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Biometric identification services have been applied to almost all aspects of life. However, how to securely and efficiently identify an
individual in a huge biometric dataset is still very challenging. For one thing, biometric data is very sensitive and should be kept
secure during the process of biometric identification. On the other hand, searching a biometric template in a large dataset can be
very time-consuming, especially when some privacy-preserving measures are adopted. To address this problem, we propose an
efficient and privacy-preserving biometric identification scheme based on the FITing-tree, iDistance, and a symmetric homo-
morphic encryption (SHE) scheme with two cloud servers. With our proposed scheme, the privacy of the user’s identification
request and service provider’s dataset is guaranteed, while the computational costs of the cloud servers in searching the biometric
dataset can be kept at an acceptable level. Detailed security analysis shows that the privacy of both the biometric dataset and
biometric identification request is well protected during the identification service. In addition, we implement our proposed
scheme and compare it to a previously reportedM-Tree based privacy-preserving identification scheme in terms of computational
and communication costs. Experimental results demonstrate that our proposed scheme is indeed efficient in terms of com-
putational and communication costs while identifying a biometric template in a large dataset.

1. Introduction

With the booming development of the Internet of +ings
(IoT), the number of smart devices, such as smart cameras
and smartwatches, has grown dramatically in recent years.
According to the reports, there have been 12 billion IoT
devices in 2020, and this amount will grow to more than 30
billion in 2025 [1]. +e proliferation of IoT devices and the
development of image processing technologies make bio-
metric-based services increasingly easy to deploy and reli-
able. As a result, biometric-based services have been applied
to a variety of scenarios including airport service, criminal
investigation, and counterterrorism [2–5].

As a major type of biometric-based services, biometric
identification aims to find whether a given biometric tem-
plate exists in a precollected biometric dataset. Specifically, a
biometric template is usually denoted by a vector, e.g., an

l-dimension vector T � t1, t2, . . . , tl􏼈 􏼉. For a given biometric
dataset T, T exists in T, which means that there exists a
biometric template T′ � t1′, t2′, . . . , tl

′􏼈 􏼉 ∈ T, which makes
the Euclidean distance dis(T, T′) less than or equal to a given

threshold δ, i.e., dis(T, T′) �

�����������

􏽐
l
i�1 (ti − ti

′)2
􏽱

≤ δ. Since the
biometric template dataset owner may be limited in com-
puting power and storage capacity, it is necessary to out-
source the biometric dataset to the cloud for data
management and biometric identification request process-
ing when the dataset becomes large. However, as biometric
data is crucially sensitive, and the cloud server is not always
trusted, some measures should be adopted to prevent the
cloud from extracting private information from the out-
sourced data. It is well accepted that encryption is the most
intuitive solution to this issue. But we should pay attention
to the fact that, in addition to privacy, data utility should also
be guaranteed, which means that the similarity between two
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templates should be able to be derived from their encrypted
data.

To solve this problem, researchers have proposed many
schemes [6–13] to achieve privacy-preserving biometric
recognition. Unfortunately, most of these schemes [6–10]
work in a basic way, which means that they just traverse the
whole dataset to get the identification result, and no opti-
mization tactics are taken to accelerate the searching process.
Consequently, a huge computing burden is brought to the
cloud when it handles too many identification requests si-
multaneously, which makes these schemes inefficient and
unpractical. +e situation turns worse when the dataset size
grows. As a result, it is urgent to design a privacy-preserving
biometric identification scheme by which both the security
of the biometric template and the efficiency of the identi-
fication process can be guaranteed. Some schemes [11]
employ some data structures to expedite the searching
process. However, the data owner has to be on standby
during the identification service, which results in the loss of
the native advantages of cloud computing.

In this paper, we propose an efficient and privacy-pre-
serving biometric identification scheme based on two data
structures, namely, the FITing-tree [14] and iDistance [15],
and a symmetric homomorphic encryption (SHE) algorithm
[16,17]. With our proposed scheme, the privacy of the
biometric dataset and the identification request is preserved.
In addition, the computational costs of the cloud, which are
used to process the identification requests, are kept at an
acceptable level. Specifically, the main contributions of this
paper are threefold.

(i) First, we propose a privacy-preserving biometric
identification scheme with two noncollusive cloud
servers. With our proposed scheme, the privacy of
the biometric dataset and the identification request
is protected during the online biometric identifi-
cation service process. Specifically, the cloud servers
cannot obtain the specific value of the identification
request and the plaintext of the biometric template
in the dataset.

(ii) Second, the efficiency of the proposed scheme is
improved with the FITing-tree and iDistance. By
introducing the FITing-tree, the computational
costs of the biometric identification process are
significantly lowered by reducing the number of
similarity comparison operations. Besides, the size
of the index is also optimized.

(iii) +ird, to evaluate the performance of our proposed
scheme, we implement our proposed scheme and
conduct extensive experiments on a synthetic
dataset. Both the theoretical and experimental re-
sults show that the proposed scheme is more effi-
cient than other similar schemes in both
computational and communication costs. In addi-
tion, we also test the accuracy of our proposed
scheme on a real-world face dataset.

+e remainder of the paper is organized as follows. In
Section 2, we review some related work at first. +en, we

formalize our system model and security model and identify
our design goal in Section 3 and review some preliminaries,
including a SHE scheme, FaceNet algorithm, iDistance data
structure, and FITing-tree data structure in Section 4. After
that, we present our proposed scheme in Section 5, followed
by security analysis and performance evaluation in Section 6
and Section 7, respectively. Finally, we draw our conclusion
in Section 8.

2. Related Work

In this section, we will briefly review some related work on
privacy-preserving biometric identification.

Early privacy-preserving biometric identification
schemes only focus on the privacy-preserving issue. In these
schemes, the biometric identification scheme is considered
to be a two-party system, where the data owner takes charge
of biometric dataset management and template matching.
Most of these schemes are designed based on the secure
computation protocol [18–20] and homomorphic encryp-
tion [9,21,22] techniques. Although the privacy-preserving is
achieved in these schemes, the data owner is required to be
equipped with powerful computing ability and remarkable
storage capacity in these schemes, which can hardly be
satisfied in most application scenarios and thus makes these
schemes unpractical.

+e emergence of cloud computing presents a new and
promising paradigm to handle these challenges. Some re-
searchers leverage cloud computing techniques to release the
data owner from this burden. In their schemes, the data
owner outsources the encrypted biometric dataset to the
cloud server, and the matching process is completed on the
cloud. Yuan et al. [6] proposed the first cloud-based privacy-
preserving biometric identification scheme using a matrix
encryption scheme, where the biometric dataset and iden-
tification query are both encrypted and sent to the cloud
server by the data owner. However, Wang et al. [7] and Zhu
et al. [23] pointed out that [6] is not secure under the known-
plaintext attack model [24]. In addition, [7] presented a
privacy-preserving biometric identification scheme based on
the similarity matrix under the same systemmodel in [6] and
the security analysis showed that [7] had a higher security
level than [6]. Zhang et al. [8] proposed an efficient privacy-
preserving biometric identification scheme based on the
matrix and perturbed terms with lower time cost and
bandwidth consumption than [6,7]. Wang et al. [10] pro-
posed an inference-based framework for privacy-preserving
similarity search in Hamming space and achieved privacy-
preserving biometric identification based on it. Hu et al. [25]
proposed a privacy-preserving biometric identification
scheme in an outsourcing environment with two non-
colluded servers based on homomorphic encryption and
batched protocols.With the help of the cloud, the computing
cost of the data owner during the biometric matching is
significantly reduced in the above schemes. However, in
[6–8], the data owner has to keep on online to encrypt the
user’s query data and decrypt the identification result, which
whittles some advantages of cloud computing away and
leads heavy load to the data owner if it serves too many users
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at the same time. What is more, in all the cloud-based
schemes above, the searching process is not optimized,
which means that the searching cost of the cloud server is
linear with the size of the dataset. Despite the fact that the
cloud server is equipped with strong computing power, it
may still run into a bottleneck while simultaneously severing
too many users.

To address this issue, some researchers begin to focus on
how to achieve sublinear searching efficiency in the bio-
metric identification process, which will significantly ease
the pressure of the cloud server. Zhu et al. [11] proposed a
cloud-assisted privacy-preserving biometric identification
scheme. With the help of an asymmetric scalar-product
preserving encryption scheme and R-tree, sublinear search
efficiency is achieved in [11]. Nevertheless, the data owner
also needs to keep online in [11]. And since R-tree is not
constructed among the metric relation between the data
objects, the cloud server needs to search the tree twice to find
the closest biometric template in the dataset, which reduces
the efficiency of the searching process. Yang et al. [26]
proposed a privacy-preserving biometric identification
scheme based on the M-tree to achieve a sublinear search
efficiency.

In this paper, to protect the privacy of the biometric data
and reduce the time consumption in the biometric searching
process, we introduce SHE and FITing-tree to construct a
privacy-preserving biometric identification scheme based on
two noncolluded cloud servers. Compared with previous
works, the service provider in our proposed scheme does not
need to keep online in the identification scheme, and higher
efficiency in both computation and communication is
achieved.

3. Models and Design Goal

In this section, we formally describe our system model and
security model and identify our design goals.

3.1. System Model. In our system model, we consider a
cloud-based biometric identification system as shown in
Figure 1, which mainly consists of three parts: the service
provider, a cloud with two servers, and the client.

(i) Service provider: the service provider (SP) has
collected a biometric templates dataset T with n

biometric templates, i.e., T � T1, T2, . . . , Tn􏼈 􏼉,
where each template is an l-dimension vector
Ti � ti1, ti2, . . . , til􏼈 􏼉. For simplicity and clear de-
scription, we assume that the value of each tij

(1≤ j≤ l) is a positive integer since a nonintegral
biometric template can be transformed into a
positive integer vector easily. Tomake the best use of
the dataset, the data owner is willing to offer an
online biometric identification service to some
users. Since the SP usually has limited computing
power and storage capability, to relieve the burden
of data management and handling a large number of
biometric identification requests, it tends to out-
source the biometric dataset to the cloud. In

consideration of the sensibility of the biometric
data, and the fact that the cloud is not always
trusted, the biometric data should be encrypted
before being outsourced to the cloud.

(ii) Cloud servers: in our system, the cloud employs two
cloud servers, namely, cloud server 1 (CS1) and
cloud server 2 (CS2), from two different cloud
service providers, to collaboratively process the
biometric identification requests. Specifically, CS1
stores the encrypted dataset and indexes and accepts
identification requests. CS2 holds the secret key and
helps CS1 get the identification result by decrypting
some intermediate results. Note that these two cloud
servers are powerful in computing and have suffi-
cient storage space.

(iii) Client: the client in our system model can be an IoT
device, which is equipped with sensors (e.g., camera,
microphone, or fingerprint collector) and has
moderate computation ability (e.g., to extract bio-
metric features and encrypt some data). An appli-
cation employs the client to access the biometric
identification service. To get the identification re-
sult, the client generates an identification request,
submits it to the cloud servers, and processes the
response from the cloud servers.

3.2. Security Model. In our system model, we consider that
the SP and the client are fully trusted and will honestly
follow the prearranged protocol. As for the two cloud
servers, CS1 and CS2 are considered to be honest-but-
curious, which means they will faithfully follow the pro-
tocols by outputting the correct identification result but
will be curious about the client’s or SP’s data once certain
conditions are satisfied. Meanwhile, we assume that the two
cloud servers do not collude with each other. +is is rea-
sonable since the cloud servers should maintain their
reputation and interests. Note that since we only focus on
how to achieve efficient and privacy-preserving biometric
identification in this paper, active attacks on data integrity
and source authentication from external adversaries are
beyond the scope of our work and will be discussed in our
future work.

Client
Cloud Servers

CS1 CS2

Outsourcing

Reg
ist

rat
ion

Identification result

Service Provider

Identification request

Encrypted
biometric dataset

Biometric
dataset

Figure 1: System model under consideration.
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3.3. Design Goals. Our design goal is to propose an efficient
and privacy-preserving cloud-based biometric identification
scheme to address the challenges mentioned in the above
system model and security model. Specifically, the following
two objectives should be achieved:

(i) Privacy: since the biometric data is highly sensitive, the
proposed biometric identification scheme should be
privacy-preserving, whichmeans that the security of the
biometric data stored in the biometric template dataset
and identification request should be guaranteed.

(ii) Efficiency: since high time delay is intolerable for a
biometric identification system, the proposed bio-
metric scheme should be efficient in terms of both
computational and communication costs. +e fac-
tors causing the inefficiency of the biometric iden-
tification system mainly lie in two aspects. First, the
cloud servers need to search the whole biometric
template dataset at the identification stage, which is
quite time-consuming when the template dataset
becomes large. Second, to satisfy the privacy-pre-
serving requirements, some additional operations
will be necessarily introduced, which significantly
increases the computational costs of the cloud
servers. Besides, since both the dataset and the
identification request are needed to be sent to the
cloud servers, it will bring a heavy communication
burden to the cloud server while serving too many
users simultaneously. +erefore, some measures
should be adopted to achieve higher efficiency in
computation and communication.

4. Preliminaries

In this section, we briefly review the FaceNet algorithm [27],
symmetric homomorphic encryption (SHE) scheme [16],
the iDistance data structure [15], and FITing-Tree data
structure [14], which will serve as the building blocks of our
proposed scheme.

4.1. FaceNet Algorithm. FaceNet [27] is a face recognition
system that aims at outputting an embedding by mapping a
face image into a compact Euclidean space. With the help of
a deep convolutional network, FaceNet works in a two-
phases model, i.e., the training phase and the matching
phase. In the training phase, given a face image x, a mapping
from the face image x to a compact Euclidean space Rd is
built at first. +en, based on the mapping, a Euclidean
embeddingf(x) ∈ Rd can be calculated to represent the face
image x. In the matching phase, two face images x and y are
given, which will be represented as two embeddings: f(x) �

(x1, x2, . . . , xd) and f(y) � (y1, y2, . . . , yd). To evaluate the
similarity of x and y, the Euclidean distance of the two
embeddings f(x), f(y) can be computed as

dis(f(x), f(y)) �

������������

􏽐
d
i�1 (xi − yi)

2
􏽱

. +en, a threshold δ is
used to determine whether these two faces x, y are the same
(denoted as Rsame) or different (denoted as Rdiff ). +e de-
cision process is performed as follows:

(x, y) ∈ Rsame, if dis(f(x), f(y))≤ δ;

(x, y) ∈ Rdiff , if dis(f(x), f(y))> δ.
.􏼨 (1)

4.2. Description of SHE. +e SHE [16,17] is a symmetric
homomorphic encryption scheme, which mainly consists of
three algorithms, namely, (i) key generation, (ii) encryption,
and (iii) decryption:

(i) Key generation: given three security parameters
(k0, k1, k2), which satisfy the constraint
k1≪ k2 < k0/2, then the secret key is generated as
sk � (p, q,L), where p, q are two large prime
numbers with |p| � |q| � k0, and L is a random
number with the bit length |L| � k2. Eventually,
compute N � pq and set the public parameters
PP � (k0, k1, k2,N). +e message space of the SHE
scheme is M as 0, 1{ }k1 .

(ii) Encryption: given a message m ∈M, it can be
encrypted with the secret key sk � (p, q,L) as

c � E(m) � (rL + m)(1 + r′p)modN, (2)

where r ∈ 0, 1{ }k2 and r′∈ 0, 1{ }k0 are two random
numbers.

(iii) Decryption: given a ciphertext c � E(m), it can be
decrypted with the secret key SK � (p, q,L) as

m � D(c) � (cmodp)modL. (3)

+e correctness of the decryption can be proven as
follows:

D(c) � (cmodp)modL

� (((rL + m)(1 + r′p)modN)modp)modL

� (rL + m)modL ∵2k2 < k0( 􏼁

� m ∵k1≪ k2( 􏼁.

(4)

SHE satisfies the following homomorphic properties:

(i) Homomorphic Addition-I: given two ciphertexts
c1 � E(m1) � (r1L + m1)(1 + r1′p)modN and
c2 � E(m2) � (r2L + m2)(1 + r2′p)modN, we
have c1 + c2⟶ E(m1 + m2)

(ii) Homomorphic Multiplication-I: given two cipher-
texts c1, c2, we have c1 · c2⟶ E(m1 · m2)

(iii) Homomorphic Addition-II: given a ciphertext c1
and a plaintext m2, we have
c1 + m2⟶ E(m1 + m2)

(iv) Homomorphic Multiplication-II: given a ciphertext
c1 and a plaintext m2, we have
c1 · m2⟶ E(m1 · m2)

4.3. iDistanceData Structure. +e iDistance data structure is
an indexing and query processing technique for the
k-nearest neighbor (kNN) queries on point data in multi-
dimensional metric spaces [15]. For a given dataset,
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iDistance firstly partitions the data based on a space- or data-
partitioning strategy and selects a reference point for each
partition. +en, a one-dimensional index is calculated for
each data point in one partition based on its distance to the
reference point of this partition. Finally, a B+ tree is built on
these indexes, and the kNN search can be performed using a
one-dimensional range search. As shown in Figure 2, the
detailed description of the index building process is as
follows:

(i) Data partition: the dataset is divided into a set of
partitions with some clustering algorithms, e.g., the
K-means algorithm. +en, a reference point is
assigned for each partition. Suppose that there are m

partitions P1, P2, . . . , Pm􏼈 􏼉 whose corresponding
reference points are represented by
O1, O2, . . . , Om􏼈 􏼉.

(ii) Index calculation: for a data point
p: x1, . . . , xl􏼈 􏼉 ∈ Pi, its index y can be generated
based on the distance from its corresponding ref-
erence point Oi as follows:

y � i × c + dis p, Oi( 􏼁, (5)

where c is an offset value used to avoid the overlap
between the iDistance range of different partitions.
Specifically, c plays a role in splitting the one-di-
mensional space into regions, and all points in each
partition are mapped to different regions. For ex-
ample, for the ith partition pi, all data points in this
region will be mapped to the range [i × c, i×

c + dismax(p, Oi)), where dismax(p, Oi) is the
greatest distance of all points in Pi from the ref-
erence point of Pi. c must be set sufficiently large to
avoid the overlap between the index regions of
different partitions.

(iii) Range query: the given range query (q, r) aims to
find all data points in D that satisfy
p ∈ D|dis(p, q)≤ r􏼈 􏼉. For any data point p in the ith
partition Pi, it is straightforward to get the
inequality

dis Oi, q( 􏼁 − dis(p, q)≤ dis Oi, p( 􏼁≤ dis Oi, q( 􏼁 + dis(p, q),

(6)

based on the triangle inequality property of Eu-
clidean distance. With the range query requirement,
we have

dis Oi, q( 􏼁 − r≤ dis Oi, p( 􏼁≤ dis Oi, q( 􏼁 + r, (7)

which means that we only need to check data points
whose iDistance index lies in [dis(Oi, q) − r,

min(dis(Oi, q) + r, di smax(p, Oi))].

4.4. FITing-Tree Data Structure. +e FITing-tree [14] is a
data-aware index structure that approximates an index using
piece-wise linear functions. With FITing-tree, a given key
can be mapped to a storage location with a bounded error.

+ere are two basic data notions in the FITing-tree,
namely, the error threshold error and the segment:

(i) Segment: a segment is a line segment that maps a key
to its approximate storage position. A segment Seg
can be represented by the starting point start and the
slope, i.e., Seg � start, slope􏼈 􏼉. For a given key x lying
in this segment, its predicted position can be cal-
culated by

predpos � (x−Seg.start)×Seg.slope. (8)

(ii) Error: the error threshold error is the maximum
distance that the predicted location of any key inside
a segment from its actual position.

+e operations of the FITing-tree mainly consist of
FITing-tree building and query. +e detailed description
of the FITing-tree building and query process is as
follows.

(i) FITing-tree building: the main goal of the FITing-
tree building process is to use a series of disjoint
linear segments to capture trends that exist in the
data with the error threshold satisfied. +e dataset is
sorted in ascending order at first, and then a greedy
streaming algorithm is used to maximize the length
of a segment as shown in Algorithm 1. After all the
segments are selected, a B+ tree is built on these
segments.

(ii) Query: in the query process, given a key x, we
firstly find which segment this key is located in.
For a segment i, x lies in segment i meaning
Seg[i].start≤ x< Seg[i + 1].start. +is process can
be easily achieved by the B+ tree search algorithm.
+en, the predicted position pred_pos of x is
calculated by equation (8). After interpolating the
key’s position, the true position of the key is
guaranteed to be within the error threshold. Fi-
nally, FITing-tree locally searches the region
[pred_pos − error, pred_pos + error] using binary
search. Figure 3 illustrates this query process.

c

o1

2c 3c

o2

o3

d

d

Reference Point
Data Point

Figure 2: iDistance data structure.
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5. Our Proposed Scheme

n this section, we will present our privacy-preserving cloud-
based biometric identification scheme, which consists of
four phases, i.e., System Initialization, Index Creation and
Encryption, Encrypted Identification Request Generation,
and Biometric Identification. Before delving into the details,
we give an overview of our proposed scheme. Specifically, in
the System Initialization stage, SP firstly generates system
parameters (including the security parameters and identi-
fication parameters) and distributes them to the client and
cloud servers. +en, SP builds an index based on the
iDistance and FITing-tree, encrypts the index and the
dataset, and outsources them to the cloud in the Index
Creation and Encryption stage. +e client generates an
encrypted identification request based on a given biometric
template in the Encrypted Identification Request Generation
stage. Eventually, in the Biometric Identification stage, the

client sends an encrypted identification request to the cloud,
and two cloud servers work together to get the identification
result and return it to the client. To describe our proposed
scheme clearer, we give the explanation of the main nota-
tions used in the following sections in Table 1.

5.1. System Initialization. In the System Initialization phase,
SP sets up the system and generates keys for the client and
cloud servers. Following themethod described in subsection,
SP selects the security parameters (k0, k1, k2), calculates the
secret key sk � (p, q,L), and generates the public param-
eters PP � k0, k1, k2,N􏼈 􏼉, where N � p · q. After that, SP
encrypts 0 and 1 with sk, and the corresponding ciphertexts
are denoted as E(0) and E(1), respectively. +en, SP sets the
identification threshold δ for the identification system. After
all parameters are generated, SP publishes PP and δ and
sends E(0), E(1) to the client, and sk to CS2, respectively.

Search
range

pos

Predicted
position

key

error

x

Figure 3: +e query process of the FITing-tree.

Input: a key dataset D, error threshold error
Output: a series of disjoint linear segments

(i) Sort dataset D in ascending order.
(ii) Create a new segment Seg � Seg.Start, Seg.Slope􏼈 􏼉

(iii) Shigh←0
(iv) Slow←∞
(v) i←0
(vi) Seg.Start � i

(vii) i � i + 1
(viii) while i≤ |D| do
(ix) slope � start.y − D[i]/start.x − i

(x) if slope> Slow and slope< Shighthen
(xi) Add point (i, D[i]) to this segment.
(xii) Shigh←min(Shigh, start.y − D[i] + error/start.x − i)

(xiii) Slow←max(Slow, start.y − D[i] − error/start.x − i)

(xiv) Seg.Slope � (Shigh + Slow/2)

(xv) else
(xvi) Create a new segment starting with point (i, D[i])

(xvii) end
(xviii) end

ALGORITHM 1: +e building process of FITing-tree.
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5.2. Index Creation and Encryption. In this phase, SP firstly
builds a searching index based on the iDistance data
structure and FITing-tree data structure over the biometric
dataset T. +en, SP encrypts the index and dataset T with
the SHE scheme. Eventually, SP outsources the encrypted
index and dataset to CS1.

5.2.1. Stage 1: Index Building Process. In this stage, the
iDistance index for each biometric template in dataset T is
calculated at first. +en, a FITing-tree is built based on these
indexes.

(i) Data partition: SP firstly divides the biometric
dataset T into m partitions P1, P2, . . . , Pm􏼈 􏼉 uti-
lizing the K-means algorithm and selects a reference
point for each partition, where the reference point
for the ith partition Pi is represented by Oi.

(ii) iDistance index calculation: for every template in
one partition, the Euclidean distance between this
biometric template and the partition’s reference
point is computed at first. For example, for the ith
partition Pi, for any T � t1, t2, . . . , tl􏼈 􏼉 ∈ Pi, the
Euclidean distance between them is computed as
dis(T, Oi) �

������������

􏽐
l
j�1(tj − oij)

2
􏽱

. Besides, the maxi-
mum distance of all distance calculated in the ith
partition is denoted as dmax−i. +en, to avoid the
overlap of indexes between different partitions, an
offset should be added while calculating the iDis-
tance index. Meanwhile, to keep the gap between
indexes of different partitions as small as possible,
the offset is selected as offseti � 􏽐

i−1
j�1dmax−j. Even-

tually, for a biometric templateT in the ith partition,
its iDistance index is calculated as

iDisT � Dis T, Oi( 􏼁 + offseti. (9)

(iii) FITing-tree building: after all the iDistance indexes
for all templates are calculated, SP builds a FITing-
tree based on these iDistance indexes following
Algorithm 1 with a given error threshold. When the
building process of the FITing-tree is complete, a
series of disjoint linear segments Seg1, Seg2, . . .􏼈 􏼉 are
generated. Each segment can be represented by its
starting point and slope, where Segi �

starti, slopei􏼈 􏼉.

5.2.2. Stage 2: Index Encryption. After the FITing-tree is
built, SP encrypts the indexes and the dataset with the SHE
scheme. At first, SP encrypts the reference points of each
partition with the SHE scheme, and the encrypted reference
points are represented as E(O1), E(O2), . . . , E(Om)􏼈 􏼉. +en,
SP encrypts each biometric template in dataset T using the
SHE scheme. For a biometric Ti � ti1, . . . , til􏼈 􏼉 ∈ T, it is
encrypted as E(T) � E(ti1), . . . , E(til)􏼈 􏼉. In the end, SP
outsources the encrypted dataset E(T) and the searching
index, which includes the encrypted reference points
E(O1), E(O2), . . . , E(Om)􏼈 􏼉, maximum distance list
dmax−1, dmax−2, . . . , dmax−m􏼈 􏼉, and FITing-tree segments
Seg1, Seg2, . . .􏼈 􏼉 to CS1.

5.3. Encrypted Identification Request Generation. When a
client wants to verify whether a biometric template Tr �

tr1, tr2, . . . , trl􏼈 􏼉 exists in the dataset T, it needs to send an
identification request to the cloud servers. Considering the
issue of privacy protection, Tr should be encrypted in ad-
vance. Since the client receives the ciphertextsE(0) and E(1)

in the System Initialization phase, the biometric template can
be encrypted based on the homomorphic properties of the
SHE scheme. +e encrypted template is denoted as
E(Tr) � E(tr1), E(tr2), . . . , E(trl)􏼈 􏼉, where

E tri( 􏼁 � E 1 · tri + 0 · ri( 􏼁 � E(1) · tri + E(0) · ri( 􏼁modN,

(10)

and ri ∈ 0, 1{ }k2 is a random number.
After the identification request is encrypted, it is sent to

CS1.

5.4. Biometric Identification. On receiving a biometric
identification request from the client, two cloud servers work
together to verify whether it exists in dataset T. Firstly, two
cloud servers collaboratively calculate the distance of the
identification request corresponding to each reference point.
+en, based on the trained FITing-tree and iDistance data
structure, a candidate result set is generated. Eventually, two
cloud servers traverse the candidate result set to get the
identification result.

5.4.1. Stage 1: iDistance Index Calculation. After receiving
the biometric request from the client, CS1 firstly calculates
the ciphertext of the square of the Euclidean distance be-
tween E(Tr) and each encrypted reference point E(Oi),
where

E dis Tr, Oi( 􏼁
2

􏼐 􏼑 � 􏽘
l

j�1
E oij􏼐 􏼑 − E trj􏼐 􏼑􏼐 􏼑

2
. (11)

+en, CS1 sends

E dis Tr, O1( 􏼁
2

􏼐 􏼑, . . . , E dis Tr, Om( 􏼁
2

􏼐 􏼑􏽮 􏽯, (12)

to CS2. CS2 decrypts these ciphertexts with sk and returns
the corresponding plaintexts to CS1. After getting the
plaintexts from CS2, CS1 computes the positive square root

Table 1: Definition of main variables in our proposed scheme.

Notation Definition
sk +e private key of the SHE
E +e encryption process of the SHE scheme
D +e decryption process of the SHE scheme
δ +e threshold of the identification system
dis(X, Y) +e Euclidean distance between X and Y

error +e threshold of the FITing-tree segment
Seg1, Seg2, · · ·􏼈 􏼉 +e segments of the FITing-tree

P1, P2, · · ·􏼈 􏼉
+e divided partitions while calculating the

iDistance
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of these plaintexts and gets dis(Tr, O1), . . . , dis(Tr, Om)􏼈 􏼉.
After that, CS1 checks whether dis(Tr, Oi)≤ δ + dmax−i

holds. If it does, it means that ith partition has an inter-
section with the query range and will be considered as a
candidate partition. Otherwise, it will be ignored. Eventually,
the iDistance indexes of the identification request corre-
sponding to each candidate partition’s reference point are
computed. For example, if ith partition is a candidate
partition with reference point Oi, the iDistance index of the
identification request with respect to Oi is calculated as
iDisi � dis(Tr, Oi) + offseti, where offseti � 􏽐

i−1
j�1dmax−j.

5.4.2. Stage 2: Candidate Result Set Generation. When the
iDistance indexes of Tr are obtained, a candidate result set is
selected for each candidate partitions. According to the
range query algorithm of the iDistance, for a given data
partition Pi with reference point Oi, we need to search the
data points p ∈ Pi whose iDistance index lies in
[dis(Tr, Oi) − δ, min(dis(Tr, Oi) + δ, dmax−i)]. We denote
dis(Tr, Oi) − δ and min(dis(Tr, Oi) + δ, dmax−i) as the lower
search bound lb and upper search bound ub, respectively.
CS1 finds out the biometric templates, which are stored in
the range [pre_pos1 − error, pre_pos2 + error], and adds
them to the candidate result set CRSi, where pre_pos1 is the
predicted position of lb calculated by the FITing-tree, and
pre_pos2 is the predicted position of ub.

5.4.3. Stage 3: Verification. When the candidate result set is
determined, two cloud servers work together to make sure
whether there is a biometric template satisfying the iden-
tification requirements. Specifically, for each candidate re-
sult set CRSj, CS1 firstly calculates the encrypted distances
between Tr and all the templates in this candidate result set.
For a template Ti, the encrypted square of the distance from
Tr to Ti is calculated as

E dis Tr, Ti( 􏼁
2

􏼐 􏼑 � 􏽘
l

j�1
E tij􏼐 􏼑 − E trj􏼐 􏼑􏼐 􏼑

2
. (13)

+en, the encrypted distances are sent to CS2 to get the
plaintexts. While receiving the plaintexts, CS1 finds the
template that is closest to Tr and verifies whether it satisfies
the identification requirements by checking whether
dis(Tr, Ti)≤ δ holds. If it does, CS1 adds the identifier of Ti

to the result set. After all the candidate result sets are
checked, CS1 returns the result set to the client.

5.4.4. Correctness. We will show the correctness of the our
proposed scheme. If our proposed scheme is not correct, it
means that there exists a template T ∈ T which satisfies
dis(T, Tr)≤ δ, but is not searched by our scheme. To proof
the correctness of our scheme, we only need to prove that all
the biometric templates T ∈ T satisfying dis(T, Tr)≤ δ are
searched by our scheme. All the biometric templates in the
candidate result set are verified, and the biometric templates
whose position lie in [pre_pos1 − error, pre_pos2 + error]
are added to the candidate result set. According to the

properties of the FITing-tree, if the predicted position of T

lies in [pre_pos1, pre_pos2], it will be added to the candidate
result set. Since pre_pos1 is the predicted position of lb
calculated by the FITing-tree and pre_pos2 is the predicted
position of ub, and the iDistance indexes are in the as-
cending order in the FITing-Tree, if dis(T, Tr)≤ δ, its
iDistance index will lie in [dis(Oi, Tr)− δ, min(dis(Oi,

Tr) + δ, dismax−i)]. +erefore, if a template T ∈ T which
satisfies dis(T, Tr)< δ, it will be searched by our proposed
scheme.

6. Security Analysis

In this section, we will analyze the security of our proposed
privacy-preserving biometric identification scheme. Since
our proposed scheme is designed based on the SHE scheme,
which has been proved to be CPA-secure in previous work
[17], we mainly focus on the privacy-preserving goal de-
scribed in section. Specifically, both CS1 and CS2 cannot
obtain the plaintext of the biometric dataset and biometric
identification request. In the following, we will prove the
security of our scheme from the view of the two cloud
servers.

Theorem 1. CS1 cannot obtain the plaintext of the biometric
dataset and the biometric identification request during the
biometric identification process.

Proof. We give the view of CS1 during the biometric
identification process firstly and analyze why CS1 cannot
obtain the plaintext of the biometric dataset and biometric
identification request.

(i) View 1: in the Index Creation and Encryption phase,
the encrypted biometric dataset E(T) and the
encrypted searching indexes including the
encrypted reference points E(O1),􏼈 E(O2),

. . . , E(Om)}, maximum distance list
dmax−1, dmax−2, . . . , dmax−m􏼈 􏼉, and FITing-tree seg-
ments Seg1, Seg2, . . .􏼈 􏼉 are sent to CS1. Since the
biometric dataset and reference points are
encrypted by the SHE scheme, and CS1 does not
have the secret key sk, CS1 cannot get any infor-
mation about the plaintext of the biometric data
from these encrypted data directly. By analyzing the
maximum distance list, CS1 can only learn that
there exists a biometric template Ti in each data
partition that satisfies

dis Ti, Oi( 􏼁 � dmax−i, (14)

where 1< i<m. Since the reference points and
biometric template are both encrypted by the SHE
scheme, CS1 cannot infer their plaintext from these
data. +e FITing-tree segments are built on the
iDistance indexes and do not have corresponding
relation to the biometric dataset or identification
request; thus, CS1 cannot obtain the plaintext from
the segments either.
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(ii) View 2: the encrypted biometric identification re-
quest. Since the biometric identification request is
also encrypted by the SHE scheme and CS1 cannot
decrypt it, the plaintext of the biometric identifi-
cation will not be leaked to CS1.

(iii) View 3: intermediate values during the biometric
identification process. In the identification process,
the distance between the biometric identification
request and each reference point and the distance
between the biometric identification request and
each candidate template are leaked to CS1. Since the
biometric identification request, the reference
points, and the biometric template in the candidate
result set are all encrypted by the SHE scheme, CS1
cannot get the plaintext of the biometric dataset and
biometric identification request from these inter-
mediate values.

+erefore, CS1 cannot obtain the plaintext of the bio-
metric dataset and the biometric identification request
during the biometric identification process. □

Theorem 2. CS2 cannot obtain the plaintext of the biometric
dataset and the biometric identification request during the
biometric identification process.

Proof. We give the view of CS2 during the biometric
identification process firstly and analyze why CS2 cannot
learn the plaintext of the biometric dataset, biometric
identification request from these data.

(i) View 1: the distance between the biometric identi-
fication request and each reference point. While
calculating the iDistance indexes of the biometric
identification request, CS2 gets the distance between
the biometric identification request and each ref-
erence point. However, CS2 cannot get the
encrypted reference points and biometric identifi-
cation request; thus, CS2 cannot obtain the plaintext
of the biometric identification request.

(ii) View 2: the distance between the biometric identi-
fication request and each candidate template. While
verifying the template in the candidate result set, CS2
obtains the distance between the biometric identi-
fication request and each candidate template. Since
the encrypted biometric dataset and biometric
identification request are kept secret from CS2, CS2
cannot get the plaintext of the biometric dataset and
the biometric identification request.

+erefore, CS2 cannot learn the plaintext of the bio-
metric dataset and the biometric identification request
during the biometric identification process. □

7. Performance Evaluation

In this section, we evaluate the performance of our proposed
scheme in terms of computational costs and communication
overhead. Specifically, we will compare our proposed
scheme with an M-tree based privacy-preserving biometric

identification scheme named MASK [26]. +e reason why
we compare with MASK is twofold: (i) MASK is designed
under the same systemmodel with our proposed scheme. (ii)
MASK is more efficient than other schemes designed for the
biometric identification scenario in terms of computational
and communication costs.

7.1. Evaluation Environment. In order to measure the in-
tegrated performance, we implement both schemes with
Java and conduct some experiments on an Intel Xeon 6226R
CPU@2.9 GHz Windows platform with 256GB RAM. +e
SHE scheme is used to protect the privacy of the dataset and
identification requests in these two schemes. +e security
parameters are set as k0 � 2048, k1 � 20 and k2 � 160. A
real-world dataset and a synthetic dataset are used to test the
performance of these two schemes. +ese two datasets are
prepared as follows.

(i) Real-world dataset: we choose the Labeled Faces in
the Wild (LFW) dataset [28], which contains 13223
face images collected from 5749 individuals. In this
dataset, 1680 of the people pictured have two or
more distinct photos. In this paper, we use the
FaceNet algorithm to extract face features from
these face images at first. Each extracted face feature
is a 512-dimensional vector, and all the face features
live on the same hypersphere, which means that
each of the dimensions of the vector is in the range
(-1,1).

(ii) Synthetic dataset: we randomly generate a synthetic
dataset that contains 8 × 104 face features. Each face
feature is a 512-dimensional vector, and all face
features lie in the same range (−1, 1) as the face
features extracted by the FaceNet. +e templates in
the synthetic dataset are distributed in a hypercubes,
in which each dimension is lying in (-1, 1).

7.2. Computational Costs. In this section, we will evaluate
the computational costs of our proposed scheme while
generating the searching index, encrypting identification
request, and answering the biometric identification requests,
which correspond to the computational costs in Index
Creation and Encryption phase, Encrypted Identification
Request Generation phase, and Biometric Identification
phase, respectively. Since the data in these two schemes are
encrypted by the SHE scheme, we denote the computational
costs of encrypting and decrypting data by the SHE scheme
as Cenc and Cdec, the computational costs of adding and
multiplying two SHE ciphertexts as Cadd−I and Cmul−I, and
the computational costs of multiplying a plaintext and SHE
ciphertext as Cmul−II.

7.2.1. Index Creation and Encryption. As described in
Section 5, there are two stages in the Index Creation and
Encryption phase. +e computational costs in this phase are
related to the dataset size n, data dimension l, and partition
numbers k.
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(i) Index building process: in this stage, the biometric
dataset is firstly divided into m partitions using the
K-means algorithm. +en, a reference point is se-
lected for each partition. In Figure 4, we plot the
computational costs of partitioning the dataset
versus with n when l � 512 and m � 10. +en, the
distance between the biometric templates in each
partition and the partition’s reference point is cal-
culated. Later, a FITing-tree is built on these iDis-
tance indexes. +e computational costs of creating
the index are shown in Figure 5.

(ii) Index encryption: when the index building process
is complete, the searching index is encrypted.
While encrypting the searching index, m reference
points are encrypted. +erefore, the computa-
tional costs of encrypting the searching index are
m · l · Cenc. In MASK, the index size is related to the
node capacity of the M-tree [29]. Given the node
capacity C, there are at most 􏽐

wmax
w�1 (⌈n/Cw⌉) nodes

in the M-tree, where Cwmax < n<Cwmax+1. +erefore,
the computational costs of encrypting the searing
index in MASK are less than
􏽐

wmax
w�1 (⌈n/Cw⌉) · l · Cenc. Since the computational

costs of encrypting the dataset are the same in
these two schemes, we mainly focus on comparing
the computational costs of encrypting the
searching indexes. We test the computational costs
of encrypting the searching indexes in both
schemes over the synthetic dataset, and the results
are shown in Figure 6 (m � 10).

We can see that our proposed scheme is more efficient in
generating and encrypting the searching indexes.

7.2.2. Encrypted Identification Request Generation. As de-
scribed in Section 5, the client generates the encrypted
identification request by encrypting the biometric template.
+en, the encrypted identification request is sent to the cloud
servers to get the identification result. 2 operations of
multiplying a plaintext and SHE ciphertext are needed to
encrypt each dimension of the identification request. Since
the length of the biometric template is l, the computational
costs of encrypting the identification template are 2lCmul−II

in our proposed scheme. In MASK, the computational costs
of generating the encrypted identification are 2(l + 1)

Cmul−II. In this phase, the computational costs are constant
when the template length and the security parameters are set
to fixed values.

7.2.3. Biometric Identification. In the biometric identifica-
tion phase, there are three stages:

(i) iDistance index calculation: in this stage, two cloud
servers work together to find out which partition the
identification request belongs to. At first, the
encrypted square of Euclidean distance between the
identification request and each partition’s reference
points is calculated over their ciphertexts by CS1.

+en, the encrypted data is sent to CS2 to get the
plaintext. +e computational costs of CS1 in this
phase are •fa, and the computational costs of CS2
are m · l · Cdec.

(ii) Candidate result set generation: in this phase, CS1
firstly finds out which segments lb and ub lie in by
searching in the B+ tree built over the FITing-tree
segments. +en, CS1 calculates the predicted
position calculation of lb and ub and determines
the candidate result set. Since the predicted po-
sition is calculated based on the plaintext, the
computational costs in this phase contain the
searching costs and predicted position calculation
costs.

(iii) Verification: in this phase, two cloud servers col-
laboratively traverse the biometric templates in the
candidate result set. +e computational costs of CS1
in this phase are 􏽐

m
i�1(|CRSi|)· (2lCmul−I + (2l−

1)Cadd−I), and the computational costs of CS2 in this
phase are 􏽐

m
i�1(|CRSi|) · l · Cdec, where |CRSi| is the

size of the ith partition’s candidate result set.

In MASK, computational costs in this phase consist of
the computational costs in searching the M-tree and ver-
ifying nodes in leaf nodes. +e computational costs of CS1,
CS2 in these two schemes are shown in Figures 7(a) and
Figure 7(b), respectively. And the integrated running time
in the biometric identification process of our proposed
scheme and MASK is shown in Figure 7(c). We can see that
our proposed scheme takes more time than MASK in
identifying a biometric template when the biometric
dataset is not very large. But as the size of the biometric
dataset grows, our scheme is advantageous in the com-
putational cost of the identification process. Since the
searching process in each data partition is independent, it is
easy to accelerate the search process of our proposed
scheme in a concurrent way. As shown in 7(c), the effi-
ciency of our proposed scheme is greatly improved when it
is executed concurrently.
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Figure 4: +e running time of partitioning the dataset varies with
dataset size n.
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7.3. Communication Overhead. In this section, we will
evaluate the communication overhead of our proposed scheme
when outsourcing the searching index and the encrypted
biometric template dataset, submitting the encrypted identi-
fication request and searching the biometric templates, which
are corresponding to the communication overhead in Index
Creation and Encryption phase, Encrypted Identification
Request Generation phase, and Biometric Identification phase,
respectively. We analyze the communication overhead in
theory at first and test it over the synthetic dataset. For the sake
of simplicity, we denote the bit length of an integer and a
floating number as Li and Lf, respectively.

7.3.1. Index Creation and Encryption. In the Index Creation
and Encryption phase, the encrypted reference points
E(O1), E(O2), . . . , E(Om)􏼈 􏼉, maximum distance list
dmax−1, dmax−2, . . . , dmax−m􏼈 􏼉, the encrypted T, and FITing-

tree segments Seg1, Seg2, . . .􏼈 􏼉 are outsourced to CS1.
According to the SHE scheme, the size of the ciphertext is k0
bits. Since there are m reference points and n biometric
templates in the dataset T, where both the reference point
and biometric template are l-dimensional vectors, the size of
the encrypted reference point is m · l · k0 and the size of the
encrypted dataset is n · l · k0. As the data in the maximum
distance list is stored in floating number, their size is m · Lf.
A FITing-tree segment consists of a start point and the slope,
and the size of each FITing-tree segment is (Li + Lf).
Suppose that there are u segments contained in the FITing-
tree, the size of FITing-tree segments is u(Li + Lf).
According to the building process of FTIing-tree, there are at
least error + 1 data points in a segment, which means that
u≤ n/error + 1. In MASK, there are at most 􏽐

wmax
w�1 (⌊n/Cw⌋)

nodes in the M-tree, where Cwmax < n<Cwmax+1. Hence, the
communication overhead of MASK in this stage is less than
(n + 􏽐(⌊n/Cw⌋) · l · k0.

7.3.2. Encrypted Identification Request Generation. In the
Encrypted Identification Request Generation phase, the
identification request is encrypted and sent to cloud servers.
Since the identification request is an l-dimensional vector,
and the ciphertext of each dimension is k0 bits, the size of the
identification request is lk0.+e communication overhead of
MASK in this phase is (l + 1)k0.

7.3.3. Biometric Identification. In the Biometric Identifica-
tion stage, two cloud servers work together to get the
identification request. Firstly, two cloud servers select the
candidate partition. +en, two cloud servers generate a
candidate result set for each partition. Eventually, two cloud
servers traverse all the candidate result sets to get the
identification result. In this stage, 􏽐

m
i�1(|CRSi|) + m

encrypted data are sent from CS1 to CS2, and 􏽐
m
i�1(|CRSi|) +

m plaintext data are sent from CS2 to CS1.
We test the communication costs of different phases in

both two schemes over the synthetic dataset, and the ex-
perimental results are shown in Figure 8. Specifically,
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Figure 5:+e computational cost of creating the index. (a)+e running time of calculating iDistance index with different n. (b)+e running
time of building FITing-tree with different n. (c) +e integrated running time of creating index with different n.
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Figure 6: +e running time of encrypting indexes varies with
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Figure 8(a) shows the communication costs of sending the
indexes in these two schemes. +e experimental results
demonstrate that the communication costs of our proposed
scheme in this phase are much lower than those of MASK.
Figure 8(a) shows the communication costs of sending the
identification request in both two schemes. +e commu-
nication costs in this phase are almost the same, but our
proposed scheme is more efficient. Figure 8(a) shows the
communication costs while identifying a template in the
dataset. +e results show that our proposed scheme sends
more data thanMASKwhen the dataset is not very large. But
our proposed scheme is more and more efficient when the
dataset size grows.

7.4. Storage Cost. In our proposed scheme and MASK, the
storage consumption of the cloud servers is mainly used to
store the search indexes and the encrypted dataset. Since
the size of the encrypted dataset is the same in these two
schemes, we mainly compare the storage cost of storing the

search indexes. In our proposed scheme, the search in-
dexes consist of the encrypted reference points, the
maximum distance list, and the FITing-tree segments. In
MASK, the search indexes consist of the M-tree indexes.
+e storage cost of storing the searching indexes of these
two schemes is shown in Table 2.

7.4.1. Accuracy. In our proposed scheme, the combination
iDistance and FITing-tree structure can achieve accurate
range query. Transforming the biometric template into
integers may reduce the accuracy of the identification
scheme. +is influence is very slight when enough decimal
places are kept during the transforming process. We test the
accuracy of our proposed scheme in terms of the false
acceptance rate (FAR), false rejection rate (FRR), and equal
error rate (ERR) over the LFW dataset [28]. We firstly test
the accuracy of the original FaceNet algorithm in terms of
FAR, FRR, and EER varying with thresholds from 0 to 2, and
the result is shown in Figure 9(a). +e ERR of the original
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Figure 8:+e communication costs of our proposed scheme andMASK. (a)+e communication costs of sending the indexes with different
n. (b) +e communication costs of sending the identifiaction request with different n. (c) +e communication costs in the identification
phase with different n.
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Figure 7: +e computational cost in the identification stage. (a) +e running time of CS1 in identification stage with different n. (b) +e
running time of CS2 in identification stage with different n. (c) +e integrated running time in identification stage with different n.
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FaceNet algorithm is 0.025. +en, we also test the accuracy
of the FaceNet algorithm with the biometric templates,
which have been converted to integers. In this experiment,
the biometric template values are converted to integer
values with 3 decimals kept. We test the FAR, FRR varying

with thresholds from 0 to 2000, and the result is shown in
Figure 9(b). +e ERR of FaceNet algorithm with integer
templates is 0.026. We can see the accuracy is kept almost
the same as the original FaceNet algorithm.

After that, we also evaluate the accuracy of our proposed
scheme in terms of FAR, FRR, and ERR in the identification
scenario. We test the FAR, FRR varying with thresholds
from 0 to 2000, and the result is shown in Figure 10.+e ERR
of the identification scheme is 0.249.

8. Conclusion

In this paper, we have proposed an efficient and privacy-
preserving identification scheme for identifying an indi-
vidual in huge biometric datasets. Specifically, we introduced
the FITing-tree to generate an index for the biometric dataset
based on which the efficient identification service can be
achieved. +en, we use the SHE technique to ensure the
privacy of identification requests and the biometric dataset.
+e security of our proposed scheme has been analyzed, and
the result shows that the privacy of both the biometric
dataset and biometric identification can be preserved. To
evaluate the computational and communication cost of our
proposed scheme, we implement it and test it over a syn-
thetic dataset. Experimental results demonstrate that our
proposed scheme is efficient in terms of computational and
communication costs when identifying a biometric template
in a large dataset.

Table 2: Storage cost (MB) of our proposed scheme vs. MASK with different dataset size.

Scheme 1 × 104 2 × 104 3 × 104 4 × 104 5 × 104 6 × 104 7 × 104 8 × 104

Our scheme 1.257 1.264 1.271 1.277 1.284 1.292 1.297 1.304
MASK 18.125 36.125 55.125 73.000 92.750 110.500 127.250 146.125
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Figure 9: +e error rate of the recognition algorithm. (a) +e FAR and FRR of the original FaceNet algorithm varying with threshold.
(b) +e FAR and FRR of the FaceNet algorithm with integer templates varying with threshold.
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Figure 10: +e FAR and FRR of the identification scheme varying
with threshold.
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