
Research Article
An Efficient Encrypted Floating-Point Representation Using
HEAAN and TFHE

Subin Moon1 and Younho Lee 2

1Department of Software Analysis and Design, SeoulTech, Seoul 18011, Republic of Korea
2ITM Division, Department of Industrial Engineering, SeoulTech, Seoul 18011, Republic of Korea

Correspondence should be addressed to Younho Lee; younholee@seoultech.ac.kr

Received 30 October 2019; Revised 17 January 2020; Accepted 3 February 2020; Published 2 March 2020

Guest Editor: Veljko Milutinovic

Copyright © 2020 Subin Moon and Younho Lee. -is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

As a method of privacy-preserving data analysis (PPDA), a fully homomorphic encryption (FHE) has been in the spotlight
recently. Unfortunately, because many data analysis methods assume that the type of data is of real type, the FHE-based PPDA
methods could not support the enough level of accuracy due to the nature of FHE that fixed-point real-number representation is
supported easily. In this paper, we propose a new method to represent encrypted floating-point real numbers on top of FHE. -e
proposed method is designed to have analogous range and accuracy to 32-bit floating-point number in IEEE 754 representation.
We propose a method to perform arithmetic operations and size comparison operations. -e proposed method is designed using
two different FHEs, HEAAN and TFHE. As a result, HEAAN is proven to be very efficient for arithmetic operations and TFHE is
efficient in size comparison. -is study is expected to contribute to practical use of FHE-based PPDA.

1. Introduction

Fully homomorphic encryption (FHE) is a technology that
supports computation on ciphertexts without decrypting
them. Using these properties, we can process and analyze
sensitive medical and financial information without ex-
posing them if we use FHE.-erefore, FHE is expected to be
an indispensable core technology for the prevalence of ar-
tificial intelligence and data mining, which is the core
technology of the 4th industrial revolution [1, 2].

Most existing FHEsmanage ciphertext on a bit-by-bit basis.
Some methods have a number of slots in a ciphertext and
support SIMD operations. Even in this case, only one bit of
plaintext can be inserted into a single slot. -is is because FHE
schemes are defined on particular mathematical structures. If
multiple bits occupy a slot, it is unclear as to whether or not all
efficient computation algorithms can be implemented using the
operations provided naturally on the mathematical structures.

On the other hand, in the case where only a 1-bit
plaintext is inserted in the slot, any efficient algorithm can be
implemented with the bitwise-AND and bitwise-XOR

operations. -us, if these operations are implemented with
the operations on the mathematical structures, and the ci-
phertexts are enabled to work with them indefinite number
of times, we can say that FHE schemes can implement any
efficient algorithm. -ere are numerous FHE schemes that
follow this argument [3–12], including HELib and TFHE.

-e purpose of this study is to realize representation of
encrypted floating-point real number and their operations.
Various machine learning algorithms use real numbers to
manage their input, output, and intermediate values, as is the
case with the recently introduced Deep Neural Network.-ere
have been various attempts to realize these algorithms using
FHE and to perform machine learning and classification even
when receiving encrypted input values. However, due to the
bitwise nature of the plaintexts in most FHE schemes as de-
scribed above, the existing attempts have treated real numbers
with fixed-point representation in most cases. Since using
fixed-point numbers in this field causes the degradation of the
accuracy and range of the expressed values, it also affects the
algorithm performance. For this reason, floating-point repre-
sentation is preferred in numerical applications [13].

Hindawi
Security and Communication Networks
Volume 2020, Article ID 1250295, 18 pages
https://doi.org/10.1155/2020/1250295

mailto:younholee@seoultech.ac.kr
https://orcid.org/0000-0003-1767-6165
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/1250295

Unfortunately, there have been only few attempts to
represent floating-point numbers with FHE. A representa-
tive study is the HEAAN method [14]. In HEAAN, floating
point numbers can be thought of because they have the
advantage of keeping the same significant digits regardless of
the size of the computed result. However, HEAAN has a few
drawbacks. First, it does not provide comparison operations
on given numbers.-is is a big problem when implementing
various applications using HEAAN. Second, HEAAN pro-
vides the division operation only within a limited range of
realizations. -at is, if “a” is the real number contained in a
cipher text, then |1− a|≤ 1/2 should be held. -erefore, in
order to use HEAAN for applications, it is necessary to
scaling the values.

Apart fromHEAAN, TFHEwas proposed in 2017, which
supports very fast bootstrapping [7]. Sadly, because it does
not provide floating-point operations, a new method is
needed to support the encrypted floating-point represen-
tation over TFHE and the operations that can work on top of
the representation.

-erefore, we propose an encrypted floating-point
representation on which it is provided efficient floating-
point operations over the encrypted values by the above FHE
schemes. In the proposed method, real numbers are
expressed with sign, exponent, and mantissa similarly to the
conventional IEEE 754 expression. However, it is designed
to achieve the efficiency of the entire operations by utilizing
the characteristics of each FHE method. Supporting the
efficient floating-point operations over the proposed
encrypted representation is not an easy task because we have
to consider all possible values that ciphertexts of the pro-
posed representation must have when we design the com-
putation circuits to implement the operations.

In this paper, we compare the performance of two
representations each of which is implemented on top of
HEAAN and FHE, respectively. As a result of performance
comparison, HEAAN has a computation speed of several
tens to hundreds of times faster than that of TFHE-based
implementation. In the comparison operation, TFHE has
tens to hundreds of times higher performance than HEAAN.
In the case of the equality checking operation, we could
observe that TFHE case is about 5 times faster than HEAAN.
-e proposed method is expected to be used for the
implementation of the algorithms in privacy-preserving
machine learning. In particular, it tells you what type of FHE
schemes to use depending on the type of operation being
used. Based on this, we hope that it could be widely used in
encrypted data processing and analysis applications.

-is paper is organized as follows. Section 2 describes the
preliminary to help understanding this study. Section 3
introduces the research motivation and related work. In
Section 4, the proposed method is given, which is followed
by the performance evaluation of implementation results in
Section 5. Section 6 concludes the paper.

2. Preliminary

2.1. IEEE 754 Floating-Point Representation. -e proposed
representation is a variant of IEEE 754 standard floating-

point representation to support the arithmetic and relational
operations efficiently with the underlying FHE schemes.
-erefore, to understand the proposed representation easily,
we first briefly overview it. In IEEE 754, two types of floating-
point representation are defined, single-precision and
double-precision, depending on the number of bits assigned
for a representation. In this work, we only focus on the
single-precision representation as this is only applied for the
proposed one.

Figure 1 shows the IEEE 754 single-precision repre-
sentation. It is composed of three parts: 1-bit sign, 8-bit
exponent, and 23-bit mantissa. -e sign bits represent if the
value is positive (0) or negative (1). -e exponent bits
represent the exponent which is in the range between − 127
and 127.-e “fraction” bits contain the significant bits of the
value. In normal mode, Figure 1 represents a real number
(− 1) (sign)∗ 1. (FRACTION) (2)∗ 2(EXPONENT(2)− 127), where
binary values represent unsigned positive integers.

-e arithmetic and relational operations between the
numbers expressed in this way can be carried out as follows.
In the case of addition and subtraction, the exponents of two
operands are made equal. -e mantissas of them are ad-
justed following the changed exponents, respectively. After
that, the operation is performed with the adjusted mantissas.
In the case of multiplication and division, operations are
performed on exponents and mantissas of two operands,
respectively. After processing, adjustment is performed on
the resultant exponent and mantissa in order to match the
expression rules. Please refer to [15] for details.

2.2. Fully Homomorphic Encryption (FHE). FHE is a special
cryptosystem that can process encrypted data without
decrypting them. -is is useful for data delegation or pri-
vacy-preserving data processing. Figure 2 shows the dif-
ference between FHE and a conventional encryption scheme
when addition of two encrypted numbers is performed.
With the ciphertexts by FHE, addition of their hidden
plaintext values is possible without decryption.

An FHE scheme is defined with the following algorithms:

ParamGen (1λ, N, L)⟶ param: this generates a pa-
rameter for key generation. It takes the security pa-
rameter λ, the number of slots in a ciphertextN, and the
possible multiplicative depth of a fresh ciphertext
without bootstrapping L.
KeyGen (param)⟶ sk, pk, evk: this is a key generation
algorithm, which takes the parameter from the pa-
rameter generation algorithm and outputs sk, a secret
key for decryption, pk, a public key for encryption, and
evk, a set of the evaluation keys with which some
computation over the ciphertexts can be done if the
ciphertexts are generated with the matched pk.
Enc (m→, pk)⟶C: an encryption algorithm which
takes a vector of plaintext message m→ of dimension N
and a public key and outputs a ciphertext that contains
m→.
Dec (C, sk)⟶m→ (or ⊥): it takes a ciphertext c and a
secret key sk, and outputs a plaintext m→ if C is the result

2 Security and Communication Networks

of Enc(m→, pk) and pk is matched to sk. Otherwise, it
outputs ⊥.

In addition to the above algorithms, FHE provides com-
putational algorithms between ciphertexts. However, they
provide different functions for each FHE scheme. -erefore,
they will be describedwhen each FHE scheme is introduced.We
introduce two recent FHE schemes, which are used to imple-
ment the proposed (encrypted) floating-point representation.

2.2.1. HEAAN. HEAAN’s ciphertext can contain multiple
plaintext bits in one slot, unlike the previous FHE methods
[14, 16]. Let the corresponding bit length be the word size.
HEAAN also supports various operations between the
encrypted values of a word size in the ciphertext slots.
Unfortunately, they are supported in an approximate
fashion. -at is, if an operation is performed between
encrypted word-sized values, the bit-precision of the result is
similar to that of an operand. In the case of multiplication,
when the bit length of operands is n, the result’s bit length
should be 2n− 1 to represent the result correctly. However, in
HEAAN, only the most significant n bits of the result are
correct. At the expense of this bit accuracy, HEAAN sup-
ports very fast arithmetic operations on word-sized
encrypted data. -is fast computation speed allows HEAAN
to be used in many fields such as machine learning and
machine control [17, 18]. In addition, unlike TFHE, HEAAN
has the advantage of providing a complete SIMD function.
-at is, there is an advantage that the value can be shifted
between slots.-emajor disadvantage of HEAAN compared
to TFHE is that it requires bootstrapping. -at is, when
performing multiplication operations more than a certain
number of times consecutively, that is, when amultiplication

circuit having a certain depth or more is performed,
bootstrapping should be performed to do further multi-
plication while preserving the correct computation result.
Otherwise, the ciphertext no longer has the correct plaintext.

HEAAN_Mult (C0, C1, evk)⟶Cmult: this algorithm
multiplies the encrypted values stored in each slot of the
same position in two ciphers C0, C1 with each other and
stores the result in the same slot position of the re-
sultant ciphertext Cmult.
HEAAN_Add/Sub (C0, C1, evk)⟶Cadd (Csub): this
algorithm performs slotwise addition (subtraction)
with two ciphertexts C0 and C1 and outputs Cadd (Csub)
which has the result of the computation.
HEAAN_Bootstrapping (C0, evk)⟶ cnew: this algo-
rithm takes a ciphertext C0 and returns a new ci-
phertext Cnew with the same plaintext.We can execute a
multiplicative circuit of a certain number of depths
with Cnew, where the depth is defined by the
parameters.
HEEAN_LeftShift (C0, k, evk)⟶Cshifted: this algo-
rithm generates a new ciphertext Cshifted by moving the
plaintexts in each slot of cipher C0 to the left by k slots.
It is a circular shift.-us, we can shift the values in C0 to
the right by k slots by making the values shifted left by
N-k slots, where N is the number of total slots.

HEAAN supports the following algorithms in addition
to the common FHE algorithms described above.

2.2.2. TFHE. TFHE [9, 19] was created in 2017 using the
GSW [20] technique. Each slot in the TFHE ciphertext
contains a 1-bit plaintext. It supports bitwise AND and
bitwise XOR operations on the encrypted plaintext bit in
each slot. Based on those operations, it is possible to im-
plement any arbitrary efficient algorithm which can work
with encrypted inputs. In addition to the basic algorithms
mentioned above, TFHE supports the following algorithms:

TFHE_AND (C0, C1, evk)⟶ cand: a bitwise AND
operation is performed on the values of the slot at the
same position in the two ciphertexts c0 and c1, and the
result is stored in the slot of the same position in the
resultant cipher Cand.
TFHE_XOR (C0, C1, evk)⟶Cxor: it executes the
slotwise XOR operations on bit values of the same slot
position in c0 and c1. -e result is stored in the same
slot position of the resultant ciphertext Cxor.

One advantage of THE is that it supports very fast
bootstrapping. However, it needs bootstrapping at the end of
every operation. -us, we suppose that the bootstrapping is
contained in the above bitwise operations.

2.2.3. An Overview for the Ciphertext Structures and
Operations. To help the readers understand both FHE
methods, we discuss the format of the ciphertext used and
more details on them. Let us talk about HEAAN first.
Figure 3 shows the structure of the HEAAN ciphertext and

1-bit 8-bit 23-bit

Sign Exponent Fraction

Figure 1: IEEE 754 single-precision floating-point number—bit
representation.

Conventional encryption schemes

Fully homomorphic encryption schemes

32 32

+

+

Cipher

Cipher57 57

32 Cipher

Cipher

Decryption
Encryption

A ciphertext
A plaintext

57

89

89

Sum

Sum

Figure 2: Adding two plaintexts in ciphertexts: comparison be-
tween conventional encryption and homomorphic encryption.

Security and Communication Networks 3

the operations supported on it. In HEAAN, as shown in the
figure below, a limited number of real numbers can be stored
in one ciphertext. Arithmetic operations can be performed
between those in the same slot as shown in Figure 3(B). In
addition to this, as shown in Figure 3(C), it is possible to
move the embedded plaintexts between slots. Finally, if there
are two ciphertexts where only 0 or 1 are encrypted in each
slot, then logical AND/XOR operations between the
encrypted values are possible in the same slot position of
both ciphertexts. -ese logical operations can be imple-
mented by arithmetic subtraction, addition, and multipli-
cation using the equations described in Figure 3(D).
Unfortunately, there is a disadvantage that a slot can only
store a fixed-point real-number plaintext. Also, a certain
operation can work only when the stored plaintext value is
within a limited range. TFHE has similar ciphertext struc-
ture as HEAAN, but each slot can contain only 0 or 1 (1 bit
value). Also, slot-shift operation is not supported.

3. Related Work and System Model

3.1. Related Work. -ere have been some attempts to rep-
resent encrypted floating-point real numbers before this
study. Arita and Nakasato [21] proposed the FHE4FX
method that can perform addition and multiplication be-
tween encrypted floating-point numbers without decryption
based on the FV FHEmethod [22]. It generates an encrypted
floating-point representation by encrypting each sign, ex-
ponent, and mantissa part of a real number in separate
ciphertexts. For the multiplication and addition operations
between encrypted values, it first determines the type of FHE
operations to be performed on the sign, exponent, and
mantissa parts based on the comparison result of values of
each part of the ciphertext. Unfortunately, there is some
limitation in this approach that it is necessary to use the
decryption key for computation and it does not support
operations other than addition and multiplication.

Zhu et al. [23] proposed a method to represent floating-
point numbers as Double List Tree format and provide the
encryption function for them with Paillier cryptosystem
[24].-eir work utilizes hashtag (#) to represent the location
of the decimal points of encrypted numbers. However, in
this method, the digits of the real number can be inferred
through the position of the hashtag used for performing the
operation of each digit. Furthermore, their arithmetic op-
erations use the size comparison operation. However, they
did not show how to implement the size comparison
operation.

In the method of Jaschke and Armknecht [25], when an
operation is performed on encrypted rational numbers, they
are multiplied by an exponent of 2 to move the decimal place
values to an integer position. After this, rounding is per-
formed to remove the decimal point value, and the main
operation is performed with only the integer parts of two
operands. After that, the desired result is obtained by
adjusting the digits. -is process has the disadvantage that
the precision of the operation is reduced because the cal-
culation is performed after some bit values of input rational
numbers are removed.

-ere are other methods such as those of Seiko and
Nakasato [26] and Dowlin et al. [27]. However, they require
a very large computation for floating-point operations. Also,
as we mentioned in the previous section, HEAAN [14, 16]
has some limitation on representing encrypted floating-
point numbers. Also, there has been no approach to rep-
resent encrypted floating-point numbers on top of TFHE
[9, 19].

In conclusion, there is no way to represent encrypted
floating-point real numbers with similar level of accuracy
and efficiency to the floating-point representation used in
common computing environment, even if there are so many
methods using existing FHE methods. In this paper, we aim
to solve this problem and make it possible to represent
encrypted floating-point numbers and to perform

(A) Ciphertext structure
A plaintext can be in each slot. A ciphertext has many slots

A floating-point
number where

|An–1| < 2

(B) Slotwise operations

A0

A0

A1 A2 An–2

An–1

An–1 ⬜ Bn–1

......

B0

A0 ⬜ B0

⬜ ∈ {+, –, /, ∗}

‘/’ only works when |Bn–1 – 0.5| < 1/2

Bn–1.........

.........

An–1

A0 A1 A2 An–2 An–1

A0 A1 A2 An–2 An–1

a0 a1 a2 an–2 an–1

b0 b1 b2 bn–2 bn–1

(C) Slot-rotation operation (example)

Slot-shift by 2 slots

(D) Logical operations with binary data

(ai, bi ∈ {0, 1}) (i ∈ [0, n – 1])
Logical AND: ai ^ bi = ai ∗ bi
Logical XOR: ai ⊕ bi = ai + bi – 2 ∗ ai ∗ bi

⬜

Figure 3: Ciphertext structure and operations in HEAAN.

4 Security and Communication Networks

computation with them efficiently. In other words, this
research is the first study to propose and implement a size
comparison operation and arithmetic operations over
encrypted floating-point real-number representation effi-
ciently using FHE.

3.2. SystemModel. -e system model assumed in this study
is as follows. -e client translates the plaintext represen-
tation of the floating-point real numbers into the encrypted
one using the proposed method and delivers it to the central
server. -e central server then performs an algorithm that
can be performed on the encrypted input and returns the
results back to the client. -e client can decode the result to
get the result. In this model, the client and server shares their
public keys with each other.

-e security model we assume is the general Honest-But-
Curious (HBC) model. -e central server performs pre-
defined protocols, but it tries to obtain useful information of
the clients while running the protocol. -e clients are those
who own their data, including both input and result of the
protocol, and want it to be protected from the central server.
Please check Figure 4 above for the detailed description of
the system and security model.

4. Proposed Approach

In this section, we propose a new scheme to represent
encrypted floating-point numbers using two methods,
HEAAN and TFHE, respectively. Our proposal includes the
methods to support the arithmetic and the relation opera-
tions over the encrypted numbers represented by the pro-
posed methods. Before explaining each method, we first
introduce the tools used to implement the proposed
methods and then proceed to the description of the pro-
posed one. We omit showing the evaluation key (evk) when
we present the proposed methods because any calculation
involving the proposed encrypted representation needs evk.

4.1. Building Blocks

4.1.1. Kogge–Stone Adder (KSA). -e authors in [28]
implemented the Kogge–Stone Adder [29], which performs
addition on two input numbers, using FHE to have it work
on encrypted input numbers. In [28], it is assumed that each
slot of a ciphertext stores only one bit value, and all the slots
are used to represent one number.-erefore, we can use [28]
to implement the Kogge–Stone Adder over encrypted inputs
using either TFHE or HEAAN, if we put only one-bit
plaintext in each slot of ciphertext. Using this, it is possible to
implement the adder using a circuit with log nmultiplication
depth when inputs are of n bits. Figure 5(A) shows the
encrypted KSA (E-KSA) in [12]. Two ciphertexts are output
of the adder where the first has the sum where all n slots are
filled with outputs, whereas only one slot is used in the other
ciphertext to represent the carry of the addition.

4.1.2. Comparator (COMP) Module. It compares the size of
two ciphertexts and returns a ciphertext containing the

result. For example, if there are two ciphers C1 and C2, and
each represents a binary number using the bit values of all of
its slots, this module returns a ciphertext of 1 when C1>C2
and returns 0 otherwise (if the resultant ciphertext has many
slots, it outputs the ciphertext containing 1 in every slot; this
also holds in the case where the resultant ciphertext contains
0). It can be implemented as shown in Figure 5(B) using
E-KSA module. -e reason why this works is illustrated in
Figure 5(C). For example, if C1 contains an encryption of
1100(2) (4 bits) and C2 contains 1010(2), we can see that a
carry is generated as a result of adding the 1’s complements
of C1 and C2. Based on this, we can confirm that C1>C2.

When using such a COMP circuit, if two ciphertexts C1
and C2 are input, we can make a circuit that outputs a ci-
phertext CB containing the larger plaintext and another
ciphertext CS which contains the smaller plaintext among
the plaintexts encrypted in C1 and C2, respectively. If we
assume the result of executing the COMPmodule with input
C1 and C2 as COMP (C1, C2), CB can be derived by cal-
culating C1∗COMP(C1, C2) +C2∗ (1c—COMP (C1, C2)).
Similarly, CS⟵C1∗ (1c—COMP (C1, C2)) +C2∗COMP
(C1, C2). 1c means an encoding of 1 where calculation is
possible with other ciphertexts. If the ciphertext has many
slots, 1c is an encoding of 1 in every slot. One caveat is that
you cannot know whether CB and CS come from either C1 or
C2, respectively, because the above formulas’ calculation
results depend on the results of COMP() circuit whose
output is encrypted; thus, it cannot be known without de-
cryption. We can define the above two circuits as MinMax()
as follows:

Cb,Cs⟵MinMax C1,C2(. (1)

4.2. HEAAN-Based Method. -e HEAAN-based method
uses three ciphertexts to represent a single real number. -e
first ciphertext represents the sign of the real number, the
second ciphertext stores the exponent value, and the last
ciphertext stores the mantissa. -e sign and exponent are
expressed as bit values like IEEE 754 standard. However,
when expressing a mantissa, the corresponding number is
not stored as a multibit value. Instead, it is encrypted to a
HEAAN ciphertext directly. One significant difference of
this approach from IEEE 754 is that the value of the mantissa
is assumed to be in the range [0, 1). -is is because the
HEAAN operation works better when the hidden plaintext
in the ciphertext in [0, 1) than [1, 2).

Figure 6 shows the procedure on how a single floating-
point number is encrypted using three ciphertexts. cresult []
is an array containing ciphertexts. It is assumed that the
value assigned to the ciphertext cresult [] is encrypted and
stored in the corresponding ciphertext. Figure 7 shows an
example of converting a real number into the proposed
encrypted representation.

4.2.1. Addition/Subtraction. -e HEAAN-based addition
method is implemented as shown in Figure 8. In this
method, two operands are classified to a smaller number and

Security and Communication Networks 5

the other bigger number first. -en, the exponent value of
the smaller number is increased to be matched to that of the
bigger number. -e increase of the value of the smaller
number, which results from the increasing the exponent, is
cancelled by dividing the mantissa part. After that, two
mantissa parts are added to complete the addition.

-e details of addition operation is as follows. We
suppose two operands to be added as C1 � (C1[SIGN],
C1[EXPO], C1[FRAC]), C2 � (C2[SIGN], C2[EXPO],
C2[FRAC]). -e function ReArrange (), which returns a
larger value in cB and a small value in cS among the input C1
and C2, can be implemented as shown in Figure 9. C1 and C2
are compared based on their exponent values.

We suppose the result of Rearrange (C1, C2, EXPO) is CS
and CB. We run the following addition code with CS and CB
in Figure 10. -e output of the code is Cout. We discuss how
the following code works. Because CS[EXPO]<CB[EXPO]
and CS[FRAC], CB[EXPO] in [0, 1), the sign of the addition
result is CB[SIGN]. Also, to perform calculation, the code
increases CS[EXPO] to make it the same as CB[EXPO]. To
keep the original value of CS after increasing CS[EXPO], the
code decreases CS[FRAC] accordingly. After that, it returns
the result of CB[FRAC] +CS[FRAC] when both CB and CS
have the same sign or CB[FRAC] − CS[FRAC] if the signs are
different. To keep the result’s fraction is in [0, 1), the ex-
ponent is increased by 1 and the fraction is divided by 2.

Two n-slot ciphertexts (input)
a0 a1 a2 an–2 an–1 b0 b1 b2 bn–2 bn–1

c0 c1 c2 cn–2 cn–1carry 0

C1

(b) (c)

(a)

Output
C1 > C2 if output contains 1 as plaintext
otherwise, C1 ≤ C2

C2

Negate

Discarded
Sum

‘Comp’
circuit

Carry

E-KSA

0 0 0
A ciphertext containing the carry bit A ciphertext containing the sum of n bits

Case 1 (C1 > C2):

Case 2 (C1 ≤ C2):
C1 = 1010(2), C2 = 1100(2)
C1 + ~C2 = 1010(2) + 0011(2) = 1101(2) → carry = 0

If C1 = 1100(2), C2 = 1010(2),
C1 + ~C2 = 1100(2) + 0101(2) = 10001(2) → carry = 1

Encrypted Kogge-Stone Adder (E-KSA)

Figure 5: Building blocks: encrypted Kogge–Stone Adder and comparator circuit.

Input of floating-point numbers
(encrypted by Alice’s public key)

Result (encrypted by
Alice’s public key)

(3)Alice (client)

Can get
server’s
data?

Computation

Server

Want to get users’
inputs without

violating protocols

(2)
Encoded data

Bob (client)

(1)

Result (encrypted by
Bob’s public key)

Input of floating-point numbers
(encrypted by Bob’s public key)

Figure 4: System and security model.

6 Security and Communication Networks

Because the maximum binary string that CB[EXPO] and
CS[EXPO] can have is 11111111(2), Ceqcc is an encryption of
1 only once in the loop. In this case,
CB[FRAC] +CS[FRAC]∗ (1 − 2∗Csign) is given to Cout[-
FRAC], where Csign is the result of checking if CB[SIGN] and
CS[SIGN] are the same: if so, it has the encryption of 0, and 1
otherwise. In Step 3, EQCC (CB[EXPO], CS[EXPO]) exe-
cutes HEAAN_XNOR(CB[EXPO], CS[EXPO]) from inside
to perform XNOR operation between the bit values in the
same slot of CB[EXPO] and CS[EXPO], respectively. After
that, we multiply all the bit values in each slot of XNOR
result to create Ccomp. Ccomp becomes 1 if CB[EXPO] and
CS[EXPO] have exactly the same bit value in all of their slots;
otherwise, it becomes 0.

To perform subtraction, the sign of the number to be
subtracted is inverted using HEAAN_XNOR, and then the
addition operation is performed instead.

4.2.2. Multiplication. Multiplication is easier to implement
than addition. First, the sign of the result value is equal to the
value obtained by XORing the sign of two input numbers,
and the result of the exponent part can be obtained by
adding the exponents of the two inputs. E-KSA can be used
to calculate it. Also, the mantissa can be obtained by
multiplying themantissas of two input numbers. In this case,
the result of multiplying mantissa is still in [0, 1). -us, we
have nothing to do further. Figure 11 shows the process of
multiplying two encrypted floating-point real numbers C1
and C2 in the proposed method.

4.2.3. Comparison. In the HEAAN-based approach,
COMPHEAAN() function is used as a tool to perform the size
comparison operation of the encrypted floating-point
values. COMPHEAAN () takes two HEAAN ciphertexts and

START
float2cipher

(cresult[], num)

expo = 0

Num > 0

expo + = 1 expo + = 127

cresult[SIGN] = 0

cresult[EXPO] = expo.to_binary ()
cresult[FRAC] = fabs (num)

cresult[SIGN] = 1

fabs (num) < 1.0

RETURN cresult[]

num / = 1

True

: Encryption

True

False

False

Figure 6: Procedure of generating a set of ciphertexts containing a single floating-point number.

Sign

30.3 → 0.946875 × 25 → 0 10000100 (127 + 5 = 132) 0.946875

Exponent

C[SIGN]
SIGN EXPO FRAC

C[EXPO] C[FRAC]

(Binary representation)

Fraction

Sign

0

Exponent

10000100 0.946875

Fraction

Figure 7: An example of representing 30.3 with the HEAAN-based proposed scheme. -e exponent is converted to binary representation.
-en, it is encrypted to C[expo]. Each encrypted bit is stored in each slot. On the other hand, the fraction is stored as it is in a HEAAN
ciphertext.

Security and Communication Networks 7

the computation key evk of the ciphertext and performs the
following operation [30]:

COMPHEAAN C1(HEAAN),C2(HEAAN), evk ⟶ 1 if

· C1(HEAAN) >C2(HEAAN) else 0.
(2)

Using the above circuit, we can compare the size of two
encrypted floating-point numbers C1 � (C1[SIGN],

C1[EXPO], C1[FRAC]) and C2 � (C2[SIGN], C2[EXPO],
C2[FRAC]) using the code written in Figure 12. If the code
outputs an encryption of 1, it says C1’s absolute value is
greater than C2’s and it returns an encryption of 0 otherwise.
Step 2 in Figure 12 is described in Figure 13 in detail.

A circuit for determining if two encrypted representa-
tions are equal can be implemented similar to addition/
subtraction circuit: it can be easily obtained by calculating

CB

CS
S0 S1.0

Equal comparison
module with sign value

Fraction calculation
module

Equal comparison module
with exponent value

S1.1 S1.02 S1.7 S2

B2

Cout

C0

C1.0

C1.1

C1.2

C1.7

C2

...

B1.7B1.2B1.0B0

...

Figure 8: Overview of addition operation in the HEAAN-based method.

Input: C1 = (C1[SIGN], C1[EXPO], c1[FRAC]), C2 = (C2[SIGN], C2[EXPO], C2[FRAC]),
opt (either EXPO or FRAC)
1. if (opt == EXPO) cCOMP ← COMP (C1[EXPO], C2[EXPO])

Else CCOMP ← COMPHEEAN (C1[FRAC], C2[FRAC]) // COMPHEEAN is explained at 4.2.3.
2. CB[EXPO] = C1[EXPO] ∗ cCOMP + (1 – cCOMP) ∗ C2[EXPO]
3. CB[EXPO] = C2[EXPO] ∗ cCOMP + (1 – cCOMP) ∗ C1[EXPO]
4. CB[SIGN] = C1[SIGN] ∗ cCOMP + (1 – cCOMP) ∗ C2[SIGN]
5. CS[SIGN] = C2[SIGN] ∗ cCOMP + (1 – cCOMP) ∗ C1[SIGN]
6. CS[FRAC] = C1[FRAC] ∗ cCOMP + (1 – cCOMP) ∗ C2[FRAC]
7. CS[FRAC] = C2[FRAC] ∗ cCOMP + (1 – cCOMP) ∗ C1[FRAC]
8. Output CB, = (CB[SIGN], CB[EXPO], CB[FRAC]), CS = (CS[SIGN], CS[EXPO], CS[FRAC]),

cCOMP

Figure 9: Rearrange() function.

Input: CB[SIGN], CS[SIGN], CB[EXPO], CS[EXPO], CB[FRAC], CS[FRAC],
1. i ← 1, Cout[FRAC] ← 0
2. Csign ← HEAAN_XOR (CS[SIGN], CB[SIGN])
3. Ceqcc ← EQCC (CB[EXPO], CS[EXPO]) // EQCC: Equality comparison circuit.
4. Cout[FRAC] ← Cout[FRAC] + Ceqcc ∗ (CS[FRAC] + CS[FRAC] ∗ (1 – 2Csign))
5. CS[FRAC] ← CS[FRAC]/2, CS[EXPO] ← CS[EXPO] + 1
6. i ← i + 1
7. if i < 256 goto step 3
8. Output Cout = (CB[SIGN], CS[EXPO], Cout[FRAC])

Figure 10: Addition method in HEAAN-based approach.

8 Security and Communication Networks

whether the FRAC part and the SIGN part of both floating-
point numbers to be compared are the same using COM-
PHEAAN() after equalizing their EXPO parts.

4.2.4. Division. -e division operation is similar to the
multiplication operation except that the exponent part of the
divisor is subtracted from the exponent of the dividend, and
the inverse of the mantissa of the divisor is calculated using
the inverse function and then it is multiplied by the mantissa
of the dividend. In this case, if we do nothing further, the
mantissa of the resultant value may be greater than 1. To deal
with this, before performing the multiplication operations in
the fraction part, the mantissa of the dividend is corrected so
that it is smaller than the mantissa of the divisor. However, it

is greater if the mantissa of the dividend is doubled. -e
process can be described as follows.

Step 1 in Figure 14 can be specified in detail as follows in
Figure 15.

4.3. TFHE-Based Method. -e TFHE-based expression
follows the standard IEEE 754 exactly. For example, to
represent 30.3 with the TFHE-based representation, we first
translate this as 1.1110010011001100110× 23(2). -en we add
127 to the exponent to represent the exponent bits. -e
fraction part stores all the fraction bits except the first “1” at
the left of the decimal point. In this approach, sign, expo-
nents, and mantissa are encrypted by separate ciphertexts.
-e number of ciphertexts in C[SIGN] is 1, C[EXPO] is 8,

C1[EXPO]

C2[EXPO]

C1[SIGN]

C2[SIGN]

Cout[SIGN]

HEAAN_XOR ()

HEAAN_Mult ()

Cout[EXPO]

Cout[FRAC]

C2

C1

E-KSA

C2

C2

C2

C1.7

C1.7 C1.7

...

...

...C1.2C0 C1.1C1.0

C1.2

C1.2

C0

C0

Cout

C1.1

C1.1

C1.0 C1.0

C1[FRAC]

C2[FRAC]

Figure 11: Multiplication with HEAAN-based representation.

Input: C1[EXPO], C2[EXPO], C1[FRAC], C2[FRAC],
1. CB, CS, ccomp ← Rearrange (C1, C2, FRAC)

2. Adjust CS to make CS[FRAC] < CB[FRAC] < 2 ∗ CS[FRAC]
3. ceqcc ← EQCC (CB[EXPO], CS[EXPO]) // EQCC: Equality comparison circuit.
4. ccomp2 ← COMP(CB[EXPO], CS[EXPO])
5. ccomp_HEAAN ← COMPHEAAN (CB[FRAC], CS[FRAC])

6. cout ← ceqcc ∗ (ccomp_HEAAN) + (1 – ceqcc) ∗ ccomp2

7. Output (cout ∗ Ccomp) + (1 – cout) ∗ (1 – ccomp)

Figure 12: Absolute value comparison circuit with HEAAN-based representation.

Input: CB[EXPO], CS[EXPO], CB[FRAC], CS[FRAC],
2.1. i ← 1, cout ← 0 , cprev ← 0, C1 ← CS[FRAC], CS[FRAC] ← 0, Cexpo ← CS[EXPO], CS[EXPO] ← 0
2.2. C2 ← C1 ∗ 2
2.3. ccurr ← COMPHEAAN (CB[FRAC], C2)
2.4. CS[FRAC] ← Cs[FRAC] + (1 – cprev) ∗ ccurr ∗ CS[FRAC],
2.5. CS[EXPO] ← CS[EXPO] + (1 – cprev) ∗ ccurr ∗ Cexpo
2.5. i ← i + 1, C1 ← C2, Cexpo ← Cexpo – 1
2.6. if i < 256 goto step 3
2.7. Output CS[FRAC], CS[EXPO]

Figure 13: Details in Step 2 of the absolute value comparison circuit.

Security and Communication Networks 9

and C[FRAC] is 23 when the encrypted floating-point
number is represented as C � (C [SIGN], C [EXPO], C
[FRAC]). Also, for ease of expression, TFHE_XOR () op-
eration is written as ⊕, and TFHE_AND () operation is
indicated by. Figure 16 explains the procedure of making a
TFHE-based encrypted floating-point number representa-
tion with an example of 30.3.

To explain the methods clearly, we are going to use the
following notations. An array of ciphertexts C[]� c0||c1||. . .||
cn− 1 can be described as C[0]� c0, C[1]� c1,. . . , C[n− 1] � cn− 1,
where ci (i ∈ [0, n− 1]) refers to an encryption of a single bit
value. If we describe C[]� (cn− 1 cn− 2 . . . c2c1c0) (2), as a binary
integer representation, then C[0]� c0, C[1]� c1,. . . ,
C[n− 1] � cn− 1, too. If there are two array of ciphertexs A[] and
C[], where both are represented as binary integers and they
are added using E-KSA circuit, then the result CR[] is 2n− 1

(cn− 1 + an− 1) + 2n− 2 (cn− 2 + an− 2)+ . . .+ 21(c1 + a1) + c0+a0.
Also, you have to keep in mind that c⊕ (c0||c1||. . .||
cn− 1)� (c⊕ c0||c⊕ c1. . .||c⊕ cn-1) and (ca0||ca1||. . .||can) ⊕
(cb0||cb1||. . .||cbn)� (ca0⊕ cb0||ca1⊕ cb1||. . .||can⊕ cbn). -e
concatenation of two ciphertext arrays A[] and B[] can be
described as A[]||B[], and it generates a new array of ci-
phertexts. Finally, C[]�C[]>> 1 means C[i+ 1]�C[i] for all
i� 0, . . ., len(C[])− 2 and C[0]� 0.

4.3.1. Addition/Subtraction. -e addition algorithm is
constructed in a manner as similar as the HEAAN-based
method. However, in this TFHE based method, arrays of
ciphertexts are used to represent the components of the
representation and each ciphertext has one bit value, which
complicates the process as shown in Figure 17. We use
E-KSA as building block. -e input of E-KSA, however, is
arrays of ciphertexts instead of ciphertexts of multiple slots.
Our implementation of E-KSA considered that. Figure 18
shows an implementation of Equality Comparison Circuit
(TFHE_EQCC()) for TFHE representation, which is also a

building block for addition operation. We also introduce the
negate function (Negate()) which flips the bits in the input
set of ciphertexts in Figure 19.

Figure 20 shows the procedure of addition operation
with TFHE-based representation. For subtraction, the ad-
dition operation can be used after modifying the sign of the
value to be subtracted.

4.3.2. Multiplication. -e multiplication operation proceeds
as follows. First, a basic operation is performed in which an
XOR operation is performed on sign portions and the addition
is performed on exponent portions. -en, the result of the
multiplication operation of the fraction parts is applied. When
adding the exponent parts, 127 is subtracted from the addition
result to get the correct result. -is is because the exponent
part is basically expressed by adding 127 so that a negative
number can be expressed with unsigned bit-strings. -e
overall multiplication process is shown in Figure 21 below.

Among the three operations in Figure 21, (1) and (2) are
easy to implement, so we focus on (3). To perform (3), the
numbers actually represented by C1[FRAC] and C2[FRAC]
must be restored.-e bits in C1[FRAC] and C2[FRAC]mean
the values to the right of the decimal point in the two
numbers’ fraction parts, and the leading “1” to the left of the

Input: C1[SIGN], C2[SIGN], C1[EXPO], C2[EXPO], C1[FRAC], C2[FRAC] (C1: Dividend, C2: Divisor)
1. Adjust C1 to make C1[FRAC] < C2[FRAC] < 2 ∗ C1[FRAC]
2. Cexpo ← HEAAN_XOR (C2[EXPO], 1c) + 1 // 2′s complement of C2[EXPO]
3. Cout[EXPO] ← E-KSA (C1[EXPO], Cexpo) // Cout[EXPO] = C1[EXPO] – C2[EXPO]
4. Cinv ← 1/C2[FRAC]
5. Cout[FRAC] ← C1[FRAC] ∗ Cinv
6. Cout[SIGN] ← HEAAN_XOR (C1[SIGN], C2[SIGN])
7. Output Cout = (Cout[SIGN], Cout[EXPO], Cout[SIGN])

Figure 14: Division operation in HEAAN-based representation.

Input: C1[EXPO], C2[EXPO], C1[FRAC], C2[FRAC],
1.1. i ← 1, cout ← 0 , cprev ← 0, CA ← C1[FRAC], C1[FRAC] ← 0, Cexpo ← C1[EXPO], C1[EXPO] ← 0
1.2. C2A ← CA ∗ 2
1.3. ccurr ← COMPHEAAN (C2[FRAC], C2)
1.4. C1[FRAC] ← C1[FRAC] + (1 – cprev) ∗ ccurr ∗ C1[FRAC],
1.5. C1[EXPO] ← C1[EXPO] + (1 – cprev) ∗ ccurr ∗ Cexpo
1.5. i ← i + 1, CA ← C2A, Cexpo ← Cexpo – 1
1.6. if i < 256 goto step 3
1.7. Output C1[FRAC], C1[EXPO]

Figure 15: Details of Step 1 of the division operation.

Step 1. Convert the plaintext number to IEEE 754 representation

Step 2. Encrypt each part separately with TFHE

Sign 2exponent Fraction

Sign

30.3

0 10000011 11100100110011001100110

0 10000011 11100100110011001100110

2exponent Fraction

Ciphertext

Figure 16: Creating a ciphertext of a floating-point number with
TFHE.

10 Security and Communication Networks

decimal point is omitted as specified by the standard.
-erefore, the multiplication calculation should be per-
formed after recovering the “1”. -erefore, the multiplica-
tion is performed by attaching an encoding of “1” to the
most significant digit, which is just left to the decimal point.
In this case, the multiplication result cannot exceed 4, so the
result is a 46-bit value with two bits to the left of the decimal
point and the remaining 44 bits to the right.

After calculating Cm[], the final step is to check whether
the value in the ciphertext Cm[0], which represents the most
significant bit of the multiplication result and 1 bit left away
from the decimal point, is 1. If Cm[0] is 1, the fraction part of

the multiplication result is Cm [1]∼Cm [22], and the ex-
ponent value should be incremented by one. If Cm[0] is 0,
that means Cm [1] is 1, so the exponent does not increase and
the fraction part of the result is Cm [2]∼Cm [24]. -emethod
that reflects this is shown in Figure 22 below.

4.3.3. Division. -e division operation is similar to the
multiplication operation. -at is, to calculate the exponent
part, the exponent value of the denominator is subtracted
from the numerator, and division operation is performed
between the fraction parts of them. Since the exponent

S1

S2

S3

S8

Z
Z
Z

ONE

Z
S8

S9

S10

S30

KSA
⊕

SHIFT (>>)

B8

S8

S9

S11

S31

...

...

...
...

...

...
...

...

CS[FRAC]CB[FRAC]

KSA

KSA0

KSA1

KSA2

KSA3

KSA4

KSA8

KSA7

KSA78

KSA9

KSA10

KSA11

KSA31

KSA result

KSA result

Comparison
result

CB[EXPO]CS[EXPO] ONE Comparison
result

Comparison
module Ccomp

Ccomp

Fraction
addition

result

KSA7

KSA8

KSA9

KSA10

KSA11

KSA31

B8

B3

B2

B1

Figure 17: Overview of addition operation in TFHE-based method.

Input: CA[], CB[] // Arrays of encrypted bits, assumes length of CA[] and CB[] are same.
1. cout ← 1
2. For i = 0 to len (CA[]) – 1

2.1 c ← CA[i] ⊕ CB[i]
2.2 c ← c ⊕ 1 // negate c
2.3 cout ← cout∙c

3. Output cout

Figure 18: Equality comparison circuit for TFHE-based representation (TFHE_EQCC).

Input: C[] // Arrays of encrypted bits, assumes length of CA[] and CB[] are same.
1. cout ← 1
2. For i = 0 to len (C[]) – 1

2.1 C[i] ← C[i] ⊕ 1
3.C[] ← E-KSA (C[], 1) // 1 should be contained an array of ciphertext C’[] where the first is 1

// and the others set to zero.
4. Output C[]

Figure 19: Negate() function used in TFHE-based representation.

Security and Communication Networks 11

should be added to 127 (�2((length of exponent bits)− 1) − 1) to
represent the negative exponent, 127 should be added to the
resultant exponent after the subtraction. An overview of
division operation to calculate the resultant exponent and
fraction is shown in Figures 23 and 24, respectively.

After calculating the exponent and the fraction, we need
to correct them because the range of the result of calculating
the fraction part is (0.5, 2).-us, if the fraction part’s result is
less than 1, 1 must be subtracted from the exponent and the
bit position of the resultant fraction must be shifted to left by
1 bit. -e sign is determined by XORing the signs of the
numerator and denominator. Figure 25 shows the

operations to be performed for division. Cout[EXPO] and
Cout[FRAC] are the result values, C1 � (C1[SIGN],
C1[EXPO], C1[FRAC]) is the numerator, and
C2 � (C2[SIGN], C2[EXPO], C2[FRAC]) is the denominator.

As with multiplication, the most important and difficult
process is (3).We use the nonrestoring division [31] method,
which uses the divide-and-conquer to implement (3). -is is
known to be more efficient than the well-known methods
such as those of Newton-Rapth [32] and Burnikel and
Ziegler [33]. Figure 26 shows the result of implementing the
nonrestoring division algorithm [15] to make it work on
ciphertext input. -is algorithm assumes that the highest-

Input: CB = (CB[SIGN], CB[EXPO], CB[FRAC]), CS = (CS[SIGN], CS[EXPO], CS[FRAC])

1. ccomp ← COMP (CB[EXPO]||CB[FRAC], CS[EXPO]||CS[FRAC]) // absolute value comparison

2. csign ← 1 ⊕ CB[SIGN] ⊕ CS[SIGN]

3. Cout[SIGN] ← (csign∙CB[SIGN]) ⊕ ((1 ⊕ csign)∙(ccomp∙CB[SIGN] ⊕ (1 ⊕ ccomp)∙CS[SIGN]))

4. CB_temp[] ← 0||1||CB[FRAC][0]||CB[FRAC][1]||…||CB[FRAC][22], //01.(FRAC_B)

CS_temp [] ← 0||1||CS[FRAC][0]||CS[FRAC][1]||…||CS[FRAC][22] //01.(FRAC_S)

5. ceqcc ← TFHE_EQCC (CB[EXPO], CS[EXPO])

6. // Dealing with the case where csign = 1
6.1 Cadd[] ← E-KSA(CB_temp[], CS_temp[])
6.2 C0_e1[] ← E-KSA(CB[EXPO], Cadd[0]) // if Cadd[0] is 1, exponent is increased
6.3 Cu[] ← (C’add[24]C’add[23]…C’add[3]C’add[2])(2)

where C’add[i] ← Cadd[i]∙(1 ⊕ Cadd[i – 1])∙(1 ⊕ Cadd[i – 2])∙…. ∙(1 ⊕ Cadd[0])
6.4 C’u[] ← Negate (Cu[]), C’u[] = E-KSA(C’u[], 1)

6.5 C0_e1[] ← E-KSA(C0_e1[], C’u[])
6.6 C0_f1[] ← Cadd[0]∙(Cadd[1]||Cadd[2]||…||Cadd[23])

6.7 For i = 1 to 24
6.7.1 C0_f1[] ← C0_f1[] ⊕ C’add[i]∙(Cadd[i + 1]||…||Cadd[24]||0||…||0)// # of 0 is (i – 1)

7. // Dealing with the case where csign = 0
7.1 CS_temp[] ← Negate (CS_temp[])
7.2 The rest of steps are the same as step 6 beginning from 6.1. However, C0_e2 is
used in place of C0_e1 and C0_f2 is used in place of C0_f1

8. Cout[EXPO] + = ceqcc∙((csign∙C0_e1) ⊕ (1 ⊕ csign)∙C0_e2)
9. Cout[FRAC] + = ceqcc∙(csign∙C0_f1 ⊕ (1 ⊕ csign)∙C0_f2)
10. CS[EXPO] ← E-KSA(CS[EXPO], 1), CS_temp ← CS_temp >> 1

11. i ← i + 1
12. if (i < 128) goto Step 5.
13. Output Cout = (Cout[SIGN], Cout[EXPO], Cout[FRAC]

Figure 20: -e addition algorithm for the TFHE-based representation. It takes CB, CS and outputs Cout.

Cout[SIGN] ← C1[SIGN] ⊕ C2[SIGN]
Cout[EXPO] ← C1[EXPO] + C2[EXPO] – 127
Cout[FRAC] ← C1[FRAC] ∗ C2[FRAC]

(1)
(2)
(3)

Figure 21: Multiplication in TFHE-based representation.

Cout[EXPO] = E-KSA(Cout[EXPO], Cm[0])
Cout[FRAC] = Cm[0]∙(Cm[1]||…||Cm[23]) ⊕ (1 ⊕ Cm[0])∙(Cm[2]||…||Cm[24])

Figure 22: Details of calculating the exponent and fraction in multiplication in TFHE-based representation.

12 Security and Communication Networks

order bits are stored in index 0 of each input array, and the
lower-order bits are stored as the index becomes larger. -e
bit length of both dividend and divisor is 24 bits each.

We deal with how to calculate (3) specifically. Since the
mantissa is represented by omitting 1 immediately to the left of
the decimal point which is the largest digit, in order to perform
division correctly, the omitted bits should be restored before
starting the division operation. To do this, the size of the ci-
phertext arrays indicating both the dividend and divisor is
increased by one each, and we place an encoding of 1 to the
highest position (i.e., the zeroth index). -en, division is
performed through R_DIV ().-e result is a 25-bit quotient. In
this case, if the bit value of the highest position is 1, the next 23
bits are stored in the resultant fraction. Otherwise, the value of
the second digit is 1 because the division quotient range is (0.5,

2). -erefore, the subsequent 23 bits are stored in the fraction
part. If so, the value of exponent must be decreased by one.
Figure 27 shows an example of the case where the left part of
the decimal point becomes zero in the fraction part of the
division result.-e steps to be performed is shown in the figure.
-e details of (3) is shown in Figure 28.

4.3.4. Comparison and Equality Check. -e comparison
operation can be done using the COMP() circuit described in
Figure 5(B), using the bitwise concatenation results of all of the
sign, exponent, and fraction ciphertext arrays in both values to be
compared as inputs. IEEE 754 standard exactly uses the same
approach to compare the floating-point numbers.-e process of
comparing twonumbers can be expressed as shown in Figure 29.

B1

B2

B3

B8

S1

S2

S3

S8

...

...
...

Binary
subtraction

KSA

Sub1

Sub2

Sub3

Sub4

Sub8

Substraction
result

BiasCB[EXPO] CS[EXPO] Cout[EXPO]

...

Z
Z

One
One

One

...

C1

C2

C3

C8

Figure 23: Exponent calculation module in the division operation of TFHE-based method.

R0 R1 R2

Remainder 1. Shi� le� << Quotient

R22...

M0 M1 M2

Divisor

2. Comparison module

5. Binary subtraction

3. Divisor
copy

Comp_
Result

4. BITWISE-AND

M22...

M0 M1 M2 M22...

Q0 Q1 Q2 Q22...

Figure 24: Fraction calculation module in the division operation of TFHE-based method.

Cout[SIGN] ← C1[SIGN] ⊕ C2[SIGN] ------ (1)
Cout[EXPO] ← C1[EXPO] – C2[EXPO] + 127 ------ (2)
Cout[FRAC] ← C1[FRAC]/C2[FRAC] ------ (3)

Figure 25: An overview of the division operation in TFHE-based representation.

Security and Communication Networks 13

-e equality can be easily checked as they are repre-
sented using bits. Two values are treated the same only if
they have the same bits.

4.4. Discussion on theDifferences between the Implementation
of Two Methods. -e differences between the implementa-
tion of the two methods can be summarized as follows. First,
in the operation with exponent values, the HEAAN-based
method can reduce the number of operations by using the

SIMD operation, but the TFHE-basedmethodmust perform
operations in bit units, which requires large number of
TFHE operations.

Second, the HEAAN-based implementation can im-
plement the operations for dealing with the mantissa part
with a small number of HEAAN operations using arith-
metic operation provided by HEAAN, but in TFHE-based
method, the operation must be processed for each bit of
mantissa, which also requires a large number of TFHE
operations.

Input: C1[] (Dividend, 24bit), C2[] (Divisor, 24bit)
1. Initialize Q[]: Q[0] = 0, Q[1] = C1[0] ,…, Q[23] = C1[23] (len (Q[]) = 24 bit)
2. i ← 0
3. Initialize R[]: R[0] = 0, …, R[24] = 0
4. Q[] = Q[] << 1 (Q[0] ← Q[1], Q[1] ← Q[2], …, Q[23] ← Q[24], Q[24] ← 0)
5. R[] = R[] << 1
6. ccomp ← COMP(R[], C2[])
7. Q[24] ← ccomp
8. Csub[] ← ccomp(C2[0]||C2[1]||…||C2[23])
9. Csub[] ← Csub[0] ⊕ 1||Csub[1] ⊕ 1||…||Csub[23] ⊕ 1
10. Csub[] ← E-KSA(Csub[], 1)
11. R[] ← E-KSA(R[], Csub[])
12. i ← i + 1, if i < 24 then goto step 4
13. Return Q[]

Figure 26: Restoring division algorithm (R_DIV()).

0 10000011 1.00101000000000000000000

1.10111011100001010001111

0.10101010110110011111001

1.01010101101100111110011

10000011

01111111

01111110

–1

÷

=

<<

0

0

0

18.50

27.72

0.67

Figure 27: An example of normalizing the fraction part in the division result.

Input: C1[FRAC], C2[FRAC], Cout[EXPO]
Output: Cout[FRAC], (Updated) Cout[EXPO],
1. C1_temp[] ← 1||C1[FRAC], C2_temp[] ← 1||C2[FRAC]
2. Q[] ← R_DIV(C1_temp[], C2_temp[])
3. Cout[FRAC] ← Q[0]∙(Q[1]||Q[2]||…||Q[23]) ⊕ (1 ⊕ Q[0])∙(Q[2]||Q[3]…||Q[24])
4. Csub[] ← 1||1…1||Q[0] (len (Csub[]) = 8)
5. Csub[] ← E-KSA(Csub[], 1) // Csub[] = –Q[0]
6. Cout[EXPO] ← E-KSA(Cout[EXPO], Csub[])

Figure 28: Procedure for calculating Cout[FRAC] with updating Cout[EXPO] in division.

Input: C1 = (C1[SIGN], C1[EXPO], C1[FRAC]), C2 = (C2[SIGN], C2[EXPO], C2[FRAC])
Output: cout (a ciphertext that contains 1 if C1 > C2 or 0 otherwise)
1. C1_concat[] ← C1[SIGN]||C1[EXPO]||C1[FRAC], C2_concat ← C2[SIGN]||C2[EXPO]||C2[FRAC]
2. cout ← COMP (C1_concat, C2_concat)
3. Output cout

Figure 29: Comparison operation on TFHE-based representation.

14 Security and Communication Networks

In the above two cases, the HEAAN-basedmethod seems
to be dominant, but HEAAN requires bootstrapping when it
needs complex arithmetic with their floating point repre-
sentations: especially when it needs calculation of more than
a predetermined multiplication depth. In this case, HEAAN
needs a lot of computation resources. -us, it will be much
slower than the TFHE-based method.

5. Performance Evaluation

In this section, we compare the performance of the two
encrypted floating-point values’ representations proposed in
this paper. -e first subsection deals with the performance
on various exponent bits. -en, we discuss the effect of the
length of mantissa bits in the next subsection. Before
showing the details of experiments, we provide the com-
plexity analysis result of the operations in terms of the re-
quired multiplication operation on each FHE in Table 1.
Because of the SIMD operation supported, HEAAN requires
less number of multiplication operations. However, some
operations which require heavy multiplication depth such as
division need bootstrapping operation in HEAAN, which
causes heavy delay.

5.1. Experiment on Various Exponent Bits. We measured the
execution time of the operations on both methods on
various exponent bits. -e environment used is as shown in
Table 2. -e performance of the E-KSA(), COMP(), and
MinMax() modules used to implement the operations in
each representation is compared in Figure 30. Since HEAAN
uses them only to deal with the exponent bits, we measure
the execution time of the modules in processing only ex-
ponent bits in the TFHE case, for fair comparison. In order
to show the performance change according to the bit length
of the exponent, we measure the execution time with the
exponent bit lengths of 2, 4, and 8 cases, respectively. -e
results are shown in the figure below. As shown in the figure,
when bitwise operation is implemented in HEEAN, it takes
more time than TFHE because it requires to perform
interslot calculation. However, in the case of TFHE, the
longer the bit length, the longer the execution time, but
HEAAN is not.

Next, we compare the performance of arithmetic
operations. Figure 31 shows the comparison of execution
time of arithmetic operations. We can say the HEAAN-
based method is superior to the TFHE-based one in terms
of the speed of the arithmetic operations because the
operations that should be done between the fraction parts
of both operands can be executed more efficiently than the
TFHE. One peculiar point is that the addition/subtraction
operation is the slowest. -is is due to the nature of the
FHE operation. In the case of addition, the addition
operation of the fraction part must be performed after the
exponent has been adjusted. However, in the case of
operations on data encrypted with FHE, since the expo-
nent parts are also encrypted, we cannot make both
encrypted operands have the same exponents. -erefore,
the actual operation is performed by performing the

operation of the fraction part for all possible exponent
values and selecting the result only when the exponent
values of the two operands match. -erefore, since the
number of combinations of all possible exponents of both
operands is large, the addition/subtraction operation
takes the longest.

Figure 32 compares the performance of size comparison
and equivalence operations. Since the comparison operation
takes too long when the exponent is 8 bits, the experiment is
performed only on 2-bit and 4-bit exponents. In this case,
the HEAAN-based method consumes too many multiply
operation depths for comparison operations, resulting in
poor performance due to the large number of bootstrapping.
Finally, we compare the execution time of the equality check
operation. We can confirm that TFHE is five times faster
because of the inefficiency of the equality check operation
between HEAAN ciphertexts.

Table 1: Computational complexity analysis on the operations in
terms of the number of FHE multiplication operations required.

Operations TFHE HEAAN
Addition O(2e(m + e)log(m + e)) O(2elog(e))

Multiplication O(m2 + e log(e)) O(2ee)

Division O(m2 + me + e log(e))
O(m log(e))+ 2

bootstraps
Comparison O((m + e)log(m + e)) O(log(e))

m: bit length of mantissa, e: bit length of exponent.

Table 2: Experiment environment for the experiments in Section
5.1

TFHE HEAAN

Parameters Lambda� 128
logN� 15, log p� 23,
log q� 29, logQ� 620,

log T� 2

Experiment environment
Intel i7-6700, 3.40GHz, 16.0GB

RAM,
Ubuntu 14.04LTS

COMP ()
MinMax ()
E-KSA ()

2 4 8 2 4 8
TFHE HEAAN

Performance comparison of COMP (), MinMax (), and E-KSA ()

Bit length

0
5

10
15
20
25
30
35
40

Se
co

nd
 (s

)

Figure 30: Performance comparison of building blocks.

Security and Communication Networks 15

5.2.Experiments onVariousMantissaBits. Experiments with
various mantissa bit lengths are presented in this subsection.
-e experimental environment is shown in Table 3.
According to the developers of the libraries, both libraries
offer 128-bit security in this setting. -e experimental
results are shown in Table 4 below. In order to provide
mantissas of various bit lengths in the HEAAN-based
method, we adjusted the “quantize-bit” parameter value in
HEAAN. In each slot of the HEAAN ciphertext, there is a
plaintext value and the noise which is attached to the
plaintext value during encryption or arithmetic opera-
tions. -e quantize-bit defines the bit length of those
combined values. Since the bit length of noise added
during encryption is at most five with a very high
probability, which is around (1 − 3 ∗10− 7) (this refers to Pr
[μ-5σ<X<μ+5σ], where X is a random variable of standard
normal distribution with parameter (μ , σ); the σ value
used in HEAAN is 3.2), we set the quantize bit as the bit
length of the mantissa bit plus five. -e quantize bit values
used are shown as p-bit in Table 4.

From Table 4, we can see that the comparison operation
is much faster in the TFHE-based method than in the
HEAAN-based implementation. However, in the multipli-
cation operation, HEAAN-based method is better than
TFHE in terms of the required time. Regarding the other
operations, HEAAN seems better. However, as the exponent
bit length is longer, the gap of the performance will be
reduced because more multiplication depth is necessary, so
bootstrapping may be needed in the HEAAN-based
implementation. -us, it is estimated that TFHE-based
method might be better if the exponent bit is above a certain
threshold.

5.3. Experiment on Precision in the HEAAN-Based Method.
To verify the precision of the HEAAN-based method, we
conducted the following experiment. After selecting two
random float-type values, they were multiplied by each
other, and then another random float-type number was
selected and multiplied by the previous result of multipli-
cation. -is process was repeated 10 times. We performed
this process using only plaintext and performed the same
process with the encrypted values generated with HEAAN-
based method. We decrypt the result of multiplication in
each step and compare it with the result of multiplication
with the plaintexts. To measure the error of calculation, we
used the following formula: |(multiplication result with
plaintexts)− (multiplication result with HEAAN cipher-
texts)| |(multiplication result with plaintexts)|. It means the
relative error of calculation. -e measurement results are
shown in Table 5 below. Since 2− 23 is around 1.192E-7, we
can say the error generated by the multiplication on two

92
8.

7 37
61

.5 54
88

7

94
.5

22
94

.4 15
28

4

93
1.

9

37
63

.1

54
89

5

95
.2

22
98

.8 15
36

3

11
16

.2

11
29

.7

11
52

20
.2

31
.3

39
.3

72
04

.3

72
13

.8

72
36

22
.1 34
.2

39
.9

3

2 4 8 2 4 8
TFHE HEAAN

Performance on arithmetic operations

Exponent bitlength

Addition
Subtraction

Multiplication
Division

1

10

100

1000

10000

100000

Se
co

nd
 (s

)

Figure 31: Performance on arithmetic operations.

TFHE
HEAAN

2.6
5.1

2.58 3.08 4.11

511.3

1859.2

19.2 20.12 22.4

Comp-2 Comp-4 Equal-2 Equal-4 Equal-8

Comp-2: comparison-2-bit expoenent
Comp-4: comparison-4-bit expoenent
Equal-2: equality check-2-bit exponent
Equal-4: equality check-4-bit exponent
Equal-8: equality check-8-bit exponent

1
2
4
8

16
32
64

128
256
512

1024
2048

Ex
ec

ut
io

n
tim

e (
Se

c.)

Figure 32: Performance comparisons on comparison and equality-
check operations on various exponent bits.

Table 3: Experiment environment for the experiments in Section
5.2.

TFHE HEAAN

Parameters Lambda� 128 logN� 15, log p� (Vary. See
Table 4), logQ� 1446, log T� 2

Experiment
environment

Intel i9-9900K, 3.6GHz, 64.0 GB RAM, Ubuntu
18.04 LTS

16 Security and Communication Networks

HEAAN-based encrypted floating-point representations is
small enough compared to the errors generated by the
multiplication on float-type values.

6. Conclusion

In this paper, we have proposed a new encrypted floating-
point number representation method that supports full
arithmetic and comparison operations and is able to rep-
resent a real number whose range is very similar to that
supported by the IEEE 754 standard. Our representation has
been implemented on two recent FHE schemes, HEAAN
and TFHE, to demonstrate the feasibility of the proposed
method. We hope the proposed representation will be ap-
plied to the privacy-preserving applications where the
floating point numbers are used in common, such as the
machine learning with private data.

Data Availability

No data were used to support this study.

Conflicts of Interest

-e authors declare that they have no conflicts of interest
regarding the publication of this paper.

Acknowledgments

-is work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korean gov-
ernment (MSIT) (No. 2019R1A2C4069769).

References

[1] S. Chhertri, N. Rashid, S. Faezi et al., “Security trends and
advances in manufacturing systems in the era of industry 4.0,”
in Proceedings of the 2017 IEEE/ACM International Confer-
ence on Computer-Aided Design (ICCAD), Irvine, CA, USA,
November 2017.

[2] J. Campos, P. Sharma, E. Jantunen, D. Baglee, and
L. Fumagalli, “-e challenges of cybersecurity frameworks to
protect data required for the development of advanced
maintenance,” Procedia CIRP, vol. 47, p. 227, 2016.

[3] C. Gentry, “Fully homomorphic encryption using ideal lat-
tices,” in Proceedings of the 41st annual ACM symposium on

Symposium on theory of computing—STOC’09, pp. 169–178,
Bethesda, MA, USA, May–June 2009.

[4] L. Ducas and D. Micciancio, “FHEW: bootstrapping homo-
morphic encryption in less than a second,” in Advances in
Cryptology–Eurocrypt 2015, pp. 617–640, Springer, Berlin,
Germany, 2015.

[5] S. Halevi and V. Shoup, “Bootstrapping for HElib,” in
Eurocrypt’15, pp. 641–670, Springer, Heidelberg, Germany,
2015.

[6] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homo-
morphic encryption from (standard) LWE,”
SIAM Journal on Computing, vol. 43, no. 2, pp. 831–871, 2014.

[7] K. Lauter, M. Naehrig, and V. Vaikuntanathan, “Can ho-
momorphic encryption be practical?,” in Proceedings of the
3rd ACM workshop on Cloud Computing Security
Workshop—CCSW’11, pp. 113–124, Chicago, IL, USA, Oc-
tober 2011.

[8] M. Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully
homomorphic encryption over the integers,” in Eurocrypt
2010, LNCS, vol. 6110, pp. 24–42, Springer, Heidelberg,
Germany, 2010.

[9] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène,
“Faster Fully Homomorphic Encryption: Bootstrapping in
Less than 0.1 Seconds,” in Asiacrypt 2016, pp. 3–33, Springer,
Heidelberg, Germany, 2016.

[10] H. Chen, K. Laine, and R. Player, “Simple encrypted arith-
metic library—SEAL v2.1,” in Financial Cryptograph and
Data Security, Springer, Heidelberg, Germany, 2017.

[11] C. Gentry, S. Halevi, and N. P. Smart, “Homomorphic
evaluation of the AES circuit,” Lecture Notes in Computer
Science, vol. 12, no. 7417, pp. 850–867, 2012.

[12] S. Halevi and V. Shoup, “Algorithms in HElib,” in Crypto’14,
vol. 8616, Springer, Heidelberg, Germany, 2014.

[13] C. Z. Janikow and Z. Michalewicz, “An experimental com-
parison of binary and floating point representations in genetic
algorithms,” in Proceedings of the ICGA’91, pp. 31–36, San
Diego, Calif, USA, July 1991, http://www.cs.umsl.edu/
~janikow/publications/1991/GAbin/text.pdf.

[14] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic
encryption for arithmetic of approximate numbers,” in
Proceedings of the International Conference on the Deory and
Application of Cryptology and Information Security (ASIA-
CRYPT’17), pp. 409–437, Hong Kong, China, December 2017.

[15] G. David, “What every computer scientist should know about
floating-point arithmetic,” ACM Computing Surveys, vol. 23,
no. 1, pp. 5–48, 1992.

[16] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “Boot-
strapping for approximate homomorphic encryption,” in

Table 4: Experiment results on various mantissa bit lengths when the bit length of exponent is fixed to four (in seconds).

Fraction bit length
TFHE HEAAN

Log p (p-bit)
ADD MULT DIV COMP ADD MULT DIV COMP

23 489.613 162.195 686.513 5.70388 185.735 10.735 417.938 171.706 28
33 1351.28 446.062 2275.67 12.0943 166.174 10.783 716.644 152.721 38
43 1167.55 571.274 2950.23 12.6297 583.492 10.659 1066.72 531.607 48
52 1207.52 686.463 3559.19 13.0962 1110.84 10.449 2162.76 941.9 57

Table 5: Relative errors between the multiplication result with ciphertexts and that with plaintexts.

Multiplication round 1 2 3 4 5 6 7 8 9 10
Relative error 1.21E − 7 6.92E − 8 7.91E − 8 9.04E − 8 1.03E − 7 0 6.75E − 8 1.54E − 7 0 0

Security and Communication Networks 17

http://www.cs.umsl.edu/~janikow/publications/1991/GAbin/text.pdf
http://www.cs.umsl.edu/~janikow/publications/1991/GAbin/text.pdf

Proceedings of the 2018 Annual International Conference on
the Deory and Applications of Cryptographic Techniques
(EUROCRYPT’18), pp. 306–384, Aarhus, Denmark, May
2018.

[17] J. H. Cheon, K. Han, S.-M. Hong et al., “Toward a secure
drone system: flying with real-time homomorphic authenti-
cated encryption,” IEEE Access, vol. 6, pp. 24325–24339, 2018.

[18] K. Han, S. Hong, J. Cheon, and D. Park, “Logistic regression
on homomorphic encrypted data at scale,” in Proceedings of
the 31st Annual Conference on Innovative Applications of
Artificial Intelligence (IAAI-19), Anaheim, CA, USA, July
2019, https://aaai.org/Conferences/AAAI-19/iaai-19/.

[19] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène,
“Faster packed homomorphic operations and efficient circuit
bootstrapping for TFHE,” in Advances in Cryptology-
—ASIACRYPT 2017, vol. 10624, pp. 377–408, Springer,
Heidelberg, Germany, 2017.

[20] C. Gentry, A. Sahai, and B. Waters, “Homomorphic en-
cryption from learning with errors: conceptually-simpler,
asymptotically-faster, attribute-based,” in CRYPTO’13,
vol. 8042, pp. 75–92, Springer, Heidelberg, Germany, 2013.

[21] S. Arita and S. Nakasato, “Fully homomorphic encryption for
point numbers,” in Proceedings of the 12th International
Conference, Information Security Practice and Experience
(ISPEC) 2016, vol. 10143, pp. 253–270, Zhangjiajie, China,
November 2016.

[22] J. Fan and F. Vercauteren, “Somewhat practical fully ho-
momorphic encryption,” IACR Cryptology ePrint Archive,
vol. 2012, p. 144, 2012, https://eprint.iacr.org/2012/144.

[23] T. Zhu, X. Zou, and J. Pan, “Query with SUM aggregate
function on encrypted floating-point numbers in cloud,”
Journal of Information Processing Systems (JIPS), vol. 13, no. 3,
pp. 573–589, 2017.

[24] P. Paillier, “Public-key cryptosystems based on composite
degree residuosity classes,” in Proceedings of the 18th Annual
International Conference on the Deory and Applications of
Cryptographic Techniques (EUROCRYPT) 1999, pp. 223–238,
Prague, Czech Republic, May 1999.

[25] A. Jaschke and F. Armknecht, “Accelerating homomorphic
computations on rational numbers,” in Proceedings of the
Applied Cryptography and Network Security (ACNS) 14th
International Conference, pp. 19–22, Guildford, UK, June
2016.

[26] S. Arita and S. Nakasato, “Fully homomorphic encryption for
point numbers,” in Proceedings of the International Confer-
ence on Information Security and Cryptology, pp. 253–270,
Springer, Seoul, Korea, December 2016.

[27] N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter,
M. Naehrig, and J. Wernsing, “Manual for using homo-
morphic encryption for bioinformatics,” Proceedings of the
IEEE, vol. 105, no. 3, 2017.

[28] K. Seo, P. Kim, and Y. Lee, “Implementation and performance
enhancement of arithmetic adder for fully homomorphic
encrypted data,” Journal of the Korea Institute of Information
Security & Cryptography, vol. 27, no. 3, pp. 413–426, 2017.

[29] P. M. Kogge and H. S. Stone, “A parallel algorithm for the
efficient solution of a general class of recurrence equations,”
IEEE Transactions on Computers, vol. C-22, no. 8, pp. 786–
793, 1973.

[30] J. Cheon, D. Kim, D. Kim, H. H. Lee, and K. Lee, “Numerical
method for comparison on homomorphically encrypted
numbers,” in IACR Eprint Archive, Springer, Heidelberg,
Germany, 2019, https://eprint.iacr.org/2019/417.

[31] S. Kaur, M. Singh, and R. Agarwal, “Vhdl implementation of
non-restoring division algorithm using high speed adder/
subtractor,” International Journal of Advanced Research in
Electrical, Electronics and Instrumentation Engineering, vol. 2,
pp. 3317–3324, 2013, https://www.researchgate.net/
publication/250612202_VHDL_Implementation_of_Non_
Restoring_Division_Algorithm_Using_High_Speed_
AdderSubtractor.

[32] M. J. Flynn, “On division by functional iteration,” IEEE
Transactions on Computers, vol. C-19, no. 8, pp. 702–706,
1970.

[33] C. Burnikel and J. Ziegler, “Fast recursive division,” Research
Report Max-Planck-Institut fuer Informatik Research Report
MPI-I-98-1-022, Max–Planck–Institut für Informatik,
Saarbrücken, Germany, 1998.

18 Security and Communication Networks

https://aaai.org/Conferences/AAAI-19/iaai-19/
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2019/417
https://www.researchgate.net/publication/250612202_VHDL_Implementation_of_Non_Restoring_Division_Algorithm_Using_High_Speed_AdderSubtractor
https://www.researchgate.net/publication/250612202_VHDL_Implementation_of_Non_Restoring_Division_Algorithm_Using_High_Speed_AdderSubtractor
https://www.researchgate.net/publication/250612202_VHDL_Implementation_of_Non_Restoring_Division_Algorithm_Using_High_Speed_AdderSubtractor
https://www.researchgate.net/publication/250612202_VHDL_Implementation_of_Non_Restoring_Division_Algorithm_Using_High_Speed_AdderSubtractor

