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With the convergence of IT and OT networks, more opportunities can be found to destroy physical processes by cyberattacks.
Discovering attack paths plays a vital role in describing possible sequences of exploitation. Automated planning that is an
important branch of artificial intelligence (AI) is introduced into the attack graph modeling. However, while adopting the
modeling method for large-scale IT and OTnetworks, it is difficult to meet urgent demands, such as scattered data management,
scalability, and automation. To that end, an automatic planning-based attack path discovery approach is proposed in this paper. At
first, information of the attacking knowledge and network topology is formally represented in a standardized planning domain
definition language (PDDL), integrated into a graph data model. Subsequently, device reachability graph partitioning algorithm is
introduced to obtain subgraphs that are small enough and of limited size, which facilitates the discovery of attack paths through
the AI planner as soon as possible. In order to further cope with scalability problems, a multithreading manner is used to execute
the attack path enumeration for each subgraph. Finally, an automatic workflow with the assistance of a graph database is provided
for constructing the PDDL problem file for each subgraph and traversal query in an interactive way. A case study is presented to
demonstrate effectiveness of attack path discovery and efficiency with the increase in number of devices.

1. Introduction

Since information technology (IT) was introduced into all
walks of life, the threat from hackers and virus attacks have
never been got rid of. However, it does not prevent industrial
enterprises from adopting the commercial-off-the-shelf
software and hardware and the general network connectivity
into operational technology (OT) networks, such as industrial
control networks [1]. +e IT/OT convergence provides at-
tackers more opportunities to launch targeted attacks whose
consequences can be disastrous against the real physical
world. +e industrial control security incidents in the past
decade are the best proof that cyberattacks are gradually
infiltrating from the IT networks to the OT networks [2].

Apart from the cyberattacks migrated from ITnetworks,
some inherent issues exist in the OTnetworks, such as design

defects in industrial control network protocols [3] and
vulnerabilities of proprietary devices [4]. On account of
frequent interactions between IT devices and OT compo-
nents, there are no clear boundaries between IT and OT
partitions in the current industrial environment. In other
words, any compromise that occurred on the devices or
networks in either IT or OT side has an undesirable impact
on the overall safety and security. +erefore, both ITand OT
aspects should be taken into consideration simultaneously
for cybersecurity analysis in a comprehensive assessment
[5].

In general, the security assessment mostly relies on a
standalone vulnerability scanning for services or devices in
the IT and OT networks. Although more specific vulnera-
bility information can be obtained by scanning, they are
difficult to be used to understand means and intents of
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sophisticated attacks, let alone to suit for the comprehensive
assessment. To that end, the concept of the attack path is
presented to describe an alternative sequence of exploitation
steps that can lead to a successful attack [6]. Direct, indirect,
and subliminal attack paths are concerned by security
practitioners and researchers. +e process of generating
those paths can be treated as that of simulating specific
attack behaviors [7].

Focusing on finding all possible attack paths, depen-
dencies of topologies, vulnerabilities, exploitations, and tar-
gets are integrated into a graph, called attack graph [8]. Since
the attack graph model was first constructed in 1997,
quantities of generation methods for it have been widely used
in a variety of scenarios to discovery attack paths [6]. Among
them, automated planning, a branch of the artificial intelli-
gence (AI), is adopted in the attack graph generation, which
transforms finding valid paths into solving problems of a
given attack scenario by a planner [9]. It has two obvious
characteristics compared with other attack graph generation
methods. For one thing, various mature domain-independent
planners on the graph plan algorithm can be utilized to ac-
complish path discovery tasks. For another, a standardized
planning domain definition language (PDDL) has favorable
data representation with rich-level semantics and the nu-
merical logic deduction to support the planner, which is
suitable for modeling changeable attack scenarios by
encoding domain knowledge and variable conditions [10, 11].

Nevertheless, when implementing into the IT and OT
networks, the planning-based method also suffers from
several problems mainly in three aspects: (1) Despite the
advantage of the PDDL descriptions in the modeling, it loses
some heterogeneous and scattered information with the
abstraction of the attacking knowledge and the network
topology, which is unconducive to make sense of attack
paths. (2) Most attack graph generation methods are limited
by the scalability with the increasing scale of the network
topology. Unfortunately, there is no exception for the
planning-based method whose bottleneck restrictions exist
in parsing the complex PDDL problem file of encoding a
complete and larger attack scenario and attack path enu-
meration to call the planner. (3) Enhancing the automation
in each stage is a long-standing topic for the attack graph
modeling. Faced with frequent changes in the attack sce-
narios, a challenge comes from how to reconstruct corre-
sponding PDDL descriptions.

To cope with the problems as mentioned above, we
proposed an automatic planning-based attack path dis-
covery approach on the basis of the literature [9]. We aim to
extend planning-based method for large-scale attack graph
generation. +e main contributions of this work are sum-
marized as follows:

(1) We present a formal data description method for
attacking knowledge and network topology. Mod-
eling by PDDL still possesses the advantage in de-
scriptions.+e combination with a graph data model
does favor to globally understand attack paths with
the integration of scattered information in the form
of entities and relations.

(2) We improve the conventional planning-based attack
graph generation method for a large-scale network.
A device reachability graph partitioning algorithm is
introduced to obtain subgraphs that are small
enough and of limited size, facilitating the discovery
of solution by planner, and reducing the burden of
parsing the PDDL files.

(3) We provide an automatic workflow with the assis-
tance of a graph database. In response to the attack
scenarios changing, an automatic construction for
the PDDL files is implemented for each subgraph.
+e graph database with the model makes it possible
for subsequent visualization and assessment in an
interactive way.

+e rest of the paper is organized as follows: A related
work is summed up in Section 2. An overview of our
proposed approach is given in Section 3. Section 4 provides a
formal representation method including the PDDL and a
graph data model. In Section 5, 4 algorithms are elaborated
to complete a series of tasks on the attack path discovery. A
case study demonstrated the function and performance of
our proposed approach in Section 6. Finally, we conclude the
research in Section 7.

2. Related Work

In this section, we simply review methodologies and tech-
niques to generate various types of attack graphs, such as
model checking, deductive reasoning, automated planning,
parallel computing, and graph data modeling. We mainly
focus on the following two perspectives, namely, the scal-
ability and the formal data representation.

In general, model checking is a technique for deter-
mining whether a formal model satisfies a given property or
not. By finding counterexamples on attack sequences, paths
that breach security attributes are represented in a state
attack graph [12]; however, it also confronts exponential
state-space problems even used in middle-scale networks.
Different from the state attack graph, logical attack graphs
are built by deductive reasoning to demonstrate attack steps
and their prerequisites for each action [13–16]. A well-
known and open-source reasoning framework, called
MulVAL (Multihost, Multistage Vulnerability Analysis), is
utilized to infer attack paths among attack goals and con-
figuration information [15, 16], which is fit for risk as-
sessment in the large-scale enterprise environment.

+ose two kinds of attack graphs belong to the complete
graph, probably involving attack paths that cannot reach the
attack goal, whereas a minimal attack graph is defined as all
attack paths terminated to the specific goal [9]. Planning-
based methodologies can be adopted to generate the min-
imal attack graph [17–20]. A set of domain-independent
planners can be used to build attack graphs, such as
GraphPlan, FF, Metric-FF, LPG-td, and SGPlan [11].
Nevertheless, it is universal acknowledge that the planning-
based methodologies has limitations in scalability. Conse-
quently, a graph reduction method is introduced to simplify
the task of searching without sacrificing the quality of attack
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paths in [17]. Concentrating on penetration information of a
testing goal, a compact planning graph algorithm is pro-
posed in [20] to prune redundant attack path branches for
the improvement of the scalability.

Compared to the serial approaches mentioned above,
another attack graph generation has a dependence on
parallel computing [21–23]. Its core idea is using a partition
algorithm to split a large-scale complex network topology
and processing each subgraph by multiple agents at the same
time, which emphasizes the load balancing to enhance the
efficiency of the attack graph generation.

Besides the methodologies and techniques, an appro-
priate formal data representation of the expert knowledge
and the network configuration is important for the attack
graph generation as well. It is not only meaningful to de-
scribe multisource information in each corresponding
modeling approach, but also helpful to promote readability
for understanding attack paths. +ere is a research direction
for modifying a generated attack graph. For instance, a
process-mining algorithm is employed to extract the
chronological order and logical relationship among cyber-
attack behaviors, generating an attack graph on massive
security alerts [24].+en, the complex graph is split based on
some branches without changing its original structure,
which makes it easier to understand. In [25], an ontology is
constructed for the MP (multiple prerequisite) graphs that
scales nearly linearly as the network size growing. It enables
network administrators to make sense of the semantics of
attack paths by knowledge inferences. In order to build a
simplified attack graph, the concept of abstracted visuali-
zations is implemented by aggregating part of the original
attack steps according to an asset [26].

Since the input and output information of attack graphs
are manifested as connected data, it can be naturally stored
as graph data in the form of nodes and edges. With the
recent popularity of the graph database, the graph data
model is paid more attention by researchers to represent
data, such as the topology and vulnerabilities [27–30]. In
addition to in consideration of the data storage form, gaining
the valid information among the large-scale and isolated
data is still an impending demand for building attack graphs.
Graph traversal queries can provide an efficiency and
scalable solution for the difficulty. In [28], a cyberattack-
oriented graph data model is given around attack paths to
capture relationships among entities in the security domain
allowing for the division of graph models into inter-
connected layers, which is convenient for supporting other
collaborative assessment tasks.

Inspired by the researches listed in this section, we at-
tempt to solve the problems in three aspects described in the
introduction part. Our proposed approach innovatively
combines twomethodologies that are graph partitioning and
graph data modeling to mainly promote automation and
scalability for the IT and OT network environment.

3. Proposed Method

Our method aims to find attack paths from IT to OT net-
works in a rapid and automatic way. We applied the PDDL

for formal representation to model the network topology
and attacking knowledge as inputs of an independent AI
path planner. To further improve the scalability of attack
path enumeration using the planner, a device reachability
graph partitioning is introduced before the attack path
planning phase. Subsequently, calling the enumeration al-
gorithm in a multithreading manner for each subgraph, all
attack paths can be discovered. As a core component of our
method, a graph database has advantages in the aspects of
the storage and traversal query. It manages entities and
maintains relationships in the phases of information gath-
ering, key element extraction, and attack path planning.
Moreover, automatically constructing PDDL files is realized
by obtaining property fields lying in the entities. Particularly
for the large-scale networks, the interactive query plays a
vital role inmultisource information on attack paths, and the
graph database makes it possible for the attack path visu-
alization or assessment in a limited time.

As illustrated in Figure 1, the proposed framework for
attack path discovery consists of information gathering, key
element extraction, topology analysis, graph data con-
struction, formal representation, attack path planning, and
its application. We accomplish attack path discovery tasks of
different phases with the generation and exchange of data
workflow. +e descriptions of the major function modules
are provided as follows:

(i) Topology analysis is as follows: it analyzes basic data
from information gathering to parse network
reachability among devices, calculating the overall
network complexity. According to a preset value of
subgraph scale, the network topology in a large scale
is split intomultiple parts for subsequent attack path
planning in a multithreading way.

(ii) Graph data construction is as follows: the data from
information gathering, key element extraction, and
topology analysis is stored in the form of graph data.
By means of fast traversal query APIs in the graph
database, it is possible to obtain essential infor-
mation for both formal representations using the
PDDL and attack path application. Besides, the
dependency between vulnerabilities, stemming
from attack paths, can be added into graph data
relations.

(iii) Formal representation is as follows: using the results
of the graph database queries, two PDDL files on
domain and problem can be generated automati-
cally for the AI planner. +e domain is a set of
actions which focuses on the state transition of
attacking, and the problem contains initial states of
devices, vulnerabilities, topology, as well as the goal
states.

(iv) Attack path planning: the AI planner generates a
shortest attack path based on the specific PDDL
files. In order to find all attack paths, an enumer-
ation algorithm is developed for each subgraph,
which needs to modify the problem file for
replanning paths. When a set of attack paths is
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available, a global attack graph is generated for
further analyzing exploitation dependencies.

In the following sections, we discuss themain parts of the
proposed method in detail.

4. Formal Data Representation

In this section, we formally define a network model, a device
reachability, an attack path, and an attack graph. After that, the
definitions of domain and problem in PDDL, as well as AI
planner, are given. Considering the demands of the attack path
generation as aforementioned, a graph data model is con-
structed to represent entities and relationships in a network.

4.1. Preliminaries. Given a formal network model, the first
and core step in building an attack graph is determining its
reachability. An attack graph is an abstraction of repre-
senting all paths that an attacker is able to exploit inter-
dependencies among existing vulnerabilities:

(i) Definition 1. A network model is defined as
N � <D, R, V> , where D is a set of devices
Di (i � 1, 2, 3 . . .), R⊆D × D is a set of reachable
conditionsRij(i � 1, 2, 3 . . . , j � 1, 2, 3 . . .), andV is
a set of vulnerabilities Vi (i � 1, 2, 3 . . .).

(ii) Definition 2. A device reachability refers to whether
some ports on the device can be accessed via TCP or
UDP connections from other devices in the net-
work, which can be analyzed from firewall rules and
the network topology. Boolean Rij � 1 denotes that
Di reaches Dj via an open port.

(iii) Definition 3. An attack path (AP) is a finite acyclic
path of a sequence on devices Di and vulnerabilities
Vi, where AP � (x1, x2, . . . , xn)|xn ∈ (D × V)⋃

(V × D)}, n � 1, 2, 3 . . ..
(iv) Definition 4. An attack graph (AG) is a data

structure that represents the intersection of all at-
tack paths, where AG � APi|APi

is an attack path inN}, i � 1, 2, 3 . . ..

4.2. Domain and Problem in PDDL. +e PDDL and its
variants are often used for encoding domain knowledge.
Given that the information has been represented into PDDL
files of domain action models and problem statements, there
are a variety of classical and heuristic planners accessible to
generate attack plans:

(i) Definition 5. A PDDL domain is an abstract de-
scription on a series of problems, including re-
quirements, functions, predicates, and available
actions with the preconditions and postconditions.
It models a variety of attacks which corresponds to
vulnerabilities, tactics, and techniques.

(ii) Definition 6.A PDDL problem is a concrete instance
of a certain PDDL domain, including objects, initial
states with numerical predicates, and a goal state. It
models the device reachability, service running on
the devices, and attacker abilities, such as privileges,
credentials, and even an entry point of a compro-
mised network.

(iii) Definition 7. An AI planner is a search algorithm
designed for a specific purpose, finding out a plan
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Figure 1: Overview of our automatic planning-based attack path discovery method.
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that satisfies a PDDL problem. In this paper, we
choose a domain-independent planner, called
SGPlan (https://wah.cse.cuhk.edu.hk/wah/
programs/SGPlan/sgplan5.html), to solve the
planning problem in PDDL, which generates a
shortest attack path at a time.

Figure 2 depicts our running example that a simple
network scenario is modeled by domain and problem using
the PDDL and the planner finds out a valid attack path. +e
simple network scenario contains two devices where they
both run services with vulnerabilities. One vulnerability
exists in the TIA portal used on engineering workstations
(EWS) owing to the improper input validation. +e other
vulnerability affects the CPU of Siemens S7-300 PLCs where
it can be arbitrarily switched to a defect mode. +e planning
attack path is <Attacker⟶ Improper InputValidation
⟶ EWS⟶ Improper Control⟶ PLC>.

Note that we expect to express that an attacker may send
specially crafted packets to gain privileges on the EWS and
then exploit the vulnerability of the PLC CPU to take an
improper control of it. However, the output of the planner
tends to miss some key information, which is used to de-
scribe an attack path. For that reason, we next devise entities
and relationships in graph data to make up for the missing
semantics.

4.3. Graph Data Model. In our approach, we construct a
graph data model to represent around devices, networks, and
vulnerabilities. It is made up of a set of nodes and edges,
where nodes represent entities and edges represent rela-
tionships between entities.+ere are five entities in this model
including the Device, the Vulnerability, the Component, the
Domain, and the Tactic & Technique. +e properties of each
entity are shown in Table 1. Facts corresponding to the
entities are taken from the phases of the information gath-
ering and the key element extraction. Particularly, the
Component is a general term, referring to services, operating
systems, or even the hardware, using type field in the property
to distinguish.+e term “Tactic & Technique” is derived from
ATT & CK for ICS (https://collaborate.mitre.org/attackics/
index.php/Main_Page) to describe individual techniques
under the tactics on some specific vulnerabilities.

In addition, seven relationships are summarized in
Table 2. In the initial stage of the construction, the top five
relationships described in the table can be provided among
the node of facts. However, the relations between the attack
and the exploit are added into the graph data model when
attack paths are generated by the proposed enumeration
method.

As illustrated in Figure 3, we further expand the se-
mantics of the attack path mentioned in the previous
section. Take the PLC in the simple network scenario as
an example. In the process control domain, the CPU of
the PLC may be affected by a vulnerability so that the PLC
switches from run mode to defect mode. To that end,
attacker gains privilege on the EWS which connects to the
PLC and exploits the vulnerability of an improper con-
trol, launching the attack to make the PLC denial of

service (DoS). As a result, the PLC may inhibit response
functions (IRFs) to message feedback by sensors or ac-
tuators in the field. To some extent, the combination of
the graph data model with the original discovery method
is a desirable way to enhance the readability of attack
paths.

5. Attack Path Discovery Approach

In this paper, an automatic, multithreading, AI planning-
based enumeration approach is proposed as the core attack
path discovery algorithm. Based on the device reachability
defined in Section 4.1, a graph partitioning method is in-
troduced to generate subgraphs within the preset numbers of
nodes. Each subgraph is assigned to a thread and then the
planner is called separately to complete the attack path
enumeration. Using the graph data model mentioned in
Section 4.3, files of the domain and problem in PDDL can be
combined automatically with the help of traversal query for
properties, which follows the principles of PDDL syntax.

Given a pair of the domain and problem for a specific
situation, a fixed shortest attack path can be solved. By
modifying the problem in PDDL, all attack paths can be
generated. For that end, an attack path enumeration needs to
be developed. We improved the enumeration algorithm
mentioned in [9], where it can adapt to a larger network scale
for the attack path discovery. Once all attack paths are
obtained, an attack graph can be built for analyzing the
relations of the attack and the exploitation, which need to be
added for the device nodes and vulnerability nodes in the
aforementioned graph data model. In the following sections,
we will give implementations for the graph partitioning
(Algorithm 1), the PDDL files combination (Algorithm 2),
the attack path enumeration (Figure 4), and the multi-
threading execution (Algorithm 3).

5.1. Device Reachability Graph Partitioning. Reachability
determines the accessibility conditions among the services
running on the target devices. With an increase of
numbers of devices in a large-scale IT and OT networks,
finding attack paths is a huge burden in a limited time. As
we know, the original planning and enumerating attack
paths are also not suitable for the large-scale networks,
due to the time-consuming process of parsing large PDDL
files and the repeated path traversal. Naturally, it is an
urgent demand for the attack path discovery to divide the
device reachability graph into small-scale subgraphs.
Subsequently, we use a multithreaded method to find the
attack path for each subgraph.

+e complex graph segmentation algorithm is presented
in [24], which is originally used to enhance the readability of
an attack graph. +e idea of the algorithm is that it searches
for the branch nodes to split the whole graph and complete
subgraphs based on their structure. However, we simplify
the above algorithm to partition a device reachability graph
in this paper. +e input contains a device reachability graph
and the subgraph size. +e output is all subgraphs. More
details are shown in the pseudocode of Algorithm 1.
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5.2. Automatic PDDL Domain and Problem Construction.
As discussed in Section 4.2, it is critical for the planner to
define domain and problem files. +e domain file encodes
predicates and actions. +e problem file encodes objects,
initial states, and goals. When the planner was run for the
different subgraphs, respectively, some pairs of domain and
problem files are needed at the same time. As a result, it is
necessary to construct these two files in an automatic way,
particularly for the situation of large amount subgraphs. To
realize the above purpose, we build two templates for do-
main and problem in PDDL. Combining with the query
results from the graph database and the templates, domain
and problem files can be generated within a short time, even

if the reachability and device configuration are modified in
the previous phases. More details are shown in the pseu-
docode of Algorithm 2.

5.3. Attack Path Enumeration. According to a pair of do-
main and problem PDDL files, the planner provides a so-
lution to find the shortest attack path. Nevertheless, an attack
path enumeration strategy is supposed to be developed to
look for all attack paths. Referring to the literature [9], a
customized algorithm is given by modifying the problem
PDDL file to generate new attack paths until an exclusive
path set is found. +e way of modifying is to automatically

(:requirements :strips :fluents :equality)
(:predicates 
(TIA_Portal ?H)

Domain.pddl

(:goal (and (= (DoS Attacker PLC) 1))))

Problem.pddl

Planning Path

(define (problem Attack)
(:domain attackpath-demo)
(:objects

EWS
Attacker
PLC)

(:init
(= (root_priv) 3)
(= (user_priv) 2)
(= (none_priv) 1)
(= (has_priv Attacker Attacker) 3)
(= (has_priv Attacker EWS) 1)
(= (has_priv Attacker PLC) 1)
(= (DoS_done) 1)
(= (DoS_not_done) 0)
(= (DoS Attacker PLC) 0)
(TIA_Portal EWS)
(CPU_Defect_Mode PLC)
(improper_input_validation EWS)
(improper_control PLC)
(CPU_Defect_Mode_port_connectivity EWS PLC)
(TIA_Portal_port_connectivity Attacker EWS))

(define (domain attackpath-demo)

(CPU_Defect_Mode ?H)
(improper_input_validation ?H)
(improper_control ?H)
(TIA_Portal_port_connectivity ?S ?T)
(CPU_Defect_Mode_port_connectivity ?S ?T))

(:functions (has_priv ?A ?H)
(root_priv)
(user_priv)
(none_priv))

(:functions (DoS ?A ?H)
(DoS_done)
(DoS_not_done))

(:action improper-input-validation 
:parameters (?A ?S ?T) 
:precondition 
(and (>=(has_priv ?A ?S) (user_priv))

(TIA_Portal ?T)
(TIA_Portal_port_connectivity ?S ?T) 
(improper_input_validation ?T) 
(<(has_priv ?A ?T) (root_priv)))

:effect (and (assign (has_priv ?A ?T)(root_priv))))

(:action improper -control 
:parameters (?A ?S ?T) 
:precondition 
(and (=(has_priv ?A ?S) (root_priv)) 

(CPU_Defect_Mode ?T)
(improper_control ?T)
(CPU_Defect_Mode_port_connectivity ?S ?T)
(=(DoS ?A ?T) (DoS_not_done)))

:effect (and (assign (DoS ?A ?T)(DoS_done)))))

; Time 0.00
; ParsingTime 0.00
; NrActions 2
; MakeSpan
; MetricValue
; PlanningTechnique Modified-FF (enforced hill-climbing search) as the 
subplanner

0.001: (IMPROPER-INPUT VALIDATION ATTACKER ATTACKER EWS) [1]
1.002: (IMPROPER-CONTROL ATTACKER EWS PLC) [1]

Attacker EWS PLC

Gain Privilege DoS

Improper Input
Validation

Improper
Control

Figure 2: Definition of the domain and problem using the PDDL for a simple network scenario.

Table 1: Entity information in the graph data model.

No. Entity name Properties
1 Device ID, name, type, vendor, version, firmware/OS, fubgraph_ID
2 Vulnerability ID, name, type, ATT_vector, CVE_ID, precon, postcon, brief_info
3 Component ID, name, type, vendor, version
4 Domain ID, name, network, access_rules (service_port)
5 Tactic & technique ID, name, brief_info, data_source

Table 2: Relation information in the graph data model.

No. Relation name Descriptions
1 conn A reachability exists between two devices.
2 consist A device belongs to a domain divided by a network.
3 offer A component is offered by the devices.
4 has A component has a vulnerability.
5 depend +e tactic and technique depend on a vulnerability.
6 attack A device is affected by the vulnerability, leading to an attack.
7 exploit A compromised device exploits a vulnerability in another devices.
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block nodes on the attack path, which is implemented by
commenting out some contents encoded in the file that
relates to services.

In terms of the customized algorithm, a series of data
structures are defined to be used in attack path enu-
meration. One of them, called critical nodes, denotes
whether a node is always blocked to generate a new path or
not. On the contrary, the other data structure, called
noncritical nodes, denotes the nodes rely on some critical

nodes, and no new paths are obtained if the nodes are
blocked alone. Although these two data structures are
applied for indicating how to block nodes, there exist
fields of them to be predefined by analyzing the services in
a manual way. It is not conducive to enumerate attack
path in larger-scale networks. Hence, we remove these two
data structures in our improved method.+e modification
of the attack path enumeration algorithm is shown as a
flowchart in Figure 4.
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Figure 3: Graph data model for a simple network scenario.
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Figure 4: Flowchart for the improved attack path enumeration method (the improved parts are marked in red color).
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In our improved algorithm, we introduce two new data
structures, named Nodetmp and Path_tmp, respectively,
which are used to store the information during the enu-
meration. +e Nodetmp is defined to record the services of
the nodes in one path, and the Path_tmp is defined to record
the path, which is not completely processed. +e rest of the
data structures are in accordance with the definitions in the
literature [9].

5.4. Attack Graph Generation. In this part, we integrate the
above three algorithms into a multithreading program. Each
thread is assigned for one subgraph to call the subprogram of
attack path enumeration, and creating and submitting a
thread is managed by a thread pool. Particularly, we remove

some irrelevant items for each subgraph from the problem
PDDL file to reduce file parsing time. It greatly shortens the
time to generate an attack graph in a large scale, and the
result is discussed in Section 6.

+e input is the number of threads. +e output is a
complete attack graph, merged by a set of attack graphs of
subgraphs. After generating an attack graph, the exploit and
attack edges among the nodes of devices and vulnerabilities
are added in a graph database as mentioned in Table 2. More
details are shown in the pseudocode of Algorithm 3.

6. Case Study

In this part, the proposed automatic planning-based attack
path discovery approach is evaluated. At first, an

Input: device reachability graph Gr, subgraph size subg_size
Output: all subgraphs

(1) function GENERATE SUBGRAPHS (Gr, subg_size)
(2) if nodes_num of Gr more than subg_size then
(3) push Gr to Qp
(4) while Qp is not empty do
(5) pop a subgraph G from Qp
(6) find branch nodes Ns from G
(7) get edges from Ns and push them into Qe
(8) while Qe is not empty do
(9) pop an edge qe from Qe
(10) find successor subgraph Gs from edge qe in G
(11) if nodes in Gs less than subg_size then
(12) push Gs into Qp
(13) else
(14) push Gs into Qo
(15) output all subgraphs from Qo
(16) else
(17) output Gr
(18) end function

ALGORITHM 1: Device reachability graph partitioning.

Input: pddl file template domain_temp and problem_temp
connection object to a graph database hg; planning goals

Output: constructed pddl domain and problem files
(1) function GENERATE PDDL FILE (domain_temp, problem_temp, hg)
(2) query device nodes, device reachability, vulnerability and component via hg
(3) generate domain file:
(4) generate predicates of vulnerability, reachability, pre and postconditions
(5) generate actions of vulnerability from pre- and postconditions of vulnerability
(6) end
(7) generate problem file:
(8) generate objects from device nodes
(9) generate initially satisfied conditions
(10) generate goals based on your input
(11) end
(12) return generated domain and problem files
(13) end function

ALGORITHM 2: Automatic construction of PDDL domain and problem files.

8 Security and Communication Networks



experimental setup is introduced by a hypothetical network
topology from IT to OTnetworks in Section 6.1.+en, attack
paths are illustrated, and the corresponding data is stored in
the form of graph data in Section 6.2. Finally, we discuss the
performance in terms of device reachability graph parti-
tioning, attack path planning, and its enumeration in Section
6.3, which allows us to examine the scalability with the
increasing devices in the IT and OT networks.

6.1. Experimental Setup. As shown in Figure 5, a hypo-
thetical network topology is constructed whose structure
stems from the real-world practice, but its size is simplified.
It is separated into six subnets according to the different
functions. +e Enterprise Control Network is a corporate
network with respect to the product lifecycle management,
the resource planning, the business planning, and so on. +e
Perimeter Network manages servers to provide information
for users on the Enterprise Control Network via a variety of
services, such as web and mail. +e Manufacturing Oper-
ations Network is a bridge of information exchanges be-
tween control systems and enterprise resources planning
systems to support the top-down decision-making. +e
Process Control Network is used to transmit instructions
and data between control and measurement units and Su-
pervisory Control and Data Acquisition (SCADA) devices.
+e Automatic Control Network is connected to numbers of
HMIs and PLCs in fields, which are responsible for logic and
control computing tasks to manipulate and regulate sensors
or actuators in the Physical Control Network. Among them,
the IT networks are made up of the Enterprise Control
Network and the Perimeter Network, and other subnets
belong to the OT networks [1].

+e hypothetical network topology contains twenty
heterogeneous devices so as to introduce many services and
vulnerabilities, as shown in Tables 3 and 4. +e vulnera-
bility information is extracted from descriptions of the
NVD (https://nvd.nist.gov/) and the ATT & CK ICS
(https://collaborate.mitre.org/attackics/index.php/

Main_Page). Considering the device type and applied
technologies, we divide the whole network topology into
two parts, namely, Zones A and B. In Zone A, more devices
adopt the commercial-off-the-shelf software and hardware,
where more vulnerabilities may be exploited for the pur-
pose of lateral movements to the OT networks. Due to
factors, such as time and continuity, less security protection
devices are deployed in Zone B. Once some devices are
compromised in that zone, sophisticated attackers can take
multiple measures to launch control process-oriented at-
tacks to affect physical operations. In order to highlight
dependencies of vulnerabilities, we define access control
rules among services in detail, as shown in Table 5.

6.2. Attack PathDiscovery. Based on the model constructed
in Section 4.3, we store the experimental data in the form of
the graph data. Utilized in this paper, the graph database,
HugeGraph (https://hugegraph.github.io/hugegraph-doc/
), is efficient, universal, and open source. It is fully com-
patible with Gremlin query language and implements with
the Apache TinkerPop3 framework. +e stored graph data
is the basis of subsequent automatic generation of the
PDDL files and the final attack graph generation. To
demonstrate the feasibility of our proposed method, we
give the results in a reversed order as it is described in
Section 3. In this experiment, we define the entry point of
the attack as the Manger PC, and its compromised goal is
the PLC2 that is a slave station connected to a set of
physical equipment.

Figure 6 is a complete attack graph for the experimental
environment, which is output by the Graphviz (http://www.
graphviz.org/) library of the Python. +ere are 189 attack
paths that can reach the attack goal. We separately show the
attack paths for Zones A and B in Tables 6 and 7, because of
display convenience. Obviously, it is difficult to find a node
like the Historian node (Dev12) of the hypothetical network
topology, which can be viewed as a cut point in the Graph
+eory to partition a network topology.

Input: number of threads thread_num
Output: attack graph AG; adding exploit and attack edges in a graph database

(1) create an empty attack graph AG
(2) get domain.pddl and problem.pddl via GENERATE PDDL FILE (domain_temp, problem_temp, hg)
(3) get all subgraphs from GENERATE SUBGRAPHS (G, subg_size)
(4) create threads pool threads_pool and set maxim workers corresponding to thread_num
(5) foreach subgraph in subgraphs do
(6) modify problem.pddl and domain.pddl based on subgraph
(7) create a thread and bind it to enumerate attack paths using a planner
(8) submit this thread to threads_pool
(9) while True do
(10) check the status of threads in threads_pool
(11) if all tasks in threads_pool have done do
(12) break
(13) generate subag from paths returned from each thread and merge them into AG
(14) get ag_edges from AG
(15) create attack and exploit edges in a graph database according to ag_edges

ALGORITHM 3: Attack graph generation in a multithreading manner.
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Figure 5: A hypothetical network topology from IT to OT networks.

Table 3: Device information in the experimental environment.

Dev.ID Device name Port Vulnerability Affected component

Dev1 Manager PC — LNK remote code execution Icon of the shortcut in windows platform
— Credentials leak Connected device login

Dev2 Application server 22 OS command injection OpenSSH(SCP)
Dev3 ERP server 3389 BITS improper privilege management Windows background intelligent transfer service
Dev4 Data server 3306 Permissions and access controls MySQL
Dev5 Web server 80 Memory buffer overflow Internet information services
Dev6 Mail server 80 Improper access control Roundcube
Dev7 DNS server 53 DNS server remote code execution Windows DNS server
Dev8 Proxy server 8090, 4900 Path traversal Lanproxy server
Dev9 Proxy client 12000 Plaintext credential Lanproxy client

Dev10 MES client 445 SMBv3 remote code execution Microsoft server message block protocol
— Credentials leak Connected device login

Dev11 MES server 22 Kernel improper privilege management Linux kernel
Dev12 Historian 80 SQL server remote code execution Microsoft SQL server reporting services
Dev13 EWS1 445, 139 Code injection MSRPC over SMB
Dev14 EWS2 3389 Brute force Remote desktop services
Dev15 OWS 445 SMB remote code execution Microsoft server message block protocol
Dev16 OPC server 8080 Unrestricted upload of file Apache tomcat
Dev17 HMI1 (master) 2308, 1033 Modify configuration project HMI configuration project in WinCC

Dev18 HMI2 (slave) 2308, 1034 Modify configuration project HMI Configuration project in WinCC
Fake MAC address HMI and PLC communication

Dev19 PLC1 (master) 102
Modify parameters/modes PLC automatic operation/states

Modify control logic PLC program project in TIA portal
Plaintext control command Legacy S7Comm protocol

Dev20 PLC2 (slave) 102, 502

Fake MAC address HMI and PLC communication
Modify parameters/modes PLC automatic operation/states

Modify control logic PLC program project in TIA portal
Plaintext control command Modbus protocol

Uncontrolled resource consumption Protocol common used port
Improper control CPU defect mode
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+e paths in the attack graph are a mix of the Device
nodes and the Vulnerability nodes, which represents that an
attacker can reach a device and exploit vulnerability. As
discussed in Section 3, attack graph generated by our pro-
posed approach is to analyze exploitation dependencies, and
the corresponding edges are added among nodes in the
graph database. Afterward, it is convenient to find attack
paths arbitrarily with a fixed entry point and an attacking
goal by the Gremlin query. In that way, attack paths in
Table 6 are listed from the Attacker to the Historian device.
Similarly, attack paths in Table 7 are listed from the His-
torian device to the PLC2.

6.3. Performance Evaluation. Performance evaluation tests
of our proposed approach are carried out in the following
environments. +e domain and problem of the hypothetical

network topology are described in the PDDL (Version 2.2)
(https://planning.wiki/ref/pddl22). +e attack path planning
is executed on the SGPlan (Version 5.2.2). All programs on
the four algorithms mentioned in Section 5 are implemented
in Python (Version 3.5.2), running on a Linux server with
the Intel Xeon Silver 4110 CPU at 2.1GHz and 125GB RAM.
HugeGraph (Server Version 0.11.2) runs standalone in a
Docker (Version 19.03.12) container.

Initially, we implement the method introduced in the
literature [9] to validate its scalability. Assuming that a one-
to-one correspondence exists between the number of vul-
nerabilities and the number of devices, changes in the
network topology are only reflected in the complexity of the
problem file in PDDL that has a great impact on the
planning. +e results are shown in Table 8. Column 2 on the
left concerns the size of each test network topology, while the
remaining columns, respectively, fucus on the performance

Table 4: Vulnerability information in the experimental environment.

Vul.ID Vulnerability ATT_Vector Precondition Postcondition Tactics/techniques

Vul1 LNK remote code execution Local USB access/crafted LNK files Execute any code IA/replication through
removable media

Vul2 Credentials leak Local Plaintext record file Credential acquisition LM/valid accounts
Vul3 OS command injection Remote SSH password Execute any code LM/remote services

Vul4 BITS improper privilege
management Local USER login Administrator

(windows)
PE/exploitation for privilege

escalation

Vul5 Permissions and access
controls Remote USER login Root (linux) PE/exploitation for privilege

escalation

Vul6 Memory buffer overflow Remote Crafted URL Execute any code IA/exploit public-facing
application

Vul7 Improper access control Remote Crafted e-mail messages Execute any code IA/exploit public-facing
application

Vul8 DNS server remote code
execution Remote Malicious requests Execute any code IA/exploit public-facing

application

Vul9 Path traversal Remote Port scan Credential acquisition CA/exploitation for
credential access

Vul10 Plaintext credentials Remote Credential Login LM/valid accounts

Vul11 SMBv3 remote code
execution Remote USER Execute any code LM/exploitation of remote

services

Vul12 Kernel improper privilege
management Local USER login Root (linux) PE/exploitation for privilege

escalation

Vul13 SQL server remote code
execution Remote Incorrect page request Execute any code IA/exploit public-facing

application

Vul14 Code injection Remote Crafted RPC request Execute any code LM/exploitation of remote
services

Vul15 Brute force Remote Credential Login LM/valid accounts

Vul16 SMB remote code execution Remote USER Execute any code LM/exploitation of remote
services

Vul17 Unrestricted upload of file Remote JSP file/HTTP request Execute any code IA/exploit public-facing
application

Vul18 Modify Configuration
project Remote Malicious Configuration

project
Impair HMI control

function P/modify program

Vul19 Modify control logic Remote Malicious control logic PLC denial of service P/modify program
Vul20 Modify parameters/Modes Remote Malicious operations PLC denial of service IPC/modify parameter

Vul21 Plaintext control command Remote Crafted control command PLC denial of service IPC/unauthorized
command message

Vul22 Uncontrolled resource
consumption Remote High volume of requests PLC denial of service IRF/denial of service

Vul23 Fake MAC address Remote Scan devices/traffic forward/
Modify data PLC denial of service C/man in the middle

Vul24 Improper control Remote Crafted packets PLC denial of service E/change operating mode

Security and Communication Networks 11
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surrounding the CPU time and memory, including the total
planning time in the SGPlan, the parsing time for PDDL
files, the enumeration time for all attack paths, and the
memory consumption. With the increase of devices (nodes)
in the network topology, it is clear that both the running
time and the memory consumption grow exponentially. +e
SGPlan provides the planning time and the parsing time for
PDDL files as outputs, and the planning time involves the
parsing time and pure solution time for each valid attack
path. By summing the planning time and the parsing time,
we find that the parsing time accounting for more than 90%
dominates in the planning time with the complexity of the
problem file in the PDDL growing. Moreover, it is worth
noting that the enumeration time is even more unsatis-
factory for a small network topology, taking nearly 2 hours
to generate all attack paths for a network topology with a size
of 41 devices.

To overcome those two shortcomings in the attack
path enumeration method using the planner while ap-
plying in the large-scale networks, we introduce the graph
partition algorithm into our proposed approach.+ere is a
key parameter, namely, the subgraph size subg_size,
which is set to 10 in Algorithm 1. Performance results of
each stage are shown in Table 9. From row 2 to 4 in the
table, the results are better than those shown in Table 8 in
the case of 21 topology nodes. +e reason why the time-
consuming process of planning and parsing drastically
decreases is that partitioning algorithm on the basis of
branch points reduces the complexity of each problem file
in PDDL, which helps make it easier for the planner to
parse the file and solve a solution for each subgraph. In
addition, we further provide running time in the graph
partitioning (row 6) and operations with the HugeGraph,
such as importing and traversal query (rows 7 and 8), and
they take a small proportion in the running time of our
proposed approach. +e remaining rows list the

information on the attack graph of the hypothetical
network topology in Section 6.1.

Finally, we validate that each stage of our proposed
approach is suitable for a large-scale network by the ex-
periment. +e hypothetical network topology with in-
creasing size of devices and complexity are considered and
discussed. It simply achieves that goal by integrally repli-
cating several times those devices contained in the topology
to build scenarios of different network sizes, the number of
devices ranging from 100 to 1000. Experimental results are
shown from Figures 7 to 10. In Figure 7, running time and
memory usage of device reachability graph partitioning are
shown, considering different numbers of devices. It is ob-
served that the running time is less than 0.2 seconds, even
though topological scale reaches more than 1000 devices.
Figures 8 and 9, respectively, show the comparison between
multithreading and single-threading modes in running time
and the memory usage. We set the thread number of the
threading pool in Algorithm 3 as 20. Apparently, the time
consumption in the multithreading way is less than that in
the single-threading way. Simultaneously, its growth ratio is
also slower with the increasing of devices. But the cost of our
proposed approach has higher memory usage than that in
the single-threading way, which is almost linear growth. +e
overhead of multithreading exists in parsing the problem
files and enumerating attack paths. Hence, we remove the
irrelevant content encoded in the problem files based on the
devices of each subgraph to reduce time of parsing and
planning in each thread. It makes it possible to avoid
blocking or restarting invalid services in attack path enu-
meration algorithm as well. What is more, the efficiency of
operations, such as importing data and traversal query,
determines the process of automatic constructing PDDL files
and searching attack paths. Figure 10 shows the running
time of the two key operations of the HugeGraph in Al-
gorithms 2 and 3, considering different numbers of devices.

Table 5: Device access control rules in the experimental environment.

Dom.ID Domain name Source device Destination devices

Dom1 Internet

Manager PC (Application server, 22) (ERP server, 3389) (web server, 80) (proxy server, 8090&4900)
Application server (Data server, 3306)

ERP server (Data server, 3306)
Data server (Mail server, 80) (DNS server, 53)

Dom2 DMZ

Web server (Historian, 80)
Mail server (Proxy server, 8090 & 4900)
DNS server (Proxy server, 8090 & 4900)
Proxy server (Proxy client, 1200)

Dom3 Scheduling

Proxy client (Historian, 80) (MES client, 445)
MES client (MES server, 22)
MES server (Historian, 80)
Historian (OPC server, 8080)

Dom4 Supervision

OPC server (EWS1, 445 & 139) (EWS2, 3389) (OWS, 445)
EWS1 (HMI1, 2308 & 1033) (HMI2, 2308, & 1033)
EWS2 (PLC1, 102) (PLC2, 102 & 502)
OWS (HMI2, 2308 & 1033) (PLC1, 102) (PLC2, 102 & 502)

Dom5 Process
HMI1 (PLC1, 102)
HMI2 (PLC2, 102)
PLC1 (PLC2, 502)

12 Security and Communication Networks



Attacker

Vul1

Dev1

Vul6 Vul9

Vul2

Vul3

Dev5

Vul13

Dev12

Vul17

Dev8

V11

Vul10

Dev9

Dev10

Dev11 Dev3

Vul12

Dev2

Vul5

Dev4

Vul7 Vul8

Dev6 Dev7

Vul4

Dev16

Vul14 Vul15Vul16

Dev13

Vul18

Dev18 Dev17

Dev20

Vul21 Dev19

Dev14

Vul19Vul22

Vul24

Vul20

Dev15

Vul23

Zone A

Zone B

Figure 6: Attack graph of the experimental environment.
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Table 9: Performances of our proposed method.

No. Metrics Statistics
1 Topo_nodes 21
2 Plan_time (s) 0.11
3 Parse_time (s) 0.1
4 Enum_time (s) 53.94
5 Memory (KB) 19292
6 partition_time (s) 0.019
7 import_time (s) 0.27
8 tranversal_time (s) 0.007
9 ag_nodes 43
10 ag_edges 63
11 att_paths 189

Table 7: Attack paths in Zone B.

No. Attack paths
1 Dev12⟶Vul17⟶Dev16⟶Vul14⟶Dev13⟶Vul18⟶Dev18⟶Dev20
2 Dev12⟶Vul17⟶Dev16⟶Vul14⟶Dev13⟶Vul18⟶Dev17⟶Dev19⟶Dev20
3 Dev12⟶Vul17⟶Dev16⟶Vul15⟶Dev14⟶Vul19⟶Dev20
4 Dev12⟶Vul17⟶Dev16⟶Vul15⟶Dev14⟶Vul19⟶Dev19⟶Dev20
5 Dev12⟶Vul17⟶Dev16⟶Vul15⟶Dev14⟶Vul22⟶Dev20
6 Dev12⟶Vul17⟶Dev16⟶Vul15⟶Dev14⟶Vul24⟶Dev20
7 Dev12⟶Vul17⟶Dev16⟶Vul15⟶Dev14⟶Vul20⟶Dev20
8 Dev12⟶Vul17⟶Dev16⟶Vul15⟶Dev14⟶Vul20⟶Dev19⟶Dev20
9 Dev12⟶Vul17⟶Dev16⟶Vul16⟶Dev15⟶Vul20⟶Dev20
10 Dev12⟶Vul17⟶Dev16⟶Vul16⟶Dev15⟶Vul20⟶Dev19⟶Dev20
11 Dev12⟶Vul17⟶Dev16⟶Vul16⟶Dev15⟶Vul22⟶Dev20
12 Dev12⟶Vul17⟶Dev16⟶Vul16⟶Dev15⟶Vul18⟶Dev18⟶Dev20
13 Dev12⟶Vul17⟶Dev16⟶Vul16⟶Dev15⟶Vul23⟶Dev18⟶Vul21⟶Dev20

Table 8: Performances of attack path enumeration in [9].

No. Topo_nodes Plan_time (s) Parse_time (s) Enum_time (s) Memory (KB)
1 11 2.23 1.66 14.72 39256
2 21 44 40.96 184.49 164360
3 31 363.88 354.19 1398.11 644428
4 41 1954.15 1928.19 7319.67 1857944
5 51 7033.4 6973.02 26486.55 4524044
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Figure 7: Running time and memory usage considering different numbers of devices in Algorithm 1.
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Figure 9: Memory usage comparison of the single and the proposed multiple threading method considering different numbers of devices.
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Figure 10: Running time of importing and traversal query of the HugeGraph considering different numbers of devices.
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7. Conclusion

+ere is an overwhelming trend that IT and OT networks
appear to be deeply integrated into the current industry,
whereas their existing security issues still cannot be ignored.
Concentrating on attack paths, in contrast with a standalone
vulnerability scanning, security assessment takes consider-
ation of dependencies among devices, vulnerabilities, and
networks as a whole. Focusing on all attack paths terminated
to the specific goal, we present an automatic planning-based
approach for the attack graph generation. +e conventional
planning-based attack path discovery approach is improved
with the graph data management, topology partitioning, and
the parallel execution, adapted to the large-scale IT and OT
networks.+e formal data representation adopts the PDDL for
describing attack scenarios, which still possesses the advan-
tages in the modeling. Meanwhile, multisource and scattered
data is managed by a graph database, providing opportunities
for users to query attack paths and corresponding information.

Experimental results indicate that our proposed ap-
proach manifests improvements in automation and scal-
ability compared with the conventional planning-based
method. Device reachability graph partitioning algorithm
helps to reduce the time consuming of parsing the PDDL
problem file and planning a single attack path. Calling the
attack path enumeration in a multithreading manner has
more desirable performance with the number of devices
growing. Using the graph database like HugeGraph guar-
antees the efficiency of importing data and traversal query,
which does favor to complete tasks, such as automatic
construction of the PDDL files and search attack paths.

In the future work, we attempt to utilize variety of
domain-independent AI planners to discovery attack paths,
but it is not limited to finding the shortest path in each
iteration. +e research direction will shift to quantitative
security assessment to analyze the attack paths, integrating
with probabilities of critical nodes. To further predict attack
behaviors, we introduce logical reasoning and the uncer-
tainty theory into the graph data model. Additionally, visual
optimization of attack paths is worthy to implement for
large-scale IT and OT networks.
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