
Research Article
A Mean Convolutional Layer for Intrusion Detection System

Leila Mohammadpour , T.C. Ling , C.S. Liew , and Alihossein Aryanfar

Department of Computer System & Technology, Faculty of Computer Science & Information Technology, University of Malaya,
W. Persekutuan Kuala Lumpur 50603, Malaysia

Correspondence should be addressed to Leila Mohammadpour; le.vesal@gmail.com

Received 29 March 2020; Revised 16 September 2020; Accepted 5 October 2020; Published 24 October 2020

Academic Editor: Tom Chen

Copyright © 2020 Leila Mohammadpour et al.(is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

(e significant development of Internet applications over the past 10 years has resulted in the rising necessity for the information
network to be secured. An intrusion detection system is a fundamental network infrastructure defense that must be able to adapt
to the ever-evolving threat landscape and identify new attacks that have low false alarm. Researchers have developed several
supervised as well as unsupervised methods from the data mining and machine learning disciplines so that anomalies can be
detected reliably. As an aspect of machine learning, deep learning uses a neuron-like structure to learn tasks. A successful deep
learning technique method is convolution neural network (CNN); however, it is presently not suitable to detect anomalies. It is
easier to identify expected contents within the input flow in CNNs, whereas there are minor differences in the abnormalities
compared to the normal content. (is suggests that a particular method is required for identifying such minor changes. It is
expected that CNNs would learn the features that form the characteristic of the content of an image (flow) rather than variations
that are unrelated to the content. Hence, this study recommends a new CNN architecture type known as mean convolution layer
(CNN-MCL) that was developed for learning the anomalies’ content features and then identifying the particular abnormality. (e
recommended CNN-MCL helps in designing a strong network intrusion detection system that includes an innovative form of
convolutional layer that can teach low-level abnormal characteristics. It was observed that assessing the proposed model on the
CICIDS2017 dataset led to favorable results in terms of real-world application regarding detecting anomalies that are highly
accurate and have low false-alarm rate as opposed to other best models.

1. Introduction

Worldwide economic and business advancement is closely
tied with Internet and enterprise networks. Organizations
have stronger ties with computer networks than before
within everyday operations and the ways that customers
share and store personal information [1]. (is rate of
progress is closely tied with the complicated management of
these networks, where network administrators are respon-
sible for any issues such as flash crowds, network elements
failures, mistakes with configurations, malicious attacks, and
more. By ensuring prevention or quick fixes of problems,
administrators protect the quality of connections for all
involved and prevent end users from having their services
disrupted [2, 3].

Governments and private organizations require solu-
tions offering stable performance in protecting the

information assets they hold from any unlawful or unwanted
accesses and attempt to prevent and detect intrusions [4].
Network intrusion detection system (NIDS) describes
overseeing and categorizing network flows based on whether
they are normal behavior occurring often in a network or if
they are movements which could endanger safety of in-
formation systems.

Denning [5] suggests building an intrusion detection
system (IDS) which would use a number of artificial in-
telligence (AI) approaches to detect abnormal movements
and potential intrusions. (is approach established a new
wing of intrusion detection systems, developed using
learning algorithms. In the last 30 years, machine learning
(ML) approaches have been used as a traditional way of
creating a network anomaly detection model.

A category of machine learning algorithms known as
deep learning has become more widely used in classification

Hindawi
Security and Communication Networks
Volume 2020, Article ID 8891185, 16 pages
https://doi.org/10.1155/2020/8891185

mailto:le.vesal@gmail.com
https://orcid.org/0000-0003-4596-0964
https://orcid.org/0000-0002-1225-7941
https://orcid.org/0000-0003-3217-3523
https://orcid.org/0000-0002-8361-8441
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8891185


and pattern recognition. Deep learning uses information
processing layers within a hierarchical architecture to create
the deep model. Deep learning has distinctive differences
from conventional machine learning, as it can find the ideal
features needed within raw data via certain nonlinear
transformations, wherein every transformation achieves a
greater complexity [6]. Using deep learning to counter-
information security problems has not been investigated for
very long, and so there are few research studies on the topic,
none of which use deep learning techniques to their full
potential [7].

Two major gaps were seen during the literature review of
anomaly detection problems. Firstly, there is a high false-
alarm rate [8–10] for the methods used in anomaly detec-
tion. Secondly, training datasets were used in the training as
well as the testing of models, employing cross-validation
processes. Most modern studies adopt this methodology,
and detection rates were extremely high. (is is seen in the
work of Kim et al. [11], who used a four-layer DNN with 100
units for intrusion detection on the KDD-CUP99 dataset,
showing 99% accuracy. However, these practices are not
considered reliable for anomaly detection problems since
models can be overflowed to perform at these extreme levels
[4].

(e key aim of this research study is to cover the gaps
described above, through the creation and implementation
of anomaly detection models, using cutting edge deep
learning models, and present an evaluation of these through
standardized classification quality metrics. Of the varied
practices existing in deep learning, CNN has had exceptional
performance when it comes to computer vision, including
face and object recognition. CNNs are a category of standard
neural networks, as they employ convolution and pooling
layers rather than completely linked hidden layers as seen in
traditional neural networks [12]. (is paper puts forward a
newer type of CNN, by learning the anomalies’ content
features, which can be beneficial when used in intrusion
detection. Furthermore, deep learning anomaly detection
models have been contrasted with popular classification
systems such as support vector machine (SVM), K-nearest
neighbor (KNN), decision tree, random forest, adaptive
boosting classifier, and gradient boosting. In order to further
cover the existing research gaps, some models were trained
on the training dataset, without any exposure to the test
dataset throughout this process. Following this, the models
were evaluated on the testing datasets, allowing for a more
accurate and fair evaluation of the model’s advantages,
through the use of previously unknown data instances used
at the time of testing.

(is study will put forward an innovative CNN archi-
tecture type, created to learn content features of anomalies,
while subsequently pinpointing the specific abnormality.
(e suggested CNN is used to design a robust NIDS, which
involves a new type of convolutional layer able to be taught
low-level abnormal characteristics. (e suggested CNN-
MCL produces the lower false alarm compared to the
original CNN.

In this paper, Section 2 will provide background in-
formation on the study topic, while Section 3 explains an in-

depth description of the suggested CNN-MCL layer. Section
4 will present the network architecture for the CNN-MCL
model. Section 5 will include the experimental performances
of the proposed algorithm on CICIDS2017 [13], while
Section 6 will share the conclusion of this study.

2. Background

In this section, related works and motivation, dataset de-
scription, and conventional CNN are presented.

2.1. Related Works and Motivation. Because of its efficiency
in finding ideal solutions within a finite amount of data, deep
learning has gathered significant research attention. Javaid
et al. [14] use a deep learning method in the context of a deep
neural network for flow-based anomaly detection, and it is
seen through the results that deep learning is able to be used
for anomaly detection in software-defined networks (SDNs).
Tang et al. [15] suggest a deep learning-based approach
involving the use of self-taught learning (STL) within the
benchmark NSL-KDD [16] dataset, in the context of a
network intrusion detection system. In the work of paper
[17], an RNN-based model is implemented for the purposes
of classification instead of pretraining. In addition, the NSL-
KDD dataset is employed for independent training and
testing sets, in order to appraise performance in pinpointing
network intrusions in both binary and multiclass classifi-
cations. (e results are then contrasted with J48, ANN, RF,
SVM, and other machine learning methods suggested in
earlier research.(e study of Zhao et al. [18] offers a cutting-
edge survey of deep learning applications in the context of
machine health monitoring. Experiments were conducted to
contrast conventional machine learning methods with four
widely employed deep learning methods (autoencoders,
restricted Boltzmann machine (RBM), CNN, and RNN).
(is study found that deep learning methods provide greater
accuracy over their conventional counterparts. In the work
of Alrawashdeh and Purdy [19], it is suggested that using a
RBM with a single hidden layer can undertake unguided
feature reduction. (e weights are then transferred to an-
other RBM in order to create a deep belief network (DBN),
and the pretrained weights are moved into a fine-tuning
layer made up of a logistic regression classifier (trained with
10 epochs) withmulticlass SoftMax. In the study of Kim et al.
[11], a DNN using 100 hidden units is put forward, in
conjunction with the rectified linear unit (RLU) activation
function and the ADAM optimizer.

(e study by Cordero et al. [20] suggested another
unsupervised method to train models the normal network
flows. RNN, autoencoder, and dropout concepts of deep
learning are employed to achieve this. (e performance of
these suggested methods is not fully released. Along the
same lines, Tang et al. [15] suggest a way of overseeing
network flow data. In addition, Kang and Kang [21] put
forward the notion of using an unsupervised DBN to train
certain features to initialize the DNN, offering greater
classification performance, even though specific details of
the approach are not provided. (eir appraisal depicts

2 Security and Communication Networks



superior outcomes when it comes to classification error
detection.

In the study by Bontemps et al. [22], a real-time col-
lective anomaly detection model using neural network
learning and feature operating was described. Here, a LSTM-
RNN is trained using normal time series data, prior to
making a live prediction for every time step. Furthermore,
Ma et al. [23] used the method of spectral clustering (SC) to
find the key properties of network traffic, and a multilayer
DNN was used to pinpoint attack types. (e findings denote
that superior performance was seen with the SC-DNN over
the SVM, backpropagation neural network (BPNN), ran-
dom forest (RF), and Bayesian methods, with the highest
level of accuracy. On the contrary, weight parameters and
thresholds for every DNN layer must be established ex-
perimentally and not theoretically. Erfani et al. [24] put
forward a mixed model, which used a DBN alongside a one-
class SVM. An unsupervised DBN was trained to pinpoint
common properties, and a one-class SVM was trained using
features taken through the DBN.

A NIDS using a supervised CNN-IDS has been pro-
posed, in which a datapreprocessing step normalizes the
dataset; the CNN is trained, optimal features are extracted,
and, finally, a SoftMax classifier is used to classify attacks [8].
To decrease computational costs, the traffic input vector is
reconfigured into an image format. (is model is evaluated
using the KDD-CUP99 dataset. Although the study sees a
reduction in detection time, the detection rate should be
increased and feature learning should be improved for the
model to learn the features with a small number of attack
categories.

In [25], a hybrid model leverages a grey wolf optimizer
(GWO) to propose a CNN for network anomaly detection,
and the GWO improves initial population generation, ex-
ploration, exploitation, and revamped dropout functionality.
In the first step, the GWO selects desired features to establish
optimal trade-off between the two main objectives of a
minimized feature set and reduced false-alarm rate. In the
second step, an improved CNN (ImCNN) is utilized for
anomaly classification, and the proposed model is subse-
quently evaluated on the DARPA98, KDD-CUP99, and
synthetic datasets.

To discriminate between normal and abnormal traffic,
and to auto-profile traffic patterns, D-PACK has been
proposed [9]. (is approach integrates an unsupervised
CNN model to investigate just the first few bytes of the first
few packets in each flow, therefore detecting abnormal traffic
early using raw packet-level data. D-PACK is assessed using
the USTC-TFC2016 dataset [26].

A combination of bidirectional long short-term memory
(BLSTM), attention mechanism, and multiple convolutional
(MC) layers has been suggested as the BAT-MC model [27].
(is approach uses the structured network traffic infor-
mation to generate time series features. (e MC layers
extract the local features, the BLSTM generates the packet
vectors, the attention mechanism screens the network flow
composed of packet vectors, and a SoftMax classifier is used
for final classification. (is model is tested with the NSL-
KDD and KDD-CUP99 datasets.

Zheng [28] propose two convolution and pooling layers
with batch normalization appended to each convolution
layer to reduce computational costs and speed up detection.
To determine the optimal model, different numbers of
convolution and pooling layers are examined and a SoftMax
classifier assesses the CNN-extracted features. Evaluation is
conducted using the KDD-CUP99 dataset.

An improved CNN for wireless network intrusion
detection has been proposed using stochastic gradient
descent (SGD) classification and KDD-CUP99-based
evaluation although this method demonstrated problems
with gradient dispersion and local optima [10]. An al-
ternative CNN model that uses a SoftMax classifier on the
KDD-CUP99 dataset is proposed [29] and shows that
increasing the number of epochs improves the accuracy of
the model. In addition, this approach demonstrates that a
CNN model achieves better performance as compared to
SVM and DBN.

CNNs offer potential benefits in learning image content
to achieve object detection, but they are not yet ideal for
anomaly discovery. Expected input flow content is easily
found in a CNN, while abnormalities exhibit only small
differences from these normal data, and this means that a
specific method is needed to detect these slight changes. IDS
researchers therefore work to explore whether or not CNNs,
for example, can learn to detect these abnormal charac-
teristics as well as normal content features.

Normal and abnormal data flows are not significantly
different, and the CNN must distinguish the variations. A
standard CNN learns the features that represent flow con-
tent; this is primarily normal data so that learning is based on
content and not on variation. Although CNN-based models
have been used to address key challenges in anomaly de-
tection [8–10, 25, 27–29], the mentioned problem of CNN
remains unresolved. Solutions proposed thus far have fo-
cused on feature selection, model structure, and fine-tuning,
while the main objective of MCL-CNN developed in the
present study is the detection of the minor differences be-
tween the abnormalities and the normal content. Further-
more, most existing studies have evaluated models using the
NSL-KDD or KDD-CUP99 datasets; the CICIDS2017 set
will be used here to evaluate the model with novel attacks in
the testing phase.

2.2. Convolutional Neural Networks. A CNN is a type of
neural network which aims to learn appropriate feature
representations of the input data. Under this type of ar-
chitecture, generally, the initial layers are a collection of
convolutional feature extractors used alongside an image
through a number of learnable filters. (e filters used act as a
sliding window, which moves across all areas of an input
image, where the overlapping distance is known as the stride,
and the outputs created are known as feature maps. Every
CNN layer is made up of numerous convolution kernels
employed to produce a different feature map. Neighboring
neurons areas are linked to a neuron of a feature map of the
next layer. To produce the feature map, all spatial locations
of the input share the kernel. Following convolution and

Security and Communication Networks 3



pooling layers, one or multiple full connected layers com-
plete the classification [30–33].

(e convolutional operation across input feature maps
and a convolutional layer within the CNN architecture is
provided through the following equation:

h(n)
j � 􏽘

K

k�1
h(n−1)

k ∗w
(n)
kj + b

(n)
kj , (1)

where ∗ is the a 2d convolution, h(n)
j is the jth feature

map’s output in the nth hidden layer, h(n−1)
k is the kth

channel in the (n − 1)th hidden layer, w(n)
kj is the weights of

the kthchannel in the jthfilter in the nth layer, and b
(n)
kj is its

corresponding bias term.
For every layer, the filter coefficients are seeded with

random values to start and then learned through the
backpropagation algorithm [34]. In addition, convolutional
layers also involve an activation function to establish non-
linearity. (e collection of convolutional layers produces a
substantial volume of feature maps. To help limit the di-
mensionality of these properties, convolutional layers are
followed by an additional layer, called pooling, in order to
limit the computational expense of training within the
network and reduce the potential for overfitting. A number
of pooling operations exist, including max, average, and
stochastic pooling. For the max-pooling layer, this acts as a
sliding window with a stride distance in place to set the
maximum value inside the dimension of a sliding window.

A CNN’s training is completed with an iterative algo-
rithm moving between feedforward and backpropagation
data movements. At every iteration of the backpropagation,
the convolutional filters and fully connected layers are
updated. A key aim is to limit average loss E across the true
class labels and the network outputs, i.e.,

E �
1
m

􏽘

m

i�1
􏽘

c

k�1
y
∗(k)
i log y

(k)
i􏼐 􏼑, (2)

where y
∗(k)
i and y

(k)
i are, respectively, the true label and the

network output of the ith input at the kth class with
m training input and c neurons in the output layer. A
number of solutions have been suggested to limit average
loss [35–37], and this paper employs the adaptive moment
estimation (Adam) [37] to train the model.

2.3.DatasetDescription. (is paper has presented numerous
experiments regarding the CICIDS2017 [13] dataset which is
an intrusion detection as well as prevention dataset. (e
Canadian Institute for Cyber Security (CIC) obtained this
dataset, and it is publicly available for researchers and
students. Recently, prominent IDS research has used this
dataset because of its criteria and because its size is the
largest available dataset concerning real-world data. (e fact
that the majority of other datasets have outdated data is a
well-known problem as intrusion attack types are constantly
changing and becoming increasingly sophisticated. Some
datasets also have other problems such as no metadata and
features, while some do not include adequate diversity in
known attacks. All criteria required for developing a precise

dataset, according to Gharib et al. [38], are fulfilled by the
CICIDS2017 dataset. Sharafaldin et al. [13] noted that this
dataset is the most complete one thus far. Furthermore, this
dataset includes favorable as well as recent common attacks
that are similar to the true real-world data (PCAPs). (e
results concerning the network traffic analysis conducted
through CICFlowMeter with labelled flows as per the time
stamp, source and destination ports, source and destination
IPs, and protocols and attack (CSV files) are also included.

(e CICIDS2017 benchmark dataset includes 25 users’
abstract behavior as per the SSH, HTTP, FTP, HTTPS, as
well as e-mail protocols.(e data gathering period began at 9
a.m. on Monday, 3 July 2017, ending at 5 p.m. on Friday 7
July 2017, thus lasting five days. As only Monday has normal
activity, this day only has benign traffic. On other days,
besides benign traffic, various attacks are implemented such
as brute force SSH, brute force FTP, DoS, web attack,
heartbleed, infiltration, DDoS, and Botnet.

Following data cleaning which involves eliminating the
records that have missed values, it is noted that the total
collected data include 2827876 records, with 2271320 nor-
mal records, and 556556 abnormal records. Every specified
attack’s labelled records are stored in a specific CSV file
format with every CSV file formed of a particular number of
labelled records described by 78 features and 1 label. All
records include two types of features which are nominal and
numerical. (e five features are nominal data-type features,
while the remaining are numerical data-type features.

However, a set of experiments were conducted based on
the CICIDS2017 dataset for verifying the CNN-MCL
performance on the intrusion detection task. Because,
unlike other IDS datasets, the CICIDS2017 was not divided
by the provider into training and test datasets, and it was
divided into training and test records in this paper based on
the nature of the experiment as presented in each
experiment.

3. Mean Convolutional Layer (CNN-MCL)

(is paper suggests a CNN-based layer to separate anomalies
from normal data. (e method used involves using the data
to directly learn changes occurring through abnormal data.
(e main issue was that normal and abnormal flows are not
greatly different, and so the CNN must be forced to detect
abnormalities variations. It is seen that if standard form
CNNs are used to detect, features are learned which rep-
resent an image’s content (flow’s content), primarily normal
flow, meaning that the classifier identifying data content is
linked with training data instead of learning data variations.

However, the approach used here was designed to hold
back the content and adaptively learn abnormality traces. In
order to achieve this, an innovative convolutional layer is
proposed, known as the mean convolutional layer (CNN-
MCL), established for use with intrusion detection system
tasks. In turn, these errors are employed as low-level ab-
normal/normal features, where more advanced abnormal
detection features are created thereafter. In order to echo
these actions, the suggested layer aims to exclusively learn
prediction error filters. (e feature maps created are then

4 Security and Communication Networks



linked with prediction error fields employed as low-level
abnormal traces.

(e CNN-MCL is able to be positioned differently from
the CNN aimed to undertake IDS tasks. (is acts as a way of
holding back the content, as prediction errors primarily do
not include flow content, and this offers the CNN low-level
IDS features. Deeper layers of the CNN are able to learn
higher level of features as a result of the low-level abnormal
characteristics.

With the equation below, one can define the CNN-MCL,
where L denotes the Lth CNN-MCL, the subscript k de-
scribes the kth convolutional filter within a layer, and that the
central value of a convolutional filter is defined by (cx, cy).
(e CNN is then forced to learn prediction error filters
through actively implementing specific constraints:

μ(L)
� Mean w

(L)
cx, cy􏼐 􏼑􏼐 􏼑,

w
(L)
k (x, y) �

w
(L)
k × μ(L)

􏽐 w
(L)
k

, (x, y)≠ cx, cy􏼐 􏼑,

w
(L)
k (x, y) � −μ(L)

, (x, y) � cx, cy􏼐 􏼑.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

Predictions of CNN-MCL are established via a specific
training process. Following this, updates of filter weights
w

(L)
k at each iteration are made, with the Adam algorithm in

the backpropagation stage. (en, the updated filter weights
are set into the feasible set of prediction error filters by CNN-
MCL reinforcement, and projection is undertaken at every
training iteration. (is is achieved by firstly setting the
central filter weight to the negative mean value of the middle
values of all k filters in the layer, and then, the filter weights
left over are normalized using equation (3). (ere are two
steps to this process. Firstly, the remaining weights are
multiplied with the mean value, and then, the collected
weights are dividing against the sum of all filter weights,
without including the central value. In layer L, the midpoints
of all k filters are set to the negative mean value. (e
pseudocode of this process is seen in Algorithm 1.

To provide intuition into this, suppose the prediction is
formed by using some functionf(X) to predict normality or
abnormality of input data (flow). In particular, f(X) is a
classifier which predicts based on the extracted features from
Feature Extraction. Moreover, suppose g(I) is the extracted
feature; therefore, the full operation is formed as f(g(I)).
For simplicity, we assume a network with one CNN-MCL
and one CNN in the feature extraction section. Regarding
equation (1), using conventional CNN, the classifier gen-
erates the output (predicts) based on the following equation:

f(X) � f(g(I)) � f 􏽘
K

k�1
I∗wkj + bkj

⎛⎝ ⎞⎠, (4)

where f is the classifier function, g is (or is part of) the
feature extraction process, I is the input data, ∗ is the
2d convolution, k is the number of channels, wkj is the
weights of the kthchannel in the jthfilter, and bkj is its
corresponding bias term.

(e classifier detects the anomaly based on the following
equation:

f(X) � f(g(I)) � f 􏽘
K

k�1
I∗ 􏽥wkj + bkj

⎛⎝ ⎞⎠, (5)

where 􏽥wkj is the weights generated by the CNN-MCL from
the kthchannel in the jth filter. (en, regarding equations (3)
and (5), we have

f(X) � f(g(I)) � f 􏽘

K

k�1
I∗

w
(L)
k × μ(L)

􏽐 w
(L)
k

+ bkj
⎛⎝ ⎞⎠, (6)

f(g(I)) � f 􏽘
K

k�1
I∗

w
(L)
k × Mean w

(L)
cx, cy􏼐 􏼑􏼐 􏼑

􏽐 w
(L)
k

+ bkj
⎛⎝ ⎞⎠.

(7)

It can be seen from equation (7) that the Mean(w(L) ×

(cx, cy)) is calculated from all channels because it does not
have the subscript k. (erefore, the mean value is shared
among all channels. (en, for each individual channel, the
weights are normalized using w

(L)
k /􏽐 w

(L)
k . (ese operations

reduce the effect of normal context to be extracted as useful
features, and they are progressing the effect of abnormal
variations to be considered as the extracted features.

To show the advantage of CNN-MCL in the learning
process compared to standard CNN, we have evaluated a
simple model using a CNN layer and a classifier. Our goal
here is to visualize the difference between the extracted
features from the CNN-MCL and conventional CNN.
(erefore, for this objective, we generate a simple dataset to
control the location and value of anomalies in our dataset.
However, in Main Experimental, we have evaluated our
proposed CNN-MCL with a real-world dataset.

(e dataset is generated based on the specifications
below. Moreover, we have tested with different specifications
and got similar behaviors for all evaluations:

(e input size: 11× 11
Normal data: random uniform number in the range [0,
1]
Abnormal train data: normal data + random integer
between [5, 10].
Abnormal test data: normal data− random integer
between [5, 10].
Number of training records: 100000
Number of testing records: 10000
(e ratio of abnormality records in the training data in
the evaluation 1 :10%.
(e ratio of abnormality records in the training data in
the evaluation 2 : 30%
(e ratio of abnormality records in the testing data in
the evaluation 1 and evaluation 2 : 50%
Abnormal location: first row of the input and first to
fifth values

Security and Communication Networks 5



It can be seen from the above dataset that the values of
abnormality of test data are different from the abnormality
of train data.

We test a simple model with one CNN-MCL and one
CNN model. Accordingly, in one model, the proposed
CNN-MCL is applied, and in the other model, only CNN is
used. We train the model on 20 epochs, and we plot three
channels of the output (weights) of CNN-MCL and CNN
layers to compare the CNN-MCL and CNN visually. For
visualization purposes, we have created pseudocolor plots of
the 2D array applying quadrilaterals using Matplotlib [39],
as shown in Figures 1–5. In Figure 1, samples of (a) normal,
(b) abnormal train, and (c) abnormal test record with data in
the ranges [0, 1], [5, 11], and [−4, −10], respectively.

In the first evaluation, we have only 10% abnormal
records in the training data. We choose the first three
channels of the output of the layers (weights) and plot them.
Figures 2 and 3 show the output of the extracted features
(weights) of an abnormal input after the CNN and CNN-
MCL layers. It can be seen from Figure 2 that the CNN-MCL
model distinguishes the abnormality location and that the
extracted features (values) in the abnormality neighborhood
are significantly different from normal, whereas all values in
Figure 3 are in the range [0, 1].

We then increase the abnormality rate of the training
data from 10% to 30% and repeat the evaluation. (e output
weight plots of the CNN and CNN-MCL models for one of
the abnormal records are presented in Figures 4 and 5,
respectively. (e figures show that the CNN-MCL and CNN
layers distinguish the abnormality location effectively; the
extracted features (values) in the CNN-MCL abnormality
neighborhood are significantly different from normal values
but less so in the CNN model.

Comparison between Figures 2 and 3 or between Fig-
ures 4 and 5 shows that the CNN-MCL has more distinct
abnormal feature presentation than CNN, and the abnor-
mality has been diagnosed very well. On the contrary, from
the visual perspective, CNN-MCL has extracted weights to
distinguish between normal and abnormal parts more ac-
curately than CNN.

(e abnormal data in the test data can be thought of as
the unseen abnormal data because the range of abnormal
data in training data is [5, 11] (random normal

data + random integer between [5, 10]), but the range of
abnormal test data is [−4, −10] (random normal data-
− random integer between [5, 10]).

For the more realistic experiment, we set the location of
abnormality randomly and evaluated the models. Based on
this explanation, two datasets with 10% and 30% abnor-
mality rates have been generated. (e results in Table 1
illustrate the accuracy of the CNN-MCL and CNN layers in
detecting abnormal records in the test data with the CNN-
MCL model outperforming the CNN.

4. Network Architecture

(e CNN-MCL layer is used for devising a CNN, which can
make the distinction between NIDS’ normal and abnormal
flows. Figure 6 illustrates the overall design of the suggested
architecture including every layer in detail.

(is architecture can gain information about new as-
sociations between deeper layers’ feature maps by extracting
a higher level of representation regarding the previously
learned normal/abnormal features. (e final convolution
layer’s output is flattened and then fed to the classification
block that includes a fully connected and a SoftMax layer. A
detailed overview of the suggested architecture and the
different layers used in the CNN’s architecture is presented.

4.1. Reshaping Layer (Layer 0). (e input vector’s (one flow)
shape in NIDS is typically indicated by a N×V or N× 1×V
vector, in which V refers to the number of features that
indicate the flow andN is the batch size. As implemented in a
previous work [40], the input shape is changed from 1D to
2D. Hence, this architecture’s first layer is one which can
reshape the input vector into an 11× 11 2D matrix and has
less than 121 features regarding the input vector size, and
thus, the remaining values are zeros. (us, layer 1 is sent an
N× 11× 11 patch. Because in the tested dataset, the feature
number is more than 100 and less than 121, we choose
11× 11 patches. (is architecture can handle other sizes,
such as n×m, but the feature arrangement in the test and
train must be the same.

4.2. CNN-MCLLayer (Layer 1). In their present form, CNNs
often learn content-dependent features, and thus, the

Initialize w′k using randomly draw n weights
i � 1
while i ≤ maximum_iter do

Do feedforward pass
Update forever weights through Adam and backpropagation errors
Set the μ(L) �mean of central points of all filters of layer L
Update the weights of layer L using the w

(L)
k (x, y) � ((w

(L)
k ∗ μ

(L))/t 􏽐 w
(L)
k )

Update the weights of central points of k filters of layer L using the w
(L)
k (cx, cy) � −μ(L)

i � i + 1
If training accuracy converges 
en
Exit

End.

ALGORITHM 1: Pseudocode of CNN-MCL.

6 Security and Communication Networks



proposed architecture has the CNN-MCL layers forming the
second layer (layer 1). (is leads to this layer learning value-
dependency features which are fragile and can be eliminated
by various nonlinear operations [41] including activation

layers and pooling. (e CNN-MCL layers’ output is directly
given to a regular convolutional layer.

Particularly, layer 1’s input of 11× 11 size is first con-
volved involving 32 diverse 5× 5 filters that have a stride

10

8

6

4

2

0
0 2 4 6 8 10

1.0

0.8

0.6

0.4

0.2

0.0

(a)

10

8

6

4

2

0

8

6

4

2

0
0 2 4 6 8 10

(b)

10

8

6

4

2

0

1

0

–1

–2

–3

–4

–5
0 2 4 6 8 10

(c)

Figure 1: Sample of normal (a), train abnormal (b), and test abnormal (c) records.

0.8

0.6

0.4

0.2

0.0

0 2 4 6 8 10

10

8

6

4

2

0

(a)

0.8

0.6

0.4

0.2

0.0

0 2 4 6 8 10

10

8

6

4

2

0

(b)

0 2 4 6 8 10

1.0

0.8

0.6

0.4

0.2

0.0

10

8

6

4

2

0

(c)

Figure 2: Sample output of the CNN layer with 10% abnormal data.

–4

–3

–2

–1

0

–1

–2

0 2 4 6 8 10

10

8

6

4

2

0

(a)

0 2 4 6 8 10

–4

–3

–2

–1

0

–1

–2

10

8

6

4

2

0

(b)

6

4

2

0

–2

–4
0 2 4 6 8 10

10

8

6

4

2

0

(c)

Figure 3: Sample output of the CNN-MCL layer with 10% abnormal data.

Security and Communication Networks 7



0.0 2.5 5.0 7.5 10.0

2.0

1.5

1.0

0.5

0.0

–0.5

–1.0

–1.5

10

8

6

4

2

0

(a)

0.0 2.5 5.0 7.5 10.0

2.0

1.5

1.0

0.5

0.0

–0.5

–1.0

–1.5

10

8

6

4

2

0

(b)

0.0 2.5 5.0 7.5 10.0

2.0

1.5

1.0

0.5

0.0

–0.5

–1.0

–1.5

10

8

6

4

2

0

(c)

Figure 4: Sample output of the CNN layer with 30% abnormal data.

20

15

10

5

0

–5

–10

–15

0 2 4 6 8 10

10

8

6

4

2

0

(a)

0 2 4 6 8 10

20

15

10

5

0

–5

–10

–15

10

8

6

4

2

0

(b)

0 2 4 6 8 10

15

10

5

0

–5

–10

10

8

6

4

2

0

(c)

Figure 5: Sample output of the CNN-MCL layer with 30% abnormal data.

Table 1: Accuracy of the CNN-MCL and CNN on the test data to detect the abnormal records.

Accuracy of detection (30 (%) abnormality) Accuracy of detection (10 (%) abnormality)
Fixed location (novel abnormality) 91 86
Random location (novel abnormality) 79 50

Input
N∗121

MCL
N∗11∗11

CONV1
N∗11∗11∗32

CONV2
N∗6∗6∗16

Flatten
N∗72

Fully
connected
N∗

256

SoftMax

Feature learning Classification

11 11
6

6

3

3

11 11

5

5
3

3

32
16

Figure 6: Design of the proposed architecture.

8 Security and Communication Networks



equivalent to 1. Such filters are able to learn the prediction
error features regarding the estimated center value as well as
its local neighbors. Furthermore, the CNN-MCL layer re-
sults in prediction of abnormal feature maps that have di-
mensions of 11× 11× 32.

Generally, the larger-sized filter (such as 5× 5) captures
generic features and essential components in the inputs.
However, the smaller-sized filter (3× 3) captures the so-
phisticated features and has better weight sharing.(erefore,
we utilize a 5× 5 filter for the CNN-MCL layer (first layer)
and a 3× 3 filter for the other layers. Furthermore, in this
paper, we represent the efficiency of using these filter sizes
with some experiments in Experimental Results.

4.3. Convolutional Block. For learning higher level predic-
tion error features, a set of convolutional layers is used, and
every layer is followed by an activation function, batch
normalization, and pooling layers. Furthermore, every such
convolutional layer is referred to in this paper as the con-
volution block. Every convolutional layer will learn feature
maps’ new representation which is learned by the previous
convolutional layer or lower-level features.

As seen in Figure 6, general convolutional layers (con-
volution block) are used in third (layer 2) and in fourth (layer
3) layers. Moreover, for learning higher level representative
features as well as new associations amongst the prediction
featuremaps, regular convolutional layers (layer 2 and layer 3)
are used. (e convolutional blocks’ output dimensions are
6× 6× 32 and 3× 3× 8, respectively. (ese layers within the
proposed structure are further explained below.

4.3.1. Activation Function. Generally, a nonlinear mapping
known as an activation function follows a convolutional
layer. Such function is then applied to every value within the
feature maps of each convolutional block. Activation
functions are of various types. Regarding computer vision
applications, there has been successful implementation of
the ReLU activation function [42, 43]. A different activation
function type was recommended by He et al. [44] called
PReLU which creates surpass human-level performance
concerning visual recognition challenge [45]. Moreover,
Clevert et al. [46] suggested the exponential linear units
(ELUs) activation function that can speed up learning sig-
nificantly obtaining below 10% classification error as op-
posed to a ReLU network having the same architecture.

It is possible to strengthen the capability of CNN for
separating feature space by including nonlinearity across the
network layers. (e proposed CNN recommends restricting
the data values range having the ReLU activation function at
the network’s each stage. On the contrary, it is known that an
activation function layer does not follow the feature maps
that are learned by the CNN-MCL layer. (is is primarily
because it is possible to easily eliminate the learned pre-
diction error features using several nonlinear operations
such as activation functions.

4.3.2. Batch Normalization. Computer vision researchers
have devised numerous methods for normalizing the data in

CNN architecture. In early deep learning architectures, the
local response normalization (LRN) layer is used that
normalizes the central coefficient in a feature map’s sliding
window concerning its neighbors. Ioffe and Szegedy [47]
recommended the batch normalization layer that drastically
accelerates the deep networks training. Such a mechanism
reduces the internal covariate shift that is the input distri-
bution change regarding a learning system.

For this, a zero-mean and unit-variance transformation
of the data is implemented along with the CNNmodel being
trained. (e parameters of each previous layer impact every
layer’s input and amplified even the small changes. Hence,
such a layer deals with a significant problem and enhances a
CNN model’s final accuracy. (is is why the proposed ar-
chitecture implements a batch normalization layer following
every regular convolutional layer.

4.3.3. Pooling. (is CNN utilized max-pooling of 3× 3 size
and stride of 2. (ere is maximum value in the max-pooling
layer in the sliding window’s local neighborhood. Such a
layer aims to minimize the feature maps’ dimensionality
which, in turn, diminishes the computational cost required
for training and reduces the possibility of overfitting. In
particular, the set of parallel convolutional operations
provides a feature maps volume of high dimension. (us,
pooling layers retain the features that are most represen-
tative and help in subsampling and enhancing the accuracy.
In this architecture, the two pooling layers that are used have
decreased the feature maps dimensions from 11× 11× 32
and 6× 6×16 to 6× 6×16 and 3× 3× 8, respectively.

3× 3× 8 is then reshaped for layer 4 as 72 outputs. Such a
mapping form learns the association throughout feature
maps, which is a linear combination of features through
channels in the same location. However, the previously
learned hierarchical features are developed by learning local
spatial association in a field that is receptive (local region/
patch convolved with a filter) within the same feature map.
Finally, a new association between these feature maps is
learned.

4.4. Classification Block. Figure 6 shows that a neural net-
work classifier having a SoftMax activation function within
the output layer is implemented for classifying the output
features that are learned by the convolutional layers set. Such
an activation function maps features in which the last layer
that is fully connected to a set of probability values learns in
which all neurons’ output in this layer equals 1. (e ab-
normal flows can be identified by selecting the editing
operation related to the SoftMax layer neuron that has the
highest activation level. In particular, this layer which is fully
connected includes 256 neurons. Furthermore, this layer
learns new relations among CNN’s deepest convolutional
features.

5. Experimental Results

For examining the performance of the proposed NIDS
approach, a set of experiments and analysis were

Security and Communication Networks 9



implemented on the well-known datasets called
CICIDS2017. (is section presents the experimental work to
validate CNN-MCL as well as compare its performance with
that of two approaches: the state-of-the-art methods (deep
learning) DL and the NON-DL methods (which this paper
refers to as machine learning methods).

Regarding the IDS task experiment, the criteria derived
from estimating a confusion matrix as a classification
problem was used. (e confusion matrix aims to compare
actual labels with predicted labels. It has been known that an
intrusion detection problem includes two classes: normal
and attack, which is defined by a 2-by-2 confusionmatrix for
evaluation. Similar to any classification problem, the con-
fusion matrix of IDS task includes the terms TP-true pos-
itive, FP-false positive, TN-true negative, and FN-false
negative. Generally, in the IDS task, the terms TP, FP, TN,
and FN are regarded as an attack data that are correctly
classified as an attack, normal data that are incorrectly
classified as an attack, normal data that are correctly clas-
sified as normal, and attack data that are incorrectly clas-
sified as normal, respectively. (ese four terms help in
generating the IDS evaluation measures which are accuracy
(ACC), precision (P), recall (R), false alarm (FA), and F-
score (F1).

Moreover, all mathematical parts related to the evalu-
ation measures are presented in Table 2. (e accuracy
measures refer to the proportion of the total number of
correct classifications.(e precisionmeasures the number of
correct classifications penalized by the number of incorrect
classifications. (e recall or sensitivity measures the number
of correct classifications penalized by the number of missed
entries. (e false alarm rate measures the proportion of
benign events incorrectly classified as malicious.(e F-score
rate measures the harmonic mean of precision and recall
which serves as a derived effectiveness measurement.

All standard machine learning algorithms were applied
by Scikit-learn [48] which is an open source machine
learning library for the Python programming language. All
CNNs were implemented using the Tensorflow [49] which is
a Python deep learning framework.(e experiments were all
conducted using an Amazon AWS EC2 instance (p2.xlarge)
with specifications as follows: 4 Intel Xeon E5-2686, 61GB
RAM, 1 NVIDIA K80 GPUs, each with 2,496 parallel
processing cores and 12GiB of GPU memory. Furthermore,
Table 3 illustrates the CNN-MCL parameters which are
shared between all the experiments.

(is section includes datasets description in Section 6.1.
Next, the reliability of CNN-MCL is analyzed using various
ML approaches in Section 6.2. (en, the CNN-MCL for
single attack is explored in Section 6.3. (e structural design
is explored in Section 6.4. Finally, CNN-MCL for multi-
attack is presented in Section 6.5.

5.1. CNN-MCL versus ML. In this section, a set of experi-
ments are conducted for discussing and comparing the
performance of IDS as per various machine learning (ML)
methods. ML experiments were also applied to compare the
proposed CNN-MCL with machine learning approaches.
Furthermore, a binary classification was implemented using

these ML approaches to predicate the normal and abnormal
flows in CICIDS2017.

To this end, the best ML classifiers were used which were
k-nearest neighbors (K-NN), two types of support vector
machine classifiers (SVM and NuSVC), decision tree (DT),
random forest (RF), adaptive boosting classifier (AdaBoost),
and gradient boosting (GB). Additionally, the default pa-
rameters of ML methods (from Scikit-learn) were consid-
ered for this experiment. (e network configuration and
hyperparameters were selected based on the lack of records
in the dataset with CNN-MCL characteristics.

To address the problem of unbalanced datasets in
CICIDS2017, the abnormal records from the dataset were
first divided into training and test sets at 70% to 30% ratio,
respectively, and the maximum epoch has set to 50. Second,
these training and test sets were increased by adding an equal
number of normal records chosen randomly. However,
regarding a large-scale dataset classification by ML methods
[50], experiments were conducted using a six subsample
dataset including 10000, 20000, 40000, 60000, 80000, and
100000 records.

Table 4 presents the accuracies of the models regarding
the change in the number of records. (e table shows that the
number of records is obviously related to the models’ gen-
erated accuracy as it is evident that the accuracy of all models
increased after using a higher number of records. (e pro-
posed CNN-MCL model is more superior compared to all
other ML models concerning increasing the number of
records in terms of both accuracy and F-score where both the
accuracy and F-score of 10000 records case was 96.77%, and
when the records number increased to 100000, both the
accuracy and F-score increased to 99.87%, which outperforms
all other models regarding high number of records being used
because of the capability of CNN-MCL for recognizing
normal and abnormal flows. On the contrary, it shows that
when the number of training records increased, the CNN-
MCL produced better results compared to the ML methods.

Figure 7 shows that the false alarm rate decreases when
the number of training records increases. Furthermore, all

Table 2: Equations of the performance measures.

Accuracy (TP + TN)/(TP + TN + FP + FN)

Precision TP/(TP + FP)

Recall TP/(TP + FN)

False alarm FP/(FP + TN)

F-score 2∗ ((Precision ∗Recall)/tPrecision + Recall)

Table 3: CNN-MCL parameters.

Learning rate 10e−4
Decay steps 5000
Decay rate 0.99
Optimizer Adam
Dropout rate 0.5
Regularizer scale 0.01
Regularizer beta 0.01
Activation function ReLU
Batch size 128

10 Security and Communication Networks



models begin high false-alarm rate when the number of
records is small (10000), after which the false alarm rate
decreased, and the CNN-MCL produces superior results
with high number of records (80000–100000). (is shows
that the CNN-MCL requires more training data compared to
the conventional ML methods.

Hence, the CNN-MCL can be considered to be a more
suitable method for IDS because of its reliability and validity
in detecting an intrusion attack in high-scale dataset.

5.2.CNN-MCL forUnknownAttacks. In this experiment, the
capability of the proposed CNN-MCL was evaluated for
detecting new types of attacks without pretrained knowl-
edge. Furthermore, the results of CNN-MCL are compared
with that of the pure CNN model, for which a set of ex-
periments were conducted in each scenario. One attack was
chosen for testing the model that was trained with the
remaining attacks and the remaining dataset records. (e
dataset contains 14 types of attacks, but only 10 of them were
used, while four types of attacks were ignored because of the
small number of records that prevent the capability of
training and testing in such a scenario.

Figure 8 illustrates the accuracy for each type of the 10
attacks, with the x-axis representing the attack type with the
number of attacks and y-axis representing the accuracy
percentage. (e developed model is undeniably superior
compared to the CNN in detecting almost all types of new
attacks, and these results are interpreted by the capability of
CNN-MCL for learning the abnormal features.

Figure 9 shows the same observation that CNN-MCL
outperforms CNN in terms of false alarm rate in almost all
attack types.

(e current section of the study was evaluated through
20 independent experiments. Tables 5 and 6 present the
confusion matrices of the classification results using the
CNN-MCL and CNN models on DoS HULK and PortScan
attacks, respectively. We chose these types of attack because
they have the maximum number of records. Although the
results in these tables show that the true-positive rate of
CNN is higher than CNN-MCL, the false-negative rate of the
CNN-MCL model is lower.

For more elaboration, the evaluation measures, preci-
sion, recall, and F-score are generated for both CNN and
CNN-MCL. As shown in Table 7, it is evident that CNN-
MCL outperforms CNN in terms of precision in all types of
attacks with the highest percentage for DoS HULK attack at
58.64% while that of CNNwas 58.5%. Furthermore, it is seen
that CNN-MCL has superiority over CNN regarding F-score
for all types of attacks with the highest percentage for DoS
HULK attack at 73.68% while that of CNN was 73.58%.
Meanwhile, CNN was slightly superior in terms of recall in
certain attack types. However, this is acceptable considering
good accuracy and other measures.

5.3. CNN-MCL versus DLMethods. (is section assesses the
performance of binary classification of normal and abnor-
mal for three DL approaches. In the DL approaches, the

Table 4: Accuracy and F-score of the ML and CNN-MCL with different numbers of records.

10000 20000 40000 60000 80000 100000
Acc F-M Acc F-M Acc F-M Acc F-M Acc F-M Acc (%) F-M (%)

KNN 96.42 96.39 96.97 96.95 98.10 98.09 98.47 98.46 98.69 98.69 98.89 98.88
NuSVC 96.18 96.31 96.80 96.88 97.80 97.84 97.93 97.97 98.05 98.09 98.06 98.09
DT 97.76 97.79 97.48 97.51 99.58 99.58 99.68 99.68 99.69 99.69 99.74 99.74
RF 97.67 97.71 97.64 97.67 99.77 99.77 99.84 99.84 98.78 98.78 99.16 99.15
AdaBoost 96.97 97.01 96.87 96.89 98.97 98.96 98.19 98.19 98.62 98.62 98.39 98.39
GB 97.57 97.61 97.40 97.44 99.41 99.40 98.90 98.88 99.43 99.43 99.45 99.45
SVM 76.06 80.64 87.35 88.71 97.76 97.80 97.93 97.96 98.05 98.08 98.04 98.08
CNN-MCL 96.77 96.77 96.95 96.96 98.56 98.56 99.34 99.33 99.88 99.88 99.87 99.87

0
1
2
3
4
5
6
7
8
9

10000 20000 40000 60000 80000 100000

False alarm rate

KNN

NuSVC
AdaBoost

GB

DT

RF
SVM

MCL

Figure 7: CNN-MCL and NON-DL false alarm rate with respect to different numbers of training records.

Security and Communication Networks 11



baseline method standard CNN, the C-CNN [51] which is the
most similar method to the proposed method but in a different
domain, and the proposed CNN-MCL model are selected. For
fair comparison, the parameters of these three CNN models
were unified. Furthermore, the epoch number is set to 50.

Unlike non-DL methods, DLs perform better when
training with a large dataset. Subsequently, this section
used the full dataset size in training and testing at the 60 :

BOT DDoS DoS
GoldenEye

1956 128025 10293

DoS HULK

230124

DoS
Slowhttptest

DoS slowloris

5499 5796 7935

FTP-Patator PortScan

158804

SSH-Patotor

5897

Web Attack
Brute Force

1507

70

60

50

40

30

20

10

0

MCL
CNN

Figure 8: Accuracy of CNN-MCL for different types of attacks.

False Alarm

BOT DDoS DoS
GoldenEye

1956 128025 10293

DoS HULK

230124

DoS
Slowhttptest

DoS slowloris

5499 5796 7935

FTP-Patator PortScan

158804

SSH-Patotor

5897

Web Attack
Brute Force

1507

120

100

80

60

40

20

0

MCL
CNN

Figure 9: False alarm of CNN-MCL for different types of attacks.

Table 5: Confusion matrix of the CNN-MCL and CNN on DoS
HULK attack.

CNN-MCL CNN
Predicted class Predicted class

Attack Normal Attack Normal

Actual class Attack 228051 160848 228151 161856
Normal 2073 69276 1973 68268

12 Security and Communication Networks



40% ratio. Full dataset size is used to simulate the real-
world attack scenarios because the missing values are re-
moved from the dataset during data reading. (e number
of train records is 667866, and number of test records are
445244.

Figure 10 shows that the standard CNN obtained the
poorest results in terms of precision, F-score, and accuracy.
Meanwhile, highest recall at 99.30 was obtained using the
C-CNN, and the proposed CNN-MCL obtained close value
recall at 99.15. However, the CNN-MCL model out-
performed CNN and C-CNN models in terms of precision,
F-score, and accuracy at 99.76, 99.46, and 99.46, respec-
tively. Although the improvement was slight with the CNN
variants, CNN-MCL performed better than other CNNs for
IDS.

Moreover, Figure 11 displays the false alarm rate for
standard CNN, C-CNN, and the developed CNN-MCL.
Standard CNN obtained FAR of 0.75, and approximate false
rate of 0.71 was obtained by the C-CNN. (e proposed
CNN-MCL obtained significantly better FAR at 0.23.

5.4. Structural Design. (e structural design of a deep
learning model has impacts on the final result of its detection.
We present the results of experiments to fit the structural
design of the proposed architecture although the objective of
this paper is not introducing the best structure for the IDS
model. (erefore, we ran several sets of examinations to find
suitable architecture for the proposed model. We randomly
chose 200 k of test and train data, randomly split to 70 : 30%
for train and test, and finally trained models by only 20 it-
erations. We chose the training accuracy, testing accuracy,
average training loss, and average testing loss for the com-
parison. Furthermore, we believe that metrics can be utilized
because of the randomly chosen balanced dataset for this part
of the experiments.

We present the experimental results of choosing the
different values for filter output size, batch size, and kernel
size (filter size) in Tables 8–10, respectively.

Regarding Tables 8–10, the best structure for the pro-
posed model is selected, where the filter output size for layer
1, layer 2, and layer 3 is 32, 18, and 8, respectively; the best
batch number is 128; and for the kernels, the best sizes are

98.8

99

99.2

99.4

99.6

99.8

100

Precision Recall F-measure Accuracy

CNN
C-CNN
MCL

Figure 10: Evaluation measures for CNN, C-CNN, and CNN-
MCL.

CNN, 0.75

C-CNN, 0.71

MCL, 0.23

Figure 11: False alarm rate for CNN, C-CNN, and CNN-MCL.

Table 6: Confusion matrix of the CNN-MCL and CNN on PortScan attack.

CNN-MCL CNN
Predicted class Predicted class

Attack Normal Attack Normal

Actual class Attack 158583 116637 158214 120484
Normal 221 42167 590 38320

Table 7: Recall, precision, and F-score for both CNN-MCL and CNN.

Attack name No. of attacks
Recall Precision F-score

CNN-MCL CNN CNN-MCL CNN CNN-MCL (%) CNN (%)
Bot 1956 95.19 95.47 55.83 53.67 70.38 68.71
DDoS 128025 99.19 99.80 58.44 57.75 73.55 73.16
DoS GoldenEye 10293 98.71 98.88 58.19 57.37 73.22 72.61
DoS HULK 230124 99.10 99.14 58.64 58.5 73.68 73.58
DoS Slowhttptest 5499 91.50 94.10 56.43 55.06 69.81 69.47
DoS Slowloris 5796 97.96 98.21 57.3 52.91 72.30 68.77
FTP-Patator 7935 99.77 99.94 50.16 50.16 66.80 66.76
PortScan 158804 99.86 99.63 57.62 56.77 73.08 72.33
SSH-Patator 5897 98.16 99.81 50.46 50.43 67.01 66.66
Web Attack Brute Force 1507 97.96 98.38 51.32 50.06 67.35 66.35

Security and Communication Networks 13



5× 5, 3× 3, and 3× 3 for kernel 1 (in layer 1), kernel 2 (in
layer 2), and kernel 3 (in layer 3).

6. Conclusion

A new deep learning-based approach was suggested in this
paper for developing an intrusion detection system. As
compared to general CNN which depends on content fea-
tures, the proposed CNN-MCL can suppress flow content as
well as adapt to learn variation detection features from data
directly. For this, a new type of layer known as a mean
convolutional layer was created which could help the CNN
in learning prediction error filters that generate low-level
general abnormal features. (is layer was used for designing
a new CNN architecture which can identify anomaly ac-
curately in the traffic flow. Numerous experiments were
conducted for evaluating the proposed CNN-MCL model’s
ability in performing intrusion detection. (e experiments’

findings showed that it is possible to train the CNN-MCL so
that it can accurately identify normal as well as abnormal
flows along with attack types of unknown attacks. For
further examining the constrained CNN’s performance, it
was compared to well-known machine learning methods
which are the best detectors at present. According to the
comparison, the proposed CNN-MCL architecture is able to
detect the anomaly accurately, especially when large-scale
training data are used. Hence, the experimental results
suggest that the CNN-MCL is able to accurately identify
anomalies even in case of no manual feature extraction and
unbalanced training data.

Data Availability

(e dataset (CICD2017) can be downloaded from https://
www.unb.ca/cic/datasets/ids-2017.html. (e code will be
published on GitHub after paper got published.

Table 8: Accuracy and loss results for filter output size with different values.

Train Test
Accuracy Loss Accuracy Loss

Filters output size

Layer 1

8 99.4658 0.0221 99.2900 0.0295
16 99.3555 0.0248 99.1999 0.0303
32 99.6829 0.0126 99.6571 0.0137
64 99.4338 0.0213 99.0499 0.0335

Layer 2

8 99.3841 0.024 98.9799 0.0398
16 99.6829 0.0126 99.6571 0.0137
32 99.3878 0.0241 99.2999 0.0276
64 99.3588 0.0248 99.0400 0.0346

Layer 3

8 99.6829 0.0126 99.6571 0.0137
16 99.4145 0.0220 99.2399 0.0282
32 99.4985 0.0215 99.3499 0.0279
64 99.3401 0.0332 99.2399 0.0304

Table 9: Accuracy and loss results for batch size with different values.

Train Test
Accuracy Loss Accuracy Loss

Batch size

16 99.375 0.0289 99.2200 0.0294
32 99.1897 0.0315 99.1999 0.0311
64 99.0372 0.0352 99.0000 0.035
128 99.6829 0.0126 99.6571 0.0137
256 99.3292 0.0255 99.1699 0.0325

Table 10: Accuracy and loss results for kernel size with different values.

Train Test
Accuracy Loss Accuracy Loss

Kernel size

Kernel 1
3× 3 99.4578 0.0212 99.3499 0.0257
5 × 5 99.6829 0.0126 99.6571 0.0137
7× 7 99.4065 0.0229 99.2502 0.0279

Kernel 2
3× 3 99.6829 0.0126 99.6571 0.0137
5× 5 99.3851 0.0241 99.2931 0.0282
7× 7 99.4111 0.0216 99.2038 0.0306

Kernel 3
3× 3 99.6829 0.0126 99.6571 0.0137
5× 5 99.4862 0.02 99.3176 0.0257
7× 7 99.4505 0.0219 99.1893 0.0337

14 Security and Communication Networks

https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/ids-2017.html


Conflicts of Interest

(e authors declare that there are no conflicts of interest
regarding the publication of this article.

Authors’ Contributions

All authors were involved in drafting the article or revising it
critically for important intellectual content, and all authors
approved the final version to be published.

Acknowledgments

(is research was partially supported by the Shiraz Inter-
national School (http://www.shirazschool.com), Shiraz,
Iran.

References

[1] C.-F. Tsai, Y.-F. Hsu, C.-Y. Lin, and W.-Y. Lin, “Intrusion
detection by machine learning: a review,” Expert Systems with
Applications, vol. 36, no. 10, pp. 11994–12000, 2009.

[2] J. Zhang, H. Li, Q. Gao, H. Wang, and Y. Luo, “Detecting
anomalies from big network traffic data using an adaptive
detection approach,” Information Sciences, vol. 318, no. 11,
pp. 91–110, 2015.

[3] G. Fernandes, L. F. Carvalho, J. J. P. C. Rodrigues, and
M. L. Proença, “Network anomaly detection using IP flows
with principal component analysis and ant colony optimi-
zation,” Journal of Network and Computer Applications,
vol. 64, pp. 1–11, 2016.

[4] S. Naseer, Y. Saleem, S. Khalid et al., “Enhanced network
anomaly detection based on deep neural networks,” IEEE
Access, vol. 6, pp. 48231–48246, 2018.

[5] D. E. Denning, “An intrusion-detection model,” IEEE
Transactions on Software Engineering, vol. SE-13, no. 2,
pp. 222–232, 1987.

[6] S. Vieira, W. H. L. Pinaya, and A. Mechelli, “Using deep
learning to investigate the neuroimaging correlates of psy-
chiatric and neurological disorders: methods and applica-
tions,” Neuroscience & Biobehavioral Reviews, vol. 74,
pp. 58–75, 2017.

[7] A. Hijazi, E. A. El Safadi, and J. M. Flaus, “A deep learning
approach for intrusion detection system in industry network,”
CEUR Workshop Proceedings, vol. 2343, pp. 55–62, 2018.

[8] Y. Xiao, C. Xing, T. Zhang, and Z. Zhao, “An intrusion de-
tection model based on feature reduction and convolutional
neural networks,” IEEE Access, vol. 7, pp. 42210–42219, 2019.

[9] R.-H. Hwang, M.-C. Peng, C.-W. Huang, P.-C. Lin, and
V.-L. Nguyen, “An unsupervised deep learning model for
early network traffic anomaly detection,” IEEE Access, vol. 8,
pp. 30387–30399, 2020.

[10] H. Yang and F. Wang, “Wireless network intrusion detection
based on improved convolutional neural network,” IEEE
Access, vol. 7, pp. 64366–64374, 2019.

[11] J. Kim, N. Shin, S. Y. Jo, and S. H. Kim, “Method of intrusion
detection using deep neural network,” in Proceedings of the
2017 IEEE International Conference on Big Data and Smart
Computing, pp. 313–316, Jeju, Korea, 2017.

[12] M. Erza and K. Kim, “Deep learning in intrusion detection
System : an overview,” in Proceedings of the 2016 International
Research Conference on Engineering and Technology (2016
IRCET), pp. 1–12, Seoul, South Korea, 2016.

[13] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward
generating a new intrusion detection dataset and intrusion
traffic characterization,” in ICISSP 2018-Proceedings of the 4th
International Conference on Information Systems Security and
Privacy, pp. 108–116, Funchal-Madeira, Portugal, January
2018.

[14] A. Javaid, Q. Niyaz, W. Sun, and M. Alam, “A deep learning
approach for network intrusion detection system,” in Pro-
ceedings of the 9th EAI International Conference on Bio-in-
spired Information and Communications Technologies
(formerly BIONETICS), pp. 21–26, New York, NY, USA,
December 2016.

[15] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and
M. Ghogho, “Deep learning approach for network intrusion
detection in software defined networking,” in Proceedings -
2016 International Conference on Wireless Networks and
Mobile Communications, WINCOM 2016: Green Communi-
cations and Networking, pp. 258–263, Morocco, October 2016.

[16] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani,
“Toward developing a systematic approach to generate
benchmark datasets for intrusion detection,” Computers &
Security, vol. 31, no. 3, pp. 357–374, 2012.

[17] C. Yin, Y. Zhu, J. Fei, and X. He, “A deep learning approach
for intrusion detection using recurrent neural networks,”
IEEE Access, vol. 5, pp. 21954–21961, 2017.

[18] R. Zhao, R. Yan, Z. Chen, K. Mao, P. Wang, and R. X. Gao,
“Deep learning and its applications to machine health
monitoring,” Mechanical Systems and Signal Processing,
vol. 115, pp. 213–237, 2019.

[19] K. Alrawashdeh and C. Purdy, “Toward an online anomaly
intrusion detection system based on deep learning,” in Pro-
ceedings - 2016 15th IEEE International Conference on Ma-
chine Learning and Applications, ICMLA 2016, pp. 195–200,
Anaheim, CA, USA, December 2016.

[20] C. G. Cordero, S. Hauke, M. Muhlhauser, and M. Fischer,
“Analyzing flow-based anomaly intrusion detection using
Replicator Neural Networks,” in Proceedings of the 2016 14th
Annual Conference on Privacy, Security and Trust, PST 2016,
pp. 317–324, Auckland, New Zealand, December 2016.

[21] M. J. Kang and J. W. Kang, “A novel intrusion detection
method using deep neural network for in-vehicle network
security,” in Proceedings of the 2016 IEEE 83rd Vehicular
Technology Conference (VTC Spring), Nanjing, China, May
2016.

[22] L. Bontemps, V. L. Cao, J. McDermott, and N. A. Le-Khac,
“Collective anomaly detection based on long short-term
memory recurrent neural networks,” in Lecture Notes in
Computer Science (Including Subseries Lecture Notes in Ar-
tificial Intelligence and Lecture Notes in Bioinformatics),
pp. 141–152, Springer, Berlin, Germany, 2016.

[23] T. Ma, F. Wang, J. Cheng, Y. Yu, and X. Chen, “A hybrid
spectral clustering and deep neural network ensemble algo-
rithm for intrusion detection in sensor networks,” Sensors,
vol. 16, no. 10, p. 1701, 2016.

[24] S. M. Erfani, S. Rajasegarar, S. Karunasekera, and C. Leckie,
“High-dimensional and large-scale anomaly detection using a
linear one-class SVM with deep learning,” Pattern Recogni-
tion, vol. 58, pp. 121–134, 2016.

[25] S. Garg, K. Kaur, N. Kumar, G. Kaddoum, A. Y. Zomaya, and
R. Ranjan, “A hybrid deep learning-based model for anomaly
detection in cloud datacenter networks,” IEEE Transactions on
Network and Service Management, vol. 16, no. 3, pp. 924–935,
2019.

Security and Communication Networks 15

http://www.shirazschool.com


[26] W. Wang, M. Zhu, X. Zeng, X. Ye, and Y. Sheng, “Malware
traffic classification using convolutional neural network for
representation learning,” in Proceedings of the International
Conference on Information Networking, pp. 712–717, Taipei,
Taiwan, March 2017.

[27] T. Su, H. Sun, J. Zhu, S. Wang, and Y. Li, “BAT: deep learning
methods on network intrusion detection using NSL-KDD
dataset,” IEEE Access, vol. 8, pp. 29575–29585, 2020.

[28] W. F. Zheng, “Intrusion detection based on convolutional
neural network,” in Proceedings - 2020 International Con-
ference on Computer Engineering and Application, ICCEA
2020, pp. 273–277, Guangzhou, China, March 2020.

[29] R. U. Khan, X. Zhang, M. Alazab, and R. Kumar, “An im-
proved convolutional neural network model for intrusion
detection in networks,” in Proceedings - 2019 Cybersecurity
and Cyberforensics Conference, CCC 2019, pp. 74–77, Mel-
bourne, Australia, May 2019.

[30] Q. Zhang, M. Zhang, T. Chen, Z. Sun, Y. Ma, and B. Yu,
“Recent advances in convolutional neural network accelera-
tion,” Neurocomputing, vol. 323, pp. 37–51, 2019.

[31] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov, “Improving neural networks by pre-
venting co-adaptation of feature detectors,” 2012, http://arxiv.
org/abs/1207.0580.

[32] M. D. Zeiler and R. Fergus, “Visualizing and understanding
convolutional networks,” in Lecture Notes in Computer Sci-
ence (Including Subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), pp. 818–833, Springer,
Berlin, Germany, 2014.

[33] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” in Proceedings of
the 3rd International Conference of Learning Represent. ICLR
2015 - Conference Track Proceedings, San Diego, CA, USA,
May 2015.

[34] Y. LeCun, L. Bottou, G. Orr, and K. Muller, “Efficient
backprop in neural networks: tricks of the trade,” Lecture
Notes in Computer Science, p. 111, Springer, Berlin, Germany,
1998.

[35] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient
methods for online learning and stochastic optimization,” in
Proceedings of the COLT 2010 - 23rd Conference Learning
Aeory, pp. 257–269, Haifa, Israel, July 2010.

[36] M. D. Zeiler, “ADADELTA: an adaptive learning rate
method,” 2012.

[37] “Gnats V. Mosquitoes,” Notes Queries, vol. s4-VII, no. 176,
p. 416, 1871.

[38] A. Gharib, I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani,
“An evaluation framework for intrusion detection dataset,” in
Proceedings of the 2016 International Conference on Infor-
mation Science and Security (ICISS), pp. 1–6, Jaipur, India,
December 2016.

[39] J. D. Hunter, “Matplotlib: a 2D graphics environment,”
Computing in Science & Engineering, vol. 9, no. 3, pp. 99–104,
2007.

[40] L. Mohammadpour, T. C. Ling, C. S. Liew, and C. Y. Chong,
“A convolutional neural network for network intrusion de-
tection system,” in Proceedings of the 46th Asia-Pacific Ad-
vanced Network Meeting, pp. 50–55, Auckland, New Zealand,
August 2018.

[41] B. Bayar and M. Stamm, “Design principles of convolutional
neural networks for multimedia forensics,” Electronic Imag-
ing, vol. 2017, no. 7, 86 pages, 2017.

[42] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
classification with deep convolutional neural networks,”
Communications of the ACM, vol. 60, no. 6, pp. 84–90, 2017.

[43] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, and
D. Anguelov, “Going deeper with convolutions,” 2014, http://
arxiv.org/abs/1409.4842.

[44] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into
rectifiers: surpassing human-level performance on imagenet
classification,” in Proceedings of the IEEE International
Conference on Computer Vision, pp. 1026–1034, Santiago,
Chile, December 2015.

[45] O. Russakovsky, J. Deng, H. Su et al., “ImageNet large scale
visual recognition challenge,” International Journal of Com-
puter Vision, vol. 115, no. 3, pp. 211–252, 2015.

[46] D. A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and
accurate deep network learning by exponential linear units
(ELUs),” in Proceedings of the 4th International Conference of
Learning Representations ICLR 2016 - Conference Track
Proceedings, San Juan, Puerto Rico, May 2016.

[47] S. Ioffe and C. Szegedy, “Batch normalization: accelerating
deep network training by reducing internal covariate shift,” in
Proceedings of the 32nd International Conference of the Ma-
chine Learning ICML 2015, pp. 448–456, Lille, France, July
2015.

[48] F. Pedregosa, “Scikit-learn: machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830,
2011.

[49] M. Abadi, “TensorFlow: large-scale machine learning on
heterogeneous distributed systems,” 2016, http://arxiv.org/
abs/1603.04467.

[50] S. Suthaharan, “Big data classification,” ACM Sigmetrics
Performance Evaluation Review, vol. 41, no. 4, pp. 70–73, 2014.

[51] B. Bayar and M. C. Stamm, “Constrained convolutional
neural networks: a new approach towards general purpose
image manipulation detection,” IEEE Transactions on Infor-
mation Forensics and Security, vol. 13, no. 11, pp. 2691–2706,
2018.

16 Security and Communication Networks

http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1603.04467

