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We have proposed an image adaptive watermarking method by using contourlet transform. Firstly, we have selected high-energy
image blocks as the watermark embedding space through segmenting the original image into nonoverlapping blocks and designed
a watermark embedded strength factor by taking advantage of the human visual saliency model. To achieve dynamic adjustability
of the multiplicative watermark embedding parameter, the relationship between watermark embedded strength factor and
watermarked image quality is developed through experiments with the peak signal-to-noise ratio (PSNR) and structural similarity
index measure (SSIM), respectively. Secondly, to detect the watermark information, the generalized Gaussian distribution (GGD)
has been utilized to model the contourlet coefficients. Furthermore, positions of the blocks selected, watermark embedding factor,
and watermark size have been used as side information for watermark decoding. Finally, several experiments have been conducted
on eight images, and the results prove the effectiveness of the proposed watermarking approach. Concretely, our watermarking
method has good imperceptibility and strong robustness when against Gaussian noise, JPEG compression, scaling, rotation,
median filtering, and Gaussian filtering attack.

1. Introduction

Transmitting and sharing digital multimedia have become
more convenient with the rapid development of the network.
However, such phenomenon results in security issues, such
as authentication, copyright protection, and fingerprinting
[1–7]. Digital watermarking can be used as an effective
method to address these problems. Generally, in the
watermarking process, some useful information (e.g., wa-
termark data) is embedded into an original signal while
ensuring its quality. Furthermore, robustness and imper-
ceptibility are the main factors in digital image water-
marking. Many image watermarking algorithms have been
presented in the literature. On the basis of the embedding
method, most algorithms can be divided into three cate-
gories, namely, additive, quantization, and multiplication-
based watermarking algorithms.

For the additive-embedding watermarking approach, the
watermark information is directly added to the host image

coefficients or image block of the same size. Generally, the
coefficients can be obtained from some common transforms,
including discrete wavelet transform (DWT), discrete cosine
transform (DCT), and Fourier transform. (e additive-
embedding watermarking embeds the watermark infor-
mation in the most important frequency domain of image
perception, which is similar to the spread spectrum com-
munication idea in the communication system. Cox et al. [8]
first designed a digital watermarking method based on the
idea of spread spectrum, which embedded watermark data in
the important perception transformation coefficient of the
host signal by applying the spread spectrum principle. Cox’s
spread spectrum watermarking algorithm has been con-
sidered a representative method. (e only deficiency is that
the digital watermarking algorithm requires participation of
the original image when detecting watermark information,
indicating that it is not a blind watermarking algorithm.
Subsequently, Cheng et al. [9] proposed an additive
watermarking approach, which detects the watermark by
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using the generalized Gaussian distribution (GGD). Ex-
periments show that this distribution can effectively control
the detection error probability of the watermark. Liu et al.
[10] transformed the test signal into the DCT domain.
Moreover, a local optimal detectionmodel that is suitable for
any host signal was derived by conducting hypothesis testing
analysis in this domain. Although these methods [9, 10] can
detect watermark information effectively, their parameter
estimation process is complex. To address this problem,
Kwitt et al. [11] proposed a lightweight blind optimal de-
tector for additive watermarking; it is expected to be useful
in resisting watermark desynchronization. Zhang et al. [12]
proposed a high-security additive watermarking algorithm
by utilizing gyrator transform and matrix decomposition. A
key innovation of this algorithm is to adopt an invariant
integer wavelet transform, which transforms the image
wavelet coefficients into integers, thereby enhancing the
performance of the watermarking.

In the quantization-based watermarking method, the
main procedure is to embed the watermark data into the
host signal by designing a corresponding quantizer. (e
watermark data are detected according to the quantization
interval of the image transform coefficient to extract wa-
termark. Many watermarking methods with quantization
scheme have been proposed in recent years. Chen et al.
proposed a digital watermarking method with the quanti-
zation index modulation (QIM) scheme; it is the most
representative quantization watermarking algorithm based
on edge information coding [13]. QIM has the character-
istics of high capacity, blind detection, and simple imple-
mentation. However, QIM watermarking has two main
shortcomings. First, it is sensitive to amplitude scaling at-
tacks; second, it is not robust to gain attacks. Researchers
proposed corresponding improvement methods to address
these problems. In view of the sensitivity of the QIM
watermarking method to scaling attacks, researchers mainly
improved it in accordance with the quantization step size. To
solve the inconsistency of quantization step between the
embedded end and the receiver end, as well as the adapt-
ability problem of quantization step, several watermarking
methods have been proposed, such as rational dither
modulation [14] and adaptive QIM [15]. Furthermore, to
enhance the robustness of the QIM watermarking against
gain attack, the quantization watermarking [16], sample
projection-based quantization [17], P-norm ratio-based
quantization [18], angle quantization [19], complex wavelet
domain l1 norm quantization [20], and random projection-
based quantization methods [21] have been proposed one
after another. (ese quantization watermarking methods
mainly aim to enable the watermark algorithm to obtain
invariance to the scaling or gain attacks, and the watermark
has strong robustness performance in resisting compression,
filtering, and gain attacks. However, the performance of
these quantization methods in desynchronization attacks is
still inadequate. To further enhance the robustness of
quantization watermarking, some researchers have designed
corresponding quantization watermarking algorithms by
combining the just noticeable distortion (JND) model,
image texture complexity, and texture direction features,

such as texture direction quantization [22], pair quantization
based on extended JND [23, 24], and mixed modulation
quantization using singular value decomposition [25]. (ese
quantization methods are combined with image features;
they can retain image orientation features and reduce image
distortion after watermark embedding. However, these
methods are generally vulnerable to noise attack.

(e performance of the multiplicative embedding-based
watermarking method is similar to that of the quantization
watermarking method. (e multiplicative watermarking
algorithm is usually combined with the human visual per-
ception model, and the embedded strength factor varies with
the intensity of the original signal. Moreover, a good trade-
off between imperceptibility and robustness can be achieved
in the multiplicative watermarking algorithm. Akhaee et al.
[26] developed an image watermarking method based on a
“scaling” strategy by using the Watson entropy visual
masking.(e watermark data were embedded into the image
block with high entropy to improve the invisibility of the
watermark. (e algorithm is robust against Gaussian fil-
tering, Gaussian noise, and scaling attacks. However, the
entropy value of the image block changes after embedding
the watermark; this finding is inconsistent with the entropy
of the image block prior to embedding the watermark,
thereby reducing the robustness of the watermark against
synchronization attacks. Subsequently, Akhaee et al. [27]
proposed a scaling-based image watermarking method
with contourlet transform in a noisy environment. Ex-
periments demonstrated that the robustness of this
watermarking method is good. However, the algorithm has
high complexity. Different from the Watson entropy visual
masking, Khalilian et al. [28] proposed a multiplicative
watermarking algorithm by taking advantage of the visual
saliency model. (ey designed an adaptive embedding
factor by combining visual saliency and texture masking.
On the one hand, the embedding factor should increase
with the distance from the significant region of the image.
On the other hand, the watermark embedding strength
should be larger in regions with rich texture. (is method
improves the robustness of the watermarking when against
some common image processing attacks. However, the
performance of their watermarking still needs to be en-
hanced in terms of resisting antidesynchronization attack.
Moreover, some visual attention-based watermarking
methods have been presented in the last few years. For
example, Bhowmik et al. [29] embedded high-strength and
low-strength watermarks into significant and insignificant
regions of vision, respectively, thereby improving the
watermarking performance. Hernandez et al. [30] pro-
posed a video watermarking algorithm that took full ad-
vantage of the video’s spatiotemporal characteristics and
minimized the perceived redundancy of the video. (us,
the trade-off between imperceptibility and robustness has
been achieved in their method. Yadav et al. [31] developed
an image watermarking algorithm by using an adaptive
embedded factor, which only used image variance infor-
mation to compute watermark embedded factor. However,
the performance of this method is weak when resisting
rotation attacks.
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Inspired by literature [28], an image watermarking al-
gorithm was developed based on the visual saliency model in
the contourlet transform domain.(emain contributions of
our work are summarized as follows:

(1) An adaptive watermark embedded strength factor is
exploited with a visual saliency model, which can
achieve a good trade-off between the robustness and
imperceptibility of the watermarking.

(2) (e watermark information was embedded into the
contourlet coefficients with high energy that can
enhance the imperceptibility of watermarking.

(e remainder of this paper is organized as follows. (e
belief concept of the contourlet transform is introduced in
Section 2. Section 3 introduces the proposed watermark
embedding and detection method. Section 4 shows the
experimental results of the proposed watermarking and the
comparative results with other watermarking approaches.
Finally, the conclusions are summarized in Section 5.

2. Brief Introduction of Contourlet Transform

In 2005, Do et al. [32] proposed a “real” 2D representation of
images, that is, the contourlet transform. It captures the
segmented conic curves of an image by using different
subband scales and frequencies, which have directivity and
anisotropy, thereby enabling the contourlet transform to
obtain a “sparser” representation. (us, the contourlet
transform has the characteristics of sparse representation at
both spatial and directional resolutions. In contourlet
transform,multiscale and directional analyses are performed
separately. First, the image was transformed into one coarse
version plus a set of band-pass images by the Laplacian
pyramid (LP)method. Second, each LP band-pass image was
decomposed into a number of subbands with 2D quincunx
filtering and critical subsampling. (erefore, the contourlet
transform can decompose images into multidirectional
subbands at multiple scales. Figure 1 illustrates a diagram of
the contourlet transform. Furthermore, we have utilized the
contourlet toolbox to decompose the “Peppers” image [32].
Figure 2 shows the result of applying the contourlet
transform on the “Peppers” image. (e figure clearly shows
that the contourlet transform can decompose the “Peppers”
image into multidirectional subbands.

3. Watermark Embedding and Decoding

In this section, Figure 3 shows the proposed watermark
embedding and watermark detection procedure. As shown
in Figure 3, we embed the watermark data into the con-
tourlet coefficients with high energy in our implementation.
In addition, we utilize the visual saliency model to construct
the watermark embedded strength factor; thus, a trade-off
between the invisibility and robustness of the watermark can
be achieved elegantly with the watermark embedded
strength factor. In the watermark detection stage, we model
the contourlet coefficients with GGD to detect the water-
mark due to the non-Gaussian property of the contourlet
coefficients.

3.1. Proposed Watermark Embedding. (e procedure of the
proposed watermark embedding in Figure 3(a) can be
generalized as follows:

Step 1: We segment the host image into L × L blocks
and select the first N image blocks with high energy.
(e energy is calculated as the sum of the squares of the
absolute values of the pixels of the image block.
Consequently, the energy of block [28] can be com-
puted by E � 

M
m�1 

N
n�1 ‖B(m, n)‖2, where M × N

denotes the size of the image block B and
(m, n)represents the positions of image block. Gen-
erally, a larger value of the energy of image block
implies that this image region contains more important
coefficients and should be considered a significant
image block in comparison with other image blocks.
(erefore, to improve the robustness of the water-
marking, the watermark is embedded into the image
blocks with high energy.
Step 2: (en, we decompose each selected image block
by using a two-level contourlet transform. (us, we
embed the watermark data into the coefficients of low-
frequency subband. (e host contourlet coefficient
vectors are denoted as x � [x1, x2, ..., xn], and the
watermarked contourlet coefficient vectors are denoted
as y � [y1, y2, ..., yn]. Suppose that the watermark is
w � [w1, w2, ..., wn] with n components
andwi ∈ − 1, 1{ }; the watermark embedding process can
be expressed as follows:

y � x(1 + αw), (1)

where α denotes the embedded strength factor and its
value was calculated in Section 3.2.
Step 3: Repeat Step 2 for each image block.
Step 4: Two-level inverse contourlet transform on the
watermarked image subband is performed, and it is
combined with the image subbands, which are not
embedded watermark information, to obtain the whole
watermarked image.

3.2. Watermark Embedded Strength Factor. (e JND
threshold has been widely applied in the field of image
processing. Its value is often higher in the image texture
region [33]. On the basis of [33], the image texture region

↓ (2,2)

…

Image

Bandpass
directioinal
subbands

Figure 1: (e diagram of the contourlet transform.
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can hide more information without being perceived by
human eyes. (erefore, the embedded strength factor can
select a high value. Literature [27] used this fact to develop
an image watermarking algorithm. Literature [34] shows
that the human visual system tends to focus on the salient
areas of an image. As a result, the image salient area hides
more distortion, and the embedded strength factor can be
enhanced. (erefore, to calculate the embedded strength
factor, we take advantage of the texture masking and visual

saliency model in this study. (e calculation process is
summarized as follows.

First, we use a two-level contourlet transform to de-
compose the host image, which obtains a low-frequency
subband, four subbands, and eight subbands from the
coarsest scale to the finest scale (Figure 2). (erefore, we
compute the energy of directional subband of each block
according to the property of the image texture masking. (e
calculation can be expressed as follows:

Figure 2: Contourlet transform of the “Peppers” image using two levels [32].

Segment the image into
L × L Blocks

Block Selection with
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Contourlet
Transform

 Watermark
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(a)
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Figure 3: Block diagram of the proposed method. (a) Watermark embedding. (b) Watermark detection.
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EH � 
12

i�1
EHi

, (2)

where EHi
is the i-th directional subband’s energy of each

image block. Each image block has 12 directional subbands
after the two-level decomposition with contourlet trans-
form. Suppose that EH denotes the average energy of twelve
image blocks. When increasing the average energy, the
watermark embedded strength factor could increase cor-
respondingly. Hence, according to [27], the watermark
embedded strength factor of the high-frequency part can be
written as follows:

αHF � η − ρ · e
− ζ·EH , (3)

where η, ρ, and ζ are set to 1.025, 0.02, and ×, respectively.
(ese parameters are determined by experimental simula-
tion. In the right part of equation (3), for αHF, the parameter
η is set to 1.025 for larger image energy EH , when the
exponential function vanishes. (is parameter is set to 1.025
in our experiments mainly because it maintains the imper-
ceptibility of the image when used in high image energy when
the exponential term disappears. On the contrary, for small
image energy, we set parameter ρ to 0.02. Parameter ζ has an
important effect in the increasing rate of watermark em-
bedded strength factor; its value is set to × mainly because it
can achieve a good trade-off between the robustness and
imperceptibility of the watermarking. (erefore, the pa-
rameter setting of the watermark embedded strength factor is
mainly based on the size of image energy. (e main reason is
to embed the watermark information while maintaining the
imperceptibility of the image watermark.

(en, inspired by [35], we modified the embedded strength
factor, which is denoted by αHF by applying visual saliency.
Suppose that DS represents the saliency distance of each block
and Dmax

s denotes the maximum saliency distance in all image
blocks. (erefore, the watermark embedded strength factor can
be expressed by 1 + 0.02/Dmax

s Ds. Finally, the modified wa-
termark embedded strength factor can be represented as follows:

α � αHF × 1 +
0.02
D

max
s

Ds  − 1.0

� η − ρ · e
− ζ·EH  × 1 +

0.02
D

max
s

Ds  − 1.0.

(4)

3.3. Watermark Decoding. In this section, we model the
contourlet coefficients by the GGD. (e probability density
function of the GGD model is represented as follows:

pX(x) � Ae
− (β|x− μ|)c( ), (5)

where A � βc/2Γ(1/c), B � 1/σ(Γ(3/c)/Γ(1/c))1/2, and
μ, σ denote the mean value and variance, respectively. Γ(·) is
the gamma function when Γ(z) � 

∞
0 e− ttz− 1dt, z> 0, and c

denotes the shape parameter. Watermark detection can
perform the detection and evaluation of signals. (e hy-
pothesis test can be drawn as follows, using the likelihood
ratio test (LRT):

H0: α � 0(nowatermark)

H1: α> 0(watermark)
, (6)

where H0 and H1 are the null and alternative hypotheses.
According to the statistical signal processing method, the
maximum likelihood ratio can be represented as follows:

l(y) �
p y|H1( 

p y|H0( 
≈

p y|H1( 

p(y|0)
. (7)

Proofs of (7) are as follows [36]:


1

− 1
Py yi|wi( dwi � 

1

− 1

1
1 + αiwi

× Px

yi

1 + αiwi

 dwi.

(8)

Let t � yi/(1 + αiwi). (en, the integrand substitutes t

for wi; (8) can be rewritten as follows:


1

− 1
Py yi|wi( dwi � 

yi/ 1− αi( )

yi/ 1+αi( )

1
λit

× Px(t)dt. (9)

One order Taylor series of (1/αitPx(t)) around yi is
expanded as follows:

1
αit

Px(t) �
1

αiyi

Px yi(  +
d

dt

1
αit

Px(t) |t�yi
t − yi( . (10)

(erefore, (10) is rewritten as follows:


1

− 1
Py yi|wi( dwi � 

yi/ 1− αi( )

yi/ 1+αi( )

1
λiyi

Px yi( dt +
d

dt

1
αit

Px(t) |t�yi


yi/ 1− αi( )

yi/ 1+αi( )
t − yi( dt. (11)

αi≪ 1, d/dt(1/αitPx(t))|t�yi


yi/(1− αi)

yi/(1+αi)
(t − yi)dt is ap-

proximately zero in (11). (erefore, equation (11) can be
further expressed as follows:
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1

− 1
Py yi|wi( dwi ≈ 

yi/ 1− αi( )

yi/ 1+αi( )

1
αiyi

Px yi( dt �
1

αiyi

Px yi( 
2αiyi

1 − α2i
� 2Px yi( . (12)

(erefore, P(y|H0) ≈ 1/2N 
N
i�1(2Px(yi)) � P(y|0). On the basis of the analysis, we can rewrite themaximum

likelihood ratio by combining watermark embedding (1) and
the GGD model as follows:

l(y) � ln
P y|H1( 

P y|H0( 
≈ ln

P y|H1( 

P(y|0)
� ln


N
i�1 A/1 + αiwi exp − βiyi/1 + αiwi



c

  


N
i�1 A exp − βiyi



c

  .
(13)

Furthermore, equation (13) can be simply represented as
follows:

l(y) � 
N

i�1
− αiwi + c|βy|

cαiwi( . (14)

(us, we can write the watermark detector as follows:

T(y) �
zl(y)

zαi

� 
N

i�1
− wi + c βyi



c
wi . (15)

Next, we can compute the watermark detection
threshold. (e Gaussian distribution characteristic of the
watermark detector under the null hypothesis condition and
its mean is zero. As a result, we can calculate the watermark
detection threshold as follows:

τ � σTQ
− 1

Pf , (16)

where τ denotes the watermark detection threshold,

σT �

�������


N
i�1 cw2

i



represents the variance, and

Q(x) � (1/
���
2π

√
) 

+∞
x

exp(− t2/2)dt denotes the right-tail
probability of the Gaussian distribution.
Pf � P(T(y)> τ|H0) � Q(τ/σT) represents the false alarm
probability.

Generally, false alarm is generated due to the existence of
the watermark information detected in the unwatermarked
image. A missed alarm is the phenomenon in which the
watermark detector does not detect the watermark infor-
mation in the watermarked image. (erefore, the receiver
operating characteristic (ROC) curve of the watermarking
can be derived as follows.

Suppose P0 denotes the detection probability of water-
mark. Hence, (1 − P0) can represent the missed alarm
probability. According to the statistical hypotheses and the
central limit theorem, the mean and variance of the dis-
tribution of the host image and watermarked image can be
estimated; they are denoted as μT0

, μT1
and σT0

, σT1
, re-

spectively. As a result, P0 can be written as follows:

Pd � Q
σT0

Q
− 1

Pf  + μT0
− μT1

σT1

⎛⎝ ⎞⎠, (17)

where σT0
≈ σT1

, μT0
� 0, and μT1

� (1/N 
N
i�1 αi) · σ2T0

. Let
SNR � μT1

/σT1
� (1/N 

N
i�1 αi) · σT0

.

Finally, the ROC relationship can be defined as follows:

Pd � Q Q
− 1

Pf  − SNR . (18)

4. Experimental Results

In this regard, to verify the effectiveness of the proposed
watermarking method, several experiments have been
performed, including the imperceptibility, robustness, and
performance of watermark detection. We have compared
the proposed watermarking with other related watermarking
approaches. All experiments have been performed on a PC
with 4.0GHz Intel Core i7 CPU and 16 G RAM. (e
simulation software was MATLAB R2018a that ran in 64-bit
Windows 10. In summary, the simulation settings are
provided in Table 1.

4.1. Imperceptibility Test. We have tested eight standard
images, which include Lena, Barbara, Bridge, Boat, Elaine,
Mandrill, Peppers, and Man, to demonstrate the invisibility
of the proposed method; the size of each standard image is
512× 512. In our implementation, a two-level contourlet
transform has been applied to decompose each image block.
(e filters are set to “Pivka.” Figure 4 only shows the host
images and their watermarked version made by applying our
method with 16×16 blocks and a 512-bit watermark ca-
pacity due to the limited space. Figure 4 shows that the
imperceptibility of our method is satisfied. (erefore,
finding the difference between the original image and their
watermarked version is difficult.

In addition, the embedded strength factor can be
adapted and adjusted according to the watermark capacity
to further enhance the performance of the proposed
method. (e relationship between the embedded param-
eter and watermarked image quality is developed through
experiments, and the results are shown in Figures 5 and 6 .
(e performance is mainly measured by peak signal-to-
noise ratio (PSNR) and structural similarity index measure
(SSIM) [37]. As shown in Figures 5 and 6, when the wa-
termark embedded strength factor increases, the values of
PSNR and SSIM decrease. (e range of embedded strength
factor can be set within 0.005 to 0.025 to balance the
imperceptibility, robustness, and watermark capacity of
watermarking.
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Table 1: Experimental parameter settings.

Parameter name Configuration
Experimental platform Window 10, MATLAB R2018a
Test images Lena, Barbara, Bridge, Boat, Elaine, Mandrill, Peppers, and Man
Image size 512× 512
Wavelet filters of contourlet transform Pivka
Watermark length (bits) 512
Decomposition level Two-level
Performance evaluation PSNR, SSIM, and bit error rate (BER)

Figure 4: Original and watermarked versions: Lena, Barbara, Bridge, Boat, Elaine, Mandrill, Peppers, andMan. For each image, the left and
right parts denote the original image and the watermarked image, respectively.

Security and Communication Networks 7



4.2. Robustness Test. In this section, to assess the robustness
of the proposed watermarking, several experiments have
been performed in common image processing and some
geometric attacks. (ese attacks include additive whiten
Gaussian noise, salt and pepper noise, median filtering,
rotation, cropping, flipping, scaling, JPEG compression, and
Gaussian filtering attack. Furthermore, to evaluate the ef-
fectiveness of our watermarking method, we have compared
it with other related watermarking approaches, which in-
clude the methods in [27, 31] and [38]. Moreover, the ro-
bustness performance is measured through the bit error rate
(BER).

We have performed two common experiments under JPEG
compression and Gaussian noise attack. (e result is shown in
Figures 7 and 8. In this work, the watermark capacity is 512 bits.
Figure 7 shows that our method has satisfying robustness on
JPEG compression attack. Similarly, Figure 8 shows that our
watermarking method has good robustness against Gaussian
noise attacks. Moreover, Tables 2 and 3 show the comparison of
the performance of our method with other methods under
common image processing, geometric, and combined attacks.
All watermarking methods, for the purpose of comparison, use
the same watermark capacity. (e watermark capacity of all
methods is also 512 bits in Tables 2 and 3.

Lena
Barbara
Bridge

Boat
Elaine
Mandrill

Peppers
Man

40

42
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R 
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0.02 0.0250.01 0.0150.005
Watermark embedded strength factor

Figure 5: PSNR versus watermark embedded strength factor with
watermark capacity 2048.
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Figure 6: SSIM versus watermark embedded strength factor with
watermark capacity 2048.
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Figure 7: BER (%) results under JPEG compression attack.
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Figure 8: BER (%) results under Gaussian noise attack.
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Table 2: BER (%) results of various watermarking methods under common attacks.

Image Methods Gaus.noi. 20 Salt.Pep.0.05 JPEG 20% Gau.filt. 3 x 3 Med.filt. 3 x 3

Lena

Method [27] 3.02 3.43 5.63 — —
Method [31] 2.41 13.78 9.24 1.19 1.56
Method [38] 6.29 — 20.76 1.83 4.95
Proposed 2.25 11.24 4.83 2.86 3.72

Barbara

Method [27] 2.56 3.95 2.14 — —
Method [31] 1.89 10.26 8.30 0.82 1.65
Method [38] 7.34 — 18.85 1.49 5.36
Proposed 2.08 5.23 2.35 1.73 2.20

Bridge

Method [27] 2.94 9.44 6.79 — —
Method [31] 3.81 12.50 8.96 2.49 2.16
Method [38] 6.93 — 19.50 1.68 5.18
Proposed 2.59 9.69 2.61 3.80 5.43

Boat

Method [27] 3.12 10.17 5.29 — —
Method [31] 4.93 14.98 7.42 1.85 3.26
Method [38] 6.68 — 18.20 1.56 5.64
Proposed 2.34 12.05 2.58 2.23 6.69

Elaine

Method [27] 2.59 13.30 3.68 — —
Method [31] 2.08 15.19 5.89 2.79 4.92
Method [38] 6.34 — 17.35 2.76 5.54
Proposed 2.13 14.58 0.87 2.55 6.80

Mandrill

Method [27] 1.78 4.87 3.22 — —
Method [31] 2.34 10.48 6.45 1.38 2.64
Method [38] 5.95 — 18.29 1.82 5.97
Proposed 1.82 7.67 1.33 2.19 4.50

Peppers

Method [27] 5.70 12.79 6.86 — —
Method [31] 4.48 15.24 5.53 2.64 1.75
Method [38] 8.60 — 19.42 1.76 6.08
Proposed 4.27 12.87 2.73 2.39 1.44

Man

Method [27] 4.39 13.02 8.46 — —
Method [31] 3.66 10.82 11.25 4.89 6.88
Method [38] 7.08 — 22.07 2.10 5.83
Proposed 2.45 11.77 4.94 4.75 5.32

Table 3: BER (%) results of various watermarking methods under geometric attacks.

Image Methods Rot.10° Scal. 0.75 Crop.50% Rot.5 + Scal .5

Lena

Method [27] 10.22 27.34 29.45 30.24
Method [31] 12.76 22.08 26.17 29.46
Method [38] 17.49 20.89 22.32 34.58
Proposed 9.68 19.97 20.80 21.73

Barbara

Method [27] 9.34 32.29 30.13 28.71
Method [31] 11.92 27.44 26.49 25.82
Method [38] 18.24 24.12 25.69 37.61
Proposed 6.60 26.80 16.32 20.94

Bridge

Method [27] 7.38 9.65 32.74 31.18
Method [31] 17.82 19.54 25.58 24.19
Method [38] 19.23 23.47 27.48 39.69
Proposed 9.56 16.89 24.22 23.71

Boat

Method [27] 9.51 18.36 28.67 28.40
Method [31] 8.84 24.07 20.34 29.33
Method [38] 15.02 28.73 26.85 38.87
Proposed 5.97 25.99 22.76 22.25

Elaine Method [27] 11.35 21.43 27.50 27.42
Method [31] 16.24 28.30 19.38 25.78
Method [38] 20.43 35.66 21.80 35.93
Proposed 10.33 30.12 16.14 25.39

Mandrill Method [27] 8.98 12.46 24.55 27.16
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Table 2 shows the results of the simulation experiments
under common image processing attacks, which cover
Gaussian noise with noise variance 20, Salt and Pepper noise
with noise variance of 0.05, JPEG compression with a quality
factor of 20%, Gaussian filtering with the windows of size
3× 3, and median filtering with the windows of size 5× 5.
Table 3 shows the results of the simulation experiments
under geometric attacks, including the rotation attack with
10° angle, amplitude scaling attack with factor 0.75, cropping
with factor 50%, combination attack with rotation of 5°
angle, and scaling with a factor of 0.50.

As shown in Tables 2 and 3, the proposed watermarking
method has slightly better performance than the image
watermarking methods. (is finding is mainly due to the
application of the following factors. First, we embed the
watermark information into the image blocks with high
energy in the contourlet transform domain. Second, the
watermark embedded strength factor was constructed by
taking advantage of the visual saliency model and texture
masking. (us, embedding the watermark can be adapted.
As such, a good trade-off between the invisibility and ro-
bustness of the watermark can be achieved. Finally, the
watermark detection performance can be improved by the
GGD model.

However, the proposed watermark detector relies on
partial original image feature information, such as positions
of image blocks; thus, the proposed algorithm becomes
semiblind. In the subsequent work, we will design a blind
watermarking method.

4.3. Performance of Watermark Detection. (e GGD is used
to model the contourlet coefficients to further demonstrate
the detection performance, and the ROC is utilized to
measure the performance of watermark detection according
to equation (18) of Section 3.3. Figure 9 shows the results and
indicates that the detection performance of our method is
satisfied. (e main reason is that the contourlet coefficient
distribution is highly nonlinear, and the GGD fits the
contourlet coefficient effectively.

However, the proposed watermarking method performs
weakly when resisting other attacks, including combina-
tional attack amplitude scaling and JPEG compression, Salt
and Pepper and Gaussian noise, and global affine

transformation and histogram equalization attack. (ese
problems will be addressed by developing some matrix
decomposition-based watermarking methods or deep
learning-based watermarking algorithms in our future work.

5. Conclusion

We have developed an image watermarking algorithm by
using the visual saliency model in the contourlet domain. In
watermark embedding, high-energy image blocks are se-
lected for the watermark embedding space, and the water-
mark embedded strength factor is exploited by taking
advantage of texture masking and visual salience. (e wa-
termark can be embedded into the contourlet coefficients
adaptively by using this strategy. For watermark decoding,
the GGD model is used to describe the contourlet coeffi-
cients, and the ROC has been derived by applying the
statistic signal processing method. Finally, we have per-
formed several experiments to demonstrate the proposed
method. Simulation results show that our watermarking

Table 3: Continued.

Image Methods Rot.10° Scal. 0.75 Crop.50% Rot.5 + Scal .5
Method [31] 7.22 20.79 20.18 24.23
Method [38] 22.06 29.78 24.57 36.94
Proposed 6.50 17.43 12.84 19.59

Peppers Method [27] 12.45 23.78 29.43 29.68
Method [31] 13.39 18.76 21.80 30.49
Method [38] 18.87 27.26 23.18 38.68
Proposed 6.07 19.59 13.67 23.67

Man Method [27] 9.94 14.41 27.86 27.45
Method [31] 10.18 21.78 19.44 22.97
Method [38] 21.50 26.15 23.07 36.34
Proposed 7.83 20.42 10.29 21.80
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Figure 9: Performance of watermark detection for different
images.
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method has satisfied imperceptibility and robustness. In the
future work, a novel watermark detection approach will be
designed using the deep learning or generative adversarial
network method.

Data Availability

Eight standard grayscale images Lena, Barbara, Bridge, Boat,
Elaine, Mandrill, Peppers, and Man are used as host images
in the simulations, which are shown in Figure 4 in this paper.
(e results in this paper are entirely theoretical and ana-
lytical. (e main steps of the demonstrations for each result
are clearly reported in the text and the paper is fully con-
sistent without the support of any additional data.
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