497, 2001.

[15] J. J. Rodŕıguez, L. I. Kuncheva, and C. J. Alonso, “Rotation
forest: a new classifier ensemble method,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 28, no. 10, pp.
1619–1630, 2006.

[16] M. Robnik-Sikonja, “Improving random forests,” in Proceedings
of the European Conference on Machine Learning, pp. 359–370,
Springer, Berlin, Germany, 2004.

[17] S. Bernard, S. Adam, and L. Heutte, “Dynamic random forests,”
Pattern Recognition Letters, vol. 33, no. 12, pp. 1580–1586, 2012.

[18] A. Cuzzocrea, S. L. Francis, andM.M. Gaber, “An Information-
theoretic approach for setting the optimal number of decision
trees in random forests,” in Proceedings of the 2013 IEEE
International Conference on Systems, Man, and Cybernetics,
SMC 2013, pp. 1013–1019, UK, October 2013.

[19] P. Latinne, O. Debeir, and C. Decaestecker, “Limiting the num-
ber of trees in random forests,” in Multiple Classifier Systems
(Cambridge, 2001), vol. 2096 of Lecture Notes in Computer
Science, pp. 178–187, Springer, Berlin, Germany, 2001.

[20] J. Shotton, T. Sharp, A. Kipman et al., “Real-time human pose
recognition in parts from single depth images,” Communica-
tions of the ACM, vol. 56, no. 1, pp. 116–124, 2013.

[21] M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis,
and Machine Vision, Cengage Learning, 2014.

[22] J. Zhang, M. Zulkernine, and A. Haque, “Random-forests-
based network intrusion detection systems,” IEEE Transactions
on Systems, Man, and Cybernetics, Part C: Applications and
Reviews, vol. 38, no. 5, pp. 649–659, 2008.

[23] N. Farnaaz andM. A. Jabbar, “Random forest modeling for net-
work intrusion detection system,” Procedia Computer Science,
pp. 213–217, 2016.

[24] S. R. Johnson andA. Jain, “An improved intrusion detection sys-
tem using random forest and random projection,” International
Journal of Scientific and Engineering Research, vol. 7, 2016, Probe,
2, U2R.

[25] S. Siegel and N. J. Castellan, Nonparametric Statistics for the
Behavioral Sciences, McGraw-Hill, 2nd edition, 1988.

[26] B. Lakshminarayanan, D. M. Roy, and Y. W. Teh, “Mondrian
forests: efficient online random forests,” in Advances in Neural
Information Processing Systems, pp. 3140–3148, 2014.

[27] J. R. Quinlan, C4. 5: Programs for Machine Learning, Elsevier,
2014.

[28] R. J. A. Little, “Robust estimation of the mean and covariance
matrix from data with missing values,” Journal of the Royal
Statistical Society: Series C (Applied Statistics), vol. 37, no. 1, pp.
23–38, 1988.

[29] R. E. Skelton and M. Ikeda, “Covariance controllers for linear
continuous-time systems,” International Journal of Control, vol.
49, no. 5, pp. 1773–1785, 1989.

[30] E. A. Mäntysaari, R. L. Quaas, and Y. T. Gröhn, “Simulation
study on covariance component estimation for two binary traits
in an underlying continuous scale,” Journal of Dairy Science, vol.
74, no. 2, pp. 580–591, 1991.

[31] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the
IEEE, vol. 86, no. 11, pp. 2278–2323, 1998.

[32] “real estate dataset,” 2017, https://github.com/S3lab-pnu/Real-
estate-dataset.

[33] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data
set for network intrusion detection systems (UNSW-NB15 net-
work data set),” in Proceedings of the Military Communications
and Information Systems Conference (MilCIS), pp. 1–6, IEEE,
2015.

[34] G. Louppe, “Understanding random forests: from theory to
practice,” 2014, https://arxiv.org/abs/1407.7502.

[35] “KDD Cup 1999,” 2007, http://kdd.ics.uci.edu/databases/kdd-
cup99/kddcup99.html.

https://github.com/S3lab-pnu/Real-estate-dataset
https://github.com/S3lab-pnu/Real-estate-dataset
https://arxiv.org/abs/1407.7502
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

