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Mobile edge computing (MEC) is emerging as a promising paradigm to support the applications of Internet of +ings (IoT). +e
edge servers bring computing resources to the edge of the network, so as to meet the delay requirements of the IoTdevices’ service
requests. At the same time, the edge servers can gain profit by leasing computing resources to IoTusers and realize the allocation of
computing resources. How to determine a reasonable resource leasing price for the edge servers and how to determine the number
of resource purchased by users with different needs is a challenging problem. In order to solve the problem, this paper proposes a
game-based scheme for resource purchasing and pricing aiming at maximizing user utility and server profit. +e interaction
between users and the edge servers is modeled based on Stackelberg game theory. +e properties of incentive compatibility and
envy freeness are theoretically proved, and the existence of Stackelberg equilibrium is also proved. A game-based user resource
purchasing algorithm called GURP and a game-based server resource pricing algorithm called GSRP are proposed. It is the-
oretically proven that solutions of the proposed algorithms satisfy the individual rationality property. Finally, simulation ex-
periments are carried out, and the experimental results show that the GURP algorithm and the GSRP algorithm can quickly
converge to the optimal solutions. Comparison experiments with the benchmark algorithms are also carried out, and the ex-
perimental results show that the GURP algorithm and the GSRP algorithm can maximize user utility and server profit.

1. Introduction

With the rapid development of Internet of +ings (IoT)
technology, various IoT devices such as smart phones and
vehicles have been connected to the Internet [1, 2]. Service
requests generated by IoT devices usually have strict require-
ments for computing resources and real-time processing [3].
Because IoT devices usually do not have enough computing
resources [4], they usually offload service requests to the cloud
for computing [5]. Generally speaking, large data processing
centers or cloud servers are usually built in remote areas away
from users. +erefore, when the service requests are offloaded
to the cloud for computing, it will result in a lot of transmission
costs and service delay. +is is intolerable for IoT services that
require high real-time performance.

To solve this problem, mobile edge computing (MEC) is
proposed. MEC provides users with short-range cloud

computing services by deploying edge servers [6]. In MEC,
users can offload service requests to the network edge for
calculation [7]. +e edge servers are close to users and have
rich computing resources. Compared with the public cloud,
the edge cloud is closer to the IoT devices, which can meet
the requirements of IoT applications for low latency [8].
Because the user service request does not need to be
transmitted to the remote cloud for calculation through the
Internet, the transmission delay is reduced. In recent years,
with the development of the IoT, a huge number of service
requests have been offloaded to edge servers for computing
[9]. +erefore, more and more edge cloud service providers
came into being [10].

Although MEC can help provide resources for IoT ap-
plications, it faces unprecedented challenges. With the de-
velopment of the IoTmarket, more and more different types
of users will access the IoT networks [11]. Different users
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have different purchasing needs for resources. Compared
with the public cloud, there are some restrictions on the
computing resources on the edge servers, which cannot meet
the resource needs of all users. +erefore, how to reasonably
allocate resources is a main challenge faced by MEC.

Reasonable pricing of resources can be used to solve the
above problems. +e servers price the provided computing
resources and publish it to the users. Users choose appro-
priate resources to purchase according to the resource price
of the servers and process the service request on the servers,
so as to realize the reasonable allocation of resources.
+erefore, the current resource pricing scheme in MEC
needs to balance and meet the needs of different types of
users.

In this work, we focus on resource purchasing under the
condition of maximizing user utility and server profit. Its
operation mechanism is as follows: the servers publish the
resource leasing price, and then the users determine the
number of resource purchasing. +e servers obtain the
resulting profit and repeatedly modify the leasing price in
game. When the game equilibrium is reached, both the
pricing of the servers and the resource purchasing of the
users will be optimal.

Our contributions are summarized as follows:

(i) We consider the scenario of an MEC system with
multiple IoTdevice users and an edge server. Each
user can purchase computing resources from the
edge server and offload the service requests to the
edge server for computing. We study the problem
of resource purchasing and resource pricing from
the perspective of users and servers and establish
both the user utility function and the server profit
function. +e goal is to optimize both the user
utility and the server profit together.

(ii) We establish a Stackelberg game model to rep-
resent the interaction process of resource pur-
chasing and resource pricing between multiple
users and the server. +e existence of Stackelberg
equilibrium point is theoretically proved. It is
also proved that the properties of incentive
compatibility and envy freeness are satisfied.
+en, we propose a game-based user resource
purchasing algorithm (GURP) and a game-based
server resource pricing algorithm (GSRP) which
can obtain the optimal solution of Stackelberg
equilibrium. We propose the theorem that the
individual rationality property is satisfied.

(iii) In order to verify the performance of our GURP and
GSRP algorithms, we carry out simulation experi-
ments. Experimental results show that the algo-
rithms can eventually converge to the optimal
solution. In addition, in terms of resource pricing
and resource purchasing, two groups of comparison
experiments with the benchmark algorithms are
carried out. +e results show that the GURP and
GSRP algorithms can obtain the maximum user
utility and server profit.

+e remainder of this paper is organized as follows. We
present the system model and relevant problem formulation
in Section 2. We construct Stackelberg game model to an-
alyze the interaction between users and servers and propose
the GURP and GSRP algorithms in Section 3. We evaluate
the performance of our GURP and GSRP algorithms in
Section 4. +e related works are reviewed in Section 5. +e
conclusion is given in Section 6.

2. System Model and Problem Formulation

2.1. SystemModel. AnMEC system for the IoTconsidered in
this paper consists of one edge server, denoted by S, and a set
of users, denoted by U. Users can lease and purchase
computing resources on the edge server and offload service
requests to the edge server for computing. +is can over-
come the problem of insufficient local computing power of
users. +e edge server provides computing resource leasing
services to users within their signal coverage in order to
obtain profit. In this paper, we assume that the resources on
the edge server canmeet the needs of all users in its coverage.

We consider a game-based scene for resource purchasing
and pricing in MEC shown in Figure 1. As mentioned
earlier, at different times, users accessing the IoT have
different needs and satisfactions with resources [12]. If the
edge server always adopts a single resource pricing, it will
have an impact on resource allocation and market economy.

+erefore, from the perspective of users and server,
based on game theory, this paper determines the resource
purchasing and resource pricing scheme that can optimize
user utility and server profit.

2.1.1. User Utility. +ere are totally N users who propose the
service requests, denoted by U � u1, u2, u3, . . . , uN . We
assume that each user ui proposes a service request.+e service
request of user ui is specified as a tuple (Ci, Tm

i ). Ci represents
the calculated size of ui service request.Tm

i indicates the longest
service request completion time acceptable to ui.

We consider that all user’s service requests must be
transmitted before starting computing. +us, the trans-
mission time of the service request from user i to server is

T
s
i �

Ci

b
, (1)

where b is the transfer rate.
According to the source price p published by the edge

server, user i determines its resource purchasing strategy,
which is denoted by ai. +e computing time of the service
request from user i is

T
c
i �

Ciβ
aif

, (2)

where β represents the cycles per bit for computing one
sample data of user and f represents the CPU frequency of a
single resource in the edge server.

We define Ti as the actual completion time of the user’s
service request:
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Ti � T
s
i + T

c
i

�
Ci

b
+

Ciβ
aif

.

(3)

+e user utility of ui is defined as

Vi � αilog
T

m
i

Ti

  − pai

� αilog
T

m
i

Ci/b + Ciβ/aif
  − pai.

(4)

where αi indicates user’s ui satisfaction with renting server
resources. +e higher the user satisfaction is, the more the
users tend to purchase more server resources for service
request calculation [13]. pai represents the cost of user
purchases edge server’s resource.

2.1.2. Edge Server Profit. In addition to leasing computing
resources to users, the edge server also needs to maintain
computing resources. +e edge server profit function can be
defined as

Ms � p 
n

i�1
ai − q 

n

i�1
ai, (5)

where q denotes the maintenance cost of the server to a
single computing resource.

For the server, it only needs to maintain the resources
leased to users. Other computing resources not leased to
users will not incur maintenance costs.

+e main notations and their definitions used in the
following discussion are given in Table 1.

2.2. Problem Formulation. We formulate the scheme for
resource purchasing and pricing as a Stackelberg game. We
divide the whole game process into two stages. In the first
stage, the edge server determines its own resource pricing
scheme. In the second stage, each user determines its re-
source purchasing strategy to maximize its own user utility.
+erefore, in the process of this game, the edge server is a
leader and users are followers.+e strategy of the edge server
is the source price p and the strategy of user is the number of
resource purchasing, which is denoted by ai. For the arbi-
trary pricing p of the edge server, user i will determine an
optimal resource purchasing strategy to optimize its user
utility, i.e.,

maxVi,

s.t. Vi ≥ 0,

ai ≥ 0.

(6)

+e edge server will also update the pricing information
according to users’ resource purchasing strategies to pursue
maximum profit, i.e.,

maxMs,

s.t. Ms ≥ 0.
(7)

3. Game for Purchasing and Pricing Scheme

3.1. User Utility Optimization. User i needs to determine
appropriate resource purchasing strategy according to the
resource price of the edge server to maximize its own user
utility. +e problem is defined as follows:

Q1 � max Vi ,

Vi � αilog
T

m
i

Ci/b + Ciβ/aif
  − pai.

(8)

+e first derivative of Vi with regard to ai is given by

dVi

dai

�
αiβb

ln 2 a
2
i f + aiβb 

− p. (9)

resource
purchase

information

resource
price

information Game

Edge
Server

Computing Resources

Users
(IOT devices)

Figure 1: A game-based scene for resource purchasing and pricing
in MEC.

Table 1: Summary of key notations.

Notation Definition
ui User i
αi ui satisfaction with renting server resources

Tm
i

Longest service request completion time acceptable to
ui

Ti Actual completion time of the ui service request
ai ui purchases the number of resources from the server
β Cycles per bit for computing one sample data of user
Ci Calculated size of ui service request
p Price of a single server resource
f CPU frequency of an edge server’s single resource
b Service request transfer rate
q Maintenance cost of a server to a single resource
Vi User ui utility
Ms Edge server S profit
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+e second derivative of Vi with regard to ai is given by

d2Vi

da
2
i

� −
1

ln 2
αiβb 2aif + βb( 

a
4
i f

2
+ a

2
i β

2
b
2

+ 2a
3
i fβb
< 0. (10)

Because the second derivative of Vi with regard to ai is
always negative, the function of Vi is a convex function. Q1
can be regarded as a convex optimization problem, and its
optimal solution is

dVi

dai

� 0, (11)

i.e.,

a
∗
i �

−βb +

������������������

β2b2 + 4fαiβb/p ln 2


2f
, Vi ≥ 0

0, otherwise

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(12)

When the resource unit price p is fixed, in order to
obtain the maximum utility, the user purchases the number
of resources as shown in (12). When the user utility value
Vi ≥ 0, the user chooses to purchase server resources and
offload the service request to the server for calculation.
Otherwise, the user will calculate the service request locally.

Theorem 1 (incentive compatibility). Users can truly report
resource purchasing strategies. Users cannot obtain higher
user utility by reporting false strategies.

Proof. As proved earlier, user ui determines the resource
purchasing strategy a∗i according to the resource unit price p

formulated by the edge server. a∗i is the unique maximizer of
the user utility in equation (4). +en, its utility function
satisfies

Vi a
∗
i( ≥Vi ai( . (13)

+erefore, user will not obtain better user utility through
false reporting strategy. +e user has no incentive to mis-
report its strategy. So, there exists incentive
compatibility. □

Theorem 2 (envy freeness). 3e user always prefers its own
purchased number of resources to that of others.

Proof. In the systemmodel proposed in this paper, users are
independent of each other. All users can determine their
resource purchasing strategies according to the price of edge
server, so as to obtain the optimal user utility. 3e utility
function of users only depends on their own resource pur-
chasing strategies and resource unit price formulated by the
edge server. Each user’s resource purchasing strategy is op-
timal for itself. 3erefore, users will not envy the strategies of
other users. □

3.2. Edge Server Profit Maximization. An edge server makes
profit by leasing its computing resources. 3e server achieves

the goal of maximum profit by adjusting its resource unit
price. 3e problem is defined as follows:

Q2 � max Ms ,

Ms � p

n

i�1
ai − q 

n

i�1

ai, (14)

where the value of ai is determined by equation (12).
3e first derivative of Ms with regard to p is given by

dMs

dp
� 

n

i�1

�
b

√
2fqαi + b ln 2 βp

2
+ 2fpαi 

2f
����
ln 2

√ ��
β


p
3/2

�������������

ln 2 bβp + 4fαi

 − n
b

2f
. (15)

3e second derivative of Ms with regard to p is given by

d2Ms

dp
2 � 

n

i�1
−

��
βb


2βbαip ln 2 + 6fα2i q + 2fα2i p 

����
ln 2

√ ��
p

√ �������������
βbp ln 2 + 4fαi


βb ln 2p

3
+ 4fαip

2
 

< 0.

(16)

Because the second derivative of Ms with respect to p is
always negative, the function of Ms is a convex function.
p⟶ 0, Ms < 0; p⟶ ∝ , Ms � 0. +us, Q2 can be regar-
ded as a convex optimization problem, and it has a unique
optimal solution p∗. +e optimal solution p∗ is related to the
satisfaction of leasing resources of each user (αi).

3.3. StackelbergEquilibrium. For users and the edge server, in
the game model, the existence of Stackelberg equilibrium can
be proved by the existence of optimal solutions for problems
Q1 and Q2. 3is not only ensures that the edge server can get
the optimal profit but also ensures that users can get the
optimal utility.

Theorem 3. For the edge server, there is an optimal resource
price p∗, which makes the server profit optimal. ui has an
optimal resource purchasing strategy a∗i , which makes the user
utility optimal. 3en, it can be explained that the game model
has a Stackelberg equilibrium, i.e.,

Ms p
∗

( ≥Ms(p),

Vi a
∗
i( ≥Vi ai( .

(17)

Proof. It can be obtained from formula (16) that the edge
server profit Ms is a convex function with regard to resource
price p. +erefore, the edge server can get an optimal re-
source pricing strategy, so as to maximize the server profit.
For a certain resource price, according to (12), user canmake
an optimal source purchasing strategy to maximize personal
utility. +erefore, there is Stackelberg equilibrium in the
game model. □

3.4. Algorithm Design

3.4.1. Game-Based User Resource Purchasing Algorithm.
We propose the game-based user resource purchasing
(GURP) algorithm as shown in Algorithm 1. For each user,
in each game with the server, they will first accept the
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resource price p information published by the server. +e
user determines the resource purchasing strategy that
maximizes the user’s utility according to formula (12). Due
to individual rationality, each user will judge whether its
utility value is greater than 0. If the utility value is less than 0,
the user will give up purchasing computing resources. On
the contrary, the user determines the resource purchasing
strategy and reports the strategy information to the server.

+e specific process is as follows. In line 2, we initially set
the user utility values of all users to 0. In lines 4–14, each user
sets resource purchasing strategy according to (12). Finally,
user will make a resource purchasing strategy to maximize
its user utility and report the resource purchasing strategy to
the edge server.

3.4.2. Game-Based Server Resource Pricing Algorithm.
We propose the game-based server resource pricing (GSRP)
algorithm as shown in Algorithm 2. For the server, at the
beginning of the game, set a small resource pricing infor-
mation and publish the information to the user. 3en, the
server accepts the purchase information of users and calcu-
lates its own profit. Next, the server sets an appropriate re-
source price update step. It continuously updates the resource
pricing information and publishes it to users and accepts the
user’s purchase information and calculates the profit. In the
iterative process of game between the server and the users,
the server's pricing strategy will converge to the price that
maximizes the profit of server.

+e specific process is as follows. In lines 1–5, we ini-
tialize the variable values in the Algorithm 2. In lines 6–12,
the edge server will constantly update the resource price to
maximize the server profit and record the optimal resource
price. Finally, the edge server will get the resource price
which can maximize the profit.

Both Algorithm 1 and 2 have high computational effi-
ciency. For GURP, as shown in Algorithm 1, for line 4,
because of n users participating, it needs to cycle n times for
calculation. +erefore, the computational complexity of
Algorithm 1 is O(N). For GSRP, as shown in Algorithm 2,
for lines 6–12, the number of iterations for the convergence
of server profit is limited.We use M to represent the number
of iterations, so its computational complexity is O(M).
+en, from line 10, the computational complexity is O(N).
+erefore, the computational complexity of Algorithm 2 is
O(MN).

Theorem 4. Both GURP and GSRP mechanisms satisfy in-
dividual rationality.

Proof. Individual rationality means that no one will suffer
from participating in the sale mechanism. For resource
purchasers (users), in GURP, as shown in Algorithm 1, for line
6, users will purchase resources on the premise that their user
utility is greater than 0. For resource seller (edge server), in
GSRP, as shown in Algorithm 2, for line 6, the resource price
set by the edge server must make its profit greater than 0.
3erefore, both GURP and GSRP mechanisms satisfy indi-
vidual rationality. □

4. Performance Evaluation

4.1. Setup. We conduct simulation experiments and use
simulation data to verify the game algorithm proposed in
this paper. In the experimental scenario, there are six users
and an edge server. We set the maintenance cost of a server
to a single resource q as 1 [14] and set the CPU frequency of
an edge server’s single resource f as 4GHz [15]. +e sat-
isfaction of ui is set to 50–100 [16].

To be specific, the main parameters involved in this
experiment are shown in Table 2.

4.2. Parametric Analysis. +e first set of experiments is to
investigate the change of edge server profit in the game.
From the result shown in Figure 2, we can know that the
profit of the server will converge to the equilibrium point of
the game with the increase of the number of games. +e
convergence rate is related to the update step of p. When
step Δp is small, the server profit will have to go through
multiple rounds of iteration to reach the convergence point.
When step Δp is big, the server profit value may miss the
convergence point.

+e game iteration between users and the server takes
some time and energy. Too many iterations may cause users
to give up resource purchasing because they cannot stand
the consumption of time and energy. Too few iterations may
cause the server to miss the optimal pricing strategy and
damage the profit of the service provider. +erefore, in an
actual scenario, the update step size of the server resource
pricing strategy will have an impact on the final profit of the
server. +e server needs to formulate a reasonable resource
unit price update step.

Figure 3 shows the change of user’s utility value with the
number of iterations. We study and analyze the change of
utility value of six users with different satisfaction and different
service request sizes. +e user’s satisfaction relationship is
α1 < α2 < α3 < α4 < α5 < α6. At the beginning, the server makes
the price of resources very low, so users will have high user
utility. With the progress of the game, the server will gradually
formulate optimal resource price, so user’s utility will gradually
decrease and reach the equilibrium point of the game. +e
higher the user’s satisfaction with the leased resources is, the
more the user tends to purchase more edge computing re-
sources to obtain greater user utility.+e higher the satisfaction
of users, the higher the user’s utility after reaching the equi-
librium point of the game.

We specifically study the impact of satisfaction on user’s
utility and server’s profit. From the result shown in Figure 4,
for users, users with high satisfaction tend to buy more
computing resources at the edge server, so as to obtain
greater user’s utility. For the server, simultaneously, pro-
viding more resources to the group of users with high
satisfaction can bring in higher profits.

Finally, Figure 5 illustrates the impact of service request
transfer rate and CPU frequency on server’s profit. It is
shown that as the service request transfer rate and CPU
frequency increase, the server’s profit becomes higher. +e
server provides high transmission rate channel and high
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computing power resources, which can attract users to
purchase more computing resources, so as to improve the
profit of the server.

4.3. Comparison Experiment. In this part, aiming at the
problem of resource pricing and resource purchasing, we
compare and analyze many different resource pricing and
resource purchasing algorithms and further evaluate the
performance of the game algorithm (GURP and GSRP)
proposed in this paper.

4.3.1. Resource Pricing. +e server leases resources to users,
determines the resource leasing price, and obtains profit by
charging users a fee. For server’s resource pricing, we
compare three pricing strategies:

(i) Random resource pricing: the server randomly
makes a resource leasing price.

(ii) Historical optimal resource pricing: the server
queries the historical optimal resource pricing
and takes it as the current resource pricing
scheme.

Input: p
Output: optimal a∗i for each ui

(1) for each ui in U do
(2) Vi � 0;
(3) end
(4) for each ui in U do

(5) ai � −βb +

������������������

β2b2 + 4fαiβb/p ln 2


/2f

(6) if Vi > 0 then
(7) a∗i � −βb +

����������������

β2b2 + 4fαiβb/pln2


/2f;
(8) Vi � αilog(Tm

i /Ci/b + Ciβ/a∗i f) − pa∗i ;
(9) else
(10) a∗i � 0;
(11) Vi � 0;
(12) end
(13) end
(14) return a∗i for each ui;

ALGORITHM 1: Game-based user resource purchase algorithm (GURP).

Input: n, 
n
i�1 ai

Output: optimal price p∗

(1) M∗s � 0;
(2) p∗ � 0;
(3) q �maintenance cost;
(4) p � initial price;
(5) Ms � p 

n
i�1 ai − q 

n
i�1 ai;

(6) while Ms >M∗s do
(7) M∗s � Ms;
(8) p∗ � p;
(9) p � p + Δp; (update p)
(10) GURP (p);
(11) Ms � p 

n
i�1 ai − q 

n
i�1 ai;

(12) end
(13) return p∗;

ALGORITHM 2: Game-based server resource pricing algorithm (GSRP).

Table 2: Experiment setup.

Parameters Value
αi (ui satisfaction) [50, 100]
Ci (calculated size of ui service request) [60, 80] bit
f (CPU frequency of an edge server’s single resource) 4GHz
β (cycles per bit for computing one sample data of user) 20 cycles/bit
b (transfer rate) 1× 108 bit/s
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(iii) Game-based server resource pricing (GSRP): in the
process of game with users, the server continuously
updates the price until the optimal resource pricing
scheme is given.

Figure 6 shows the server’s profit with different resource
pricing strategies. +e experimental result shows that the
profit of the server is different for the user groups with
different satisfaction. With the increase of user satisfaction,
the profit of server also increases. +e game-based pricing
algorithm proposed in this paper is superior to the other two
kinds of pricing algorithms in maximizing server profit. +e
GSRP algorithm can find the most suitable resource price for
the current user group and obtain the maximum profit in the
process of game with users.

4.3.2. Resource Purchasing. In order to maximize user
utility, users purchase appropriate edge computing re-
sources to calculate service requests. For user’s resource
purchasing, we compare three resource purchasing
strategies:

(i) Random resource purchasing: user randomly pur-
chases a certain number of resources on the edge
server.

(ii) Fixed resource purchasing: user purchases a fixed
number of resources on the edge server according to
the size of its service request. User with larger
service request will purchase more edge server re-
sources for calculation.

(iii) Game-based user resource purchasing (GURP): in
the process of game with server, user determines the
resource purchasing strategy to maximize its user’s
utility according to the resource pricing of the edge
server.

Figure 7 shows the utility values of users with different
resource purchasing strategies. +e experimental result
shows that the user’s utility is different for the users with
different satisfaction. +e more satisfied the users are, the
more inclined they are to participate in the resource pur-
chasing market, so as to obtain greater utility. +e game-
based resource purchasing algorithm proposed in this paper
is superior to the other two kinds of resource purchasing
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algorithms in maximizing user’s utility. +e GURP algo-
rithm can determine the best resource purchasing strategy
according to the real-time resource price and obtain the
optimal user utility.

5. Related Works

In recent years, with the development of the IoT, many
research studies focus on its resource allocation and resource
pricing problems [17].

In [18], the authors adopt the machine learning method
for the first time and obtain a market model by using big
data.+rough the model, servers can get an optimal resource
pricing scheme. Siew et al. [19] mainly studied the resource
allocation in MEC. From the perspective of maximizing
servers’ profits, the authors designed two dynamic resource
pricing mechanisms for resource allocation. In [20], from

the perspective of users, users can independently select
server resources by judging the acceptable service request
price and time cost to realize resource allocation. In [21], the
authors introduced a Petri net and proposed a resource
allocation strategy based on pricing time. In [22], the authors
studied a fog calculation scene. By judging the priority of
users requests, the servers formulate relevant pricing
schemes and resource allocation schemes.

Due to the resource leasing and resource purchasing
behavior between servers and users, some studies focus on
the economic problems inMEC. In [23], in order to solve the
resource allocation problem in MEC, the authors proposed
two dynamic pricing double auction algorithms. From the
perspective of maximizing social welfare, the authors in [24]
introduced a broker between users and servers to manage
market purchasing and pricing behavior and proposed an
iterative bilateral auction scheme. In [25], Stackelberg game
was applied to the task offloading for mobile blockchain.+e
authors proposed a dual auction game mechanism to obtain
the optimal resource price and equipment resource demand.

+e Stackelberg game theory is widely used to solve the
problem of resource management. +e authors in [16]
studied a scenario of Internet of vehicles, and the real-time
pricing problem of computing resources in Internet of ve-
hicles was solved by using Stackelberg game. In [26], the
authors studied the allocation of computing resources in
multiple edge clouds and ToT devices and proposed a
computing offload mechanism based on two-stage Stack-
elberg game. Zhang et al. [27] proposed a distributed al-
gorithm for resource allocation based on Stackelberg game.

However, few studies pay attention to the problem that
users actively determine the number of resources to pur-
chase according to the real-time resource pricing of servers
in MEC. +is paper studies the resource purchasing and
resource pricing scheme in MEC from the perspective of
Stackelberg game theory. +e Stackelberg game theory is
used to model the interaction between edge servers and
users, and the existence of Stackelberg equilibrium is proved.
In addition, the resource purchasing and resource pricing
algorithms based on game theory are proposed.

6. Conclusion

In this paper, we investigate a game-based scheme for re-
source purchasing and pricing in MEC for IoT. Based on
Stackelberg game, the server and users can update their
resource pricing strategy and their resource purchasing
strategies continuously during the game. +e models of
optimal user utility and server profit are given. We propose a
game-based scheme for resource purchasing and pricing,
and the existence of Stackelberg equilibrium is proved. Fi-
nally, the algorithm is evaluated by simulation experiments.
+e experiment results demonstrate that user utility value
and edge server profit obtained by this algorithm are better
than other basic resource purchasing and resource pricing
algorithms. For our future work, we will consider unloading
part of the user’s service request to the edge server for
calculation. Service requests will be calculated in parallel on
local and edge servers. Users can maximize their user utility
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Figure 6: +e profit of the server with different pricing strategies.
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values by determining the size of offloading service requests
and the number of resource purchasing.
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