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With the rapid growth of the Internet of )ings (IoT) devices, security risks have also arisen. )e preidentification of IoTdevices
connected to the network can help administrators to set corresponding security policies according to the functionality and
heterogeneity of the devices. However, the existing methods are based on manually extracted features and prior knowledge to
identify the IoTdevices, which increases the difficulty of the device identification task and reduces the timeliness. In this paper, we
present CBBI, a novel IoT device identification approach. On the one hand, CBBI uses a hybrid neural network model Conv-
BiLSTM to automatically learn the representative spatial and temporal features from the network traffic, such as the position
relationship of the internal organization structure in network communication traffic, the time sequence of the data packets, and
the duration of the network flow. On the other hand, CBBI contains the data augmentation module FGAN that solves the problem
of data imbalance in deep learning and improves the accuracy of the model. Finally, we used the public dataset and laboratory
dataset to evaluate CBBI from multiple dimensions. )e evaluation results for different datasets show that our approach achieves
the accurate identification of IoT devices.

1. Introduction

With the rapid development of IoT technology, the types and
numbers of IoT devices have been growing quickly. )e
powerful connectivity and convenience of the IoT devices
make their applications increasingly widespread, and they
penetrate almost every corner of life, including smart wear,
smart homes, smart entertainment, and smart travel.
According to [1], approximately 31 billion IoT devices were
used globally by the end of 2020, and approximately 75
billion IoT devices will be used by 2025, of which smart
homes [2] will account for 41%, reaching 12.86 billion.

However, many vulnerabilities exist in current IoT de-
vices and execution environments [3–5]. Attackers are in-
creasingly concentrating on these vulnerable IoT devices,
using device vulnerabilities to launch attacks [6–11]. For
example, malicious attackers used a cloud of vulnerable IoT
devices to build a sizable and highly destructive botnet to

launch large-scale DDoS attacks. In the first 1 TB DDoS
attack conducted on the Krebs Security website, more than
400,000 IoTdevices were utilized [3]. Additionally, attackers
can use these vulnerable IoTdevices as proxies for malicious
activities, further deteriorating the network environment.
With the proliferation of IoTdevices with security flaws, IoT
device-centric attacks could further increase.

From the defensive aspect, network administrators must
implement network access control on all connected devices.
Whenever a new device is connected to the network, and if
the device can be identified, then the network administrator
can take appropriate security precautions. For example, the
administrator configures the corresponding firewall rules
according to the security requirements of the device, verifies
whether the device has known vulnerabilities, or notifies the
intrusion detection system to isolate vulnerable devices.

Many of the current studies on IoT device identification
concentrate on features based on statistics and manual
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extraction and then combine fingerprint matching, machine
learning, or deep learning to recognize IoT devices. )ese
traditional IoT device identification methods face the fol-
lowing problems: (1) extracting features manually is a te-
dious and time-consuming process, and the low efficiency of
feature extraction will affect the real-time performance of the
classification model. (2) Feature extraction requires a pro-
fessional domain prior knowledge and even professional
feature engineering. Feature engineering involves feature
extraction, feature construction, and feature selection,
which, undoubtedly, further increases the difficulty of fea-
ture extraction. (3) )e generalization ability of the model is
also a concern. Before the training process in the traditional
method, some seemingly trivial features might be discarded.
)ese features could help the model improve its general-
ization ability, which would enable the model to be extended
to more IoT devices. )e feature space generated by tradi-
tional feature engineering is relatively small, and it is difficult
to extract these subtle features. With the increase in the
number and diversity of devices in practical applications, the
recognition accuracy of the model could drop sharply. (4) A
surging number of IoT devices use encryption protocols,
increasing the difficulty of feature extraction and device
identification. (5) With the increasing number of IoT de-
vices, the amount of data generated by them is also in-
creasing, and hence, feature extraction requires more time
and resources. )erefore, it is difficult to meet the current
needs using traditional features based on manual extraction.

In this paper, we present CBBI, a novel IoT device
identification approach based on Conv-BiLSTM to learn the
spatial and temporal features of the network traffic. CBBI
contains three modules. )e first module is the data pre-
processingmodule, whosemain task is to quickly process the
raw network traffic generated by the IoT device and convert
it into an input that can be used in the deep learning model.
)e second module is the data augmentation module FGAN
that solves the problem of data imbalance in deep learning
methods [12, 13]. )e third module is to establish a deep
learning model. We designed a hybrid deep learning model
Conv-BiLSTM. Convolutional neural networks (CNNs) can
learn the spatial characteristics of network communication
traffic, such as the positional relationship of internal orga-
nizational structures in the network communication traffic.
A bidirectional long short-term memory network (BiLSTM)
can extract the time-domain characteristics of the network
communication traffic, especially the timing relationship
and flow duration of the data packets. )e accuracy and
generalization ability of the model are further improved by
learning the spatial and temporal features simultaneously.
Even when confronted with the IoTdevices that have similar
functions produced by the same device manufacturer, CBBI
can use the powerful feature learning capabilities of deep
learning to extract the representative features and some
potential subtle features from the original traffic, and finally,
it can realize the accurate identification of the IoT devices
based on these learned features. )is paper is an extended
version of [4]. Firstly, compared with [4], we added a data
augmentation module FGAN to solve the data imbalance. At
the same time, the corresponding comparative test was also

added. Secondly, we added our own dataset to the experi-
ment and made some experimental evaluations based on the
dataset. Finally, we added an additional visualization part to
prove that CBBI can learn the representative spatial and
temporal characteristics from the device communication
traffic.

We summarize the main contributions as follows:

(1) We propose a novel IoT device identification
method, CBBI. )is method does not require any
prior knowledge about feature engineering. It avoids
the overhead of manual feature extraction and de-
creases the complexity of IoT device identification
tasks.

(2) CBBI extracts the spatial and temporal features from
the original traffic generated by the device, including
some potential subtle features to identify the IoT
devices, increasing the generalization ability of the
model.

(3) CBBI contains the data augmentationmodule FGAN
that solves the problem of data imbalance in deep
learning and effectively improves the accuracy of the
model.

(4) We conduct extensive experiments on the public
dataset and laboratory dataset to evaluate the per-
formance of CBBI. )e results show the superiority
of the proposed model.

)e remainder of this paper is organized as follows.
Section 2 summarizes the related work on IoT device
classification. Section 3 describes our proposed IoT device
identification method, which includes data preprocessing,
data augmentation, and Conv-BiLSTM. Section 4 describes
the experiment setup. Section 5 presents the evaluation
results and analyses. Finally, we conclude this work in
Section 6.

2. Related Work

For the identification of IoT devices, researchers have
proposed many solutions. In this paper, the existing research
studies are summarized and discussed from two aspects:
device identification technology based on a classification
model and device identification technology based on active
detection.

2.1. Device Identification Technology Based on a Classification
Model. Because of the differences in the software and
hardware used in the IoT devices, there will also be subtle
differences among the different devices produced by the
same manufacturer. Researchers use the subtle differences in
the hardware of the device, such as the clock offset [14–17],
as the fingerprint of the device. )en, they construct a
classification model to realize the accurate identification of
the target device. In the traditional method, wireless devices
can be identified by some unique radio frequency (RF)
fingerprints caused by radio circuits [18, 19]. Yuan et al. [20]
fingerprinted wireless devices by extracting the features
caused by the hardware defects in the analog circuits. An
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important advantage of using these physical defects as device
signatures for device identification is that it is difficult to use
other wireless devices to spoof the signature. Brik et al. [21]
designed and implemented a technology that uses the
passive radio frequency analysis to identify the source
network interface card (NIC) of IEEE 802.11 frames.

Radhakrishnan et al. [22] used the arrival interval time
of packets in specific traffic types generated by the devices
as the feature vectors. )ey used these feature vectors to
train the artificial neural network (ANN). Miettinen et al.
[23] proposed IoT Sentinel, which is a system for the
automatic recognition of IoT devices. )e system extracts
23 features from the data packets as device fingerprints and
identifies the devices using a two-step classification
method.

Guo and Heidemann proposed a method that analyses
the DNS traffic to detect the IoT devices and identify their
type [24]. Marchal et al. [25] automatically identified the
type of IoTdevices in the local network based on the periodic
background network traffic of the IoT devices. )e method
needed 30minutes to identify the type of devices, and the
accuracy rate reached 98.2%.

)angavelu et al. [26] used controllers to control the
gateways based on a software-defined network (SDN). )e
controller implements the training and updating of the
model and sends the newly trained model to each gateway.
Sivanathan et al. [27] used statistical attributes such as the
device traffic activity cycle, port number, signaling mode,
and cipher suite as fingerprint features of the device. )en,
they used a multistage machine learning classification al-
gorithm to identify the device.

WDMTI [28] uses 18 features extracted from DHCP
messages to establish a hierarchical Dirichlet process (HDP)
model to identify the wireless devices. )is method relies on
the bursts of traffic when the device is connected to the
network. OWL [29] analyzed the broadcast and multicast
packets in the wireless local area networks (WLANs), built a
multiview deep learning (MvWDL) model based on the
features extracted from each protocol message, and classified
the IoT devices.

According to the unique network traffic pattern of the
IoT devices, Deng et al. [30], firstly, extracted all available
features from each TCP flow header. Secondly, they used the
principal component analysis (PCA) algorithm to select the
main features that affect device recognition. Finally, they
learned the device-specific network traffic signature based
on a random forest classifier to achieve device identification.
Yin et al. [4] proposed an end-to-end IoT device identifi-
cation method that directly uses the original communication
traffic generated by the device. )is method fails to fully
consider the problem of data imbalance. In the face of
extremely unbalanced datasets, the performance of the
model may be greatly compromised.

2.2. Device Identification Technology Based on Active
Detection. Active detection refers to actively sending de-
tection packets to the devices in the network, obtaining
response packets, and extracting device information by

analyzing the information in the response packets. At-
tackers usually obtain information about vulnerable de-
vices in the network through active detection before
launching an attack to improve the accuracy of the attack.
Researchers also use the active detection method to de-
termine the state of the devices in the network, so they can
take further security measures to ensure the safety of the
devices in the network.

In practice, because of the large number of IoT devices
and the lack of training data, researchers use banner in-
formation instead of device fingerprints to identify the IoT
devices. Antonakakis et al. [31] applied the banner rules to
analyze the online devices from Censys [32] and Hon-
eypot. Shodan [33] and Censys [32] are the two popular
search engines that are mainly used to discover online
devices. Both search engines use different protocols (such
as HTTP, SSH, FTP, and TELNET) to perform Internet-
wide scans.

Many researchers [34, 35] use banner information ac-
quisition to actively scan the devices in the IP space. )ey
collect and check the text features from the response, such as
hard-coded keywords, and match them with known fin-
gerprints for device identification.

Li et al. [36] established a framework for searching
devices on the Internet using network measurement and
banner grabbing to obtain services running on the network
hosts and to match the response header fields with prestored
keywords to retrieve device information.

Feng et al. [37] proposed an acquisition rule-based
engine (ARE) that can automatically generate rules for
discovering and annotating the IoT devices without any
training data. ARE uses the application layer response data
from the IoTdevices and product descriptions in the related
websites to obtain device comments, thereby constructing
device rules. It solves the cumbersome and incomplete
shortcomings of traditional methods based on manually
writing banner information capture rules.

Table 1 summarizes the main references aforementioned
and shows the features and methods used in the relevant
references.

)e aforementioned research works made important
contributions to the identification of IoT devices and
promoted the development of network security. )e device
fingerprint identification method based on the classifica-
tion model mainly uses the physical difference of the device
as the fingerprint of the device. Otherwise, it manually
extracts some field values and related statistical charac-
teristics in the device communication traffic. )en, it is
combined with machine learning or deep learning methods
to construct a classification model. )e device identifica-
tion method based on active detection must actively send a
multitude of detection packets to the target devices in the
network, which is susceptible to packet loss and network
delay. In addition, the frequent transmission of probe
packets will increase the load on the network and aggravate
the deterioration of the network environment. More im-
portantly, if the device does not generate a response or if
there is no valid information in the response packets, the
device cannot be further identified.
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3. Proposed Framework

)e overall structure of the CBBI framework is shown in
Figure 1. CBBI is composed of three modules: data pre-
processing, data augmentation, and Conv-BiLSTM. Initially,
the data preprocessing module converts the raw network
traffic generated by the IoT device into an input that can be
used in the deep learning model. Furthermore, the data
augmentation module FGAN solves the problem of data
imbalance in deep learning. Finally, the Conv-BiLSTM
module simultaneously learns the spatial and temporal
characteristics of the original traffic of the device, which
improves the accuracy and generalization ability of the
model.

3.1. Data Preprocessing. In general, deep learning models
cannot directly use the raw pcap data. )ese original pcap
files need to be processed into a format suitable for model
input. )e entire data preprocessing process includes three
parts: flow generation, irrelevant field removal, and traffic
vectorization.

3.1.1. Flow Generation. )e original communication traffic
generated by the IoT devices contains different numbers of
data packets, and the length of each data packet is also
inconsistent. In other words, the original communication
traffic generated by the devices can be defined as
P � p1, . . . , pn􏼈 􏼉, and each data packet can be defined as
pi � (xi, si, ti). )e value of i is i � 1, 2, . . . , |n|, where xi

represents the 5-tuple information (source IP address,
source port number, destination IP address, destination port
number, and transport layer protocol type) of the packet, si

represents the size of packet pi, and ti represents the starting
time of packet pi.

In this paper, the existing Splitcap tool [38] is utilized to
process the original network traffic into a network flow with
the same 5-tuple information, where the network flow can be

defined as Fi � p1 � (x1, s1, t1), p2􏼈 � (x2, s2, t2), . . . ,

pm � (xm, sm, tm)}. Here, m represents the number of data
packets in the network flow. As the data packets in the
network flow have the same 5-tuple information,
x1 � x2 � · · · � xm. )e network flow has a certain time
order, and thus, the data packets in the network flow have a
sequence, represented by t1 < t2 < · · · < tm.

Each network flow is composed of several packets. )e
network flow contains substantial behavior characteristics of
IoTdevice communication traffic, including the closeness of
the relationship among the bytes in the data packet, the
duration of each network flow, the number and size of the
data packets that constitute the network flow, and the timing
relationships among the data packets. )ese traffic behavior
characteristics can help the deep learning model to better
recognize the device and improve the accuracy of the model.

3.1.2. Irrelevant Fields Removal. CBBI makes use of the
traffic behavior characteristics of IoTdevices. Here, we need
to eliminate some interference data, such as MAC addresses
and IP addresses, to prevent these data from affecting the
experimental results. In a small LAN, the number of devices
is limited, and the MAC addresses of the devices can
uniquely identify the devices. )ese field values can occupy a
relatively large weight in the process of the feature extraction
of the deep learning model, which could affect the real
recognition and classification ability of the model. It can
even lead to the overfitting of the model. )e IP address of
the device has the same interference effect as the MAC
address. In this paper, these interference fields are eliminated
in the data processing module to prevent them from af-
fecting the process of model feature learning.

3.1.3. Traffic Vectorization. )e neural network requires the
input data to have a standardized format, and we must
convert the processed data aforementioned into a suitable
input format. )e number of data packets in each network

Table 1: Summary of related works.

References Features Method
[14–17] Clock skew —
[18–21] Radio frequency fingerprint —
[22] Clock skew ANNs

[23] Features from the packet head Twofold identification technique (Random
Forest + Edit Distance)

[24] Flow-level network traffic and knowledge of servers run by the
manufacturers —

[25] Periodic communication traffic features KNN
[26] Features from DNS queries and HTTP URI’s Improved k-means algorithm, Random Forest, SDN

[27] Statistical attributes such as activity cycles, port numbers, signaling
patterns, and cipher suites

A multistage machine learning (Naive
Bayes +Random Forest)

[28] 18 features of DHCP Dirichlet process
[29] Features from passively received broadcast and multicast packets Multiview wide and deep learning framework
[30] Features in TCP header per TCP flow PCA, Random Forest
[4] Raw network traffic from devices CNN, BiLSTM
[31] Banners, honeypots Active scanning
[34–36] Banners Active scanning, match
[37] Banners Active scanning, search and match
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flow and the size of each data packet are different, and thus,
a unified standard must be determined to vectorize the
features in the network flow. We performed a statistical
analysis based on the public dataset and laboratory dataset.
As shown in Figure 2, we found that the number of data
packets in the network flows in the two datasets is mostly
within 10, and most of the data packets are within 250 bytes
in size. According to the statistical information, each
network flow intercepts 2500 bytes of data samples. In
other words, each network flow selects the first 10 packets
(n � 10), and each packet intercepts the first 250 bytes
(L � 250 bytes). If the number of data packets N in the
network flow is less than 10, or the length of the data packet
L is less than 250 bytes, then it is directly filled with 0. )e
representation of network flow characteristics is shown in
Figure 3. )e complete data preprocessing algorithm is
shown in Algorithm 1.

3.2. Data Augmentation. )e network traffic generated by
the IoT devices can be transformed into different numbers
of data samples after the preprocessing stage. Because of the
different functions, the software, and the hardware of the
devices, the traffic model generated by each device is very
different. For example, the network traffic generated by the
video monitoring devices is very large, whereas the network
traffic generated by some sensors is relatively limited.
)erefore, there is a large difference in the number of
samples that correspond to the device, which leads to the
serious problem of data imbalance. As far as the learning
model is concerned, the sample is usually considered to be
an unbiased sample of the true distribution. When the
training set is largely skewed, it usually does not reflect the

true distribution. )e imbalance of the sample distribution
causes the model prediction result to be biased; in other
words, the classification result is biased toward more
sample categories, and the result is misleading. )erefore,
we must adjust the generated sample data to alleviate the
imbalance and further improve the performance of the
model.

)is paper uses the GAN-based data augmentation
module FGAN, as shown in Figure 4. )e generative
adversarial network (GAN) is an adversarial network pro-
posed by Goodfellow [39] in 2014. )e network framework
consists of two parts, a generator and a discriminator. )e
generator tries to cheat the discriminator by constructing
false data. It accepts arbitrary noise pz(z) and generates false
data according to the noise, which is recorded as G(z). )e
discriminator tries to distinguish whether the data came
from a real sample or fake data constructed by a forger. )e
input parameter of the discriminator is x, which comes from
pdata(x). )e output D(x) of the discriminator represents
the probability that x is the real data. Both models improve
their abilities using continuous learning. In other words, the
generator hopes to generate more real fake data to cheat the
discriminator, and the discriminator hopes to learn how to
more accurately identify the fake data of the generator. )e
objective function v of FGAN is as follows:

min
G

max
D

V(D, G) � Ex∼pdata(x)[log D(x)]

+ Ez∼pz(z)[log(1 − D(G(v)))].
(1)

)e basic flow of the network is as follows:

(i) Initialize parameter θd of discriminator D and
parameter θgof generator G.
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Figure 1: An overview of the CBBI framework.
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(ii) Firstly, n sample data x1, x2, . . . , xn􏼈 􏼉 are obtained
from the real samples. )en, n noise samples
z1, z2, . . . , zn􏼈 􏼉 are sampled from the prior distri-
bution noise. Secondly, n samples 􏽥x1, 􏽥x2, . . . , 􏽥xn􏼈 􏼉

are produced using the generator. Finally, the
generator G is fixed, and the discriminator D is
trained to identify the real data from the generated
data as accurately as possible.

(iii) After updating the discriminator for k epochs, the
parameters of the generator are updated once with a
small learning rate, and the generator is trained to
reduce the gap between the generated data and the
real data as much as possible.

(iv) After many iterations of updates, the final ideal is for
the discriminator to be unable to tell whether the
sample comes from the output of the generator or
the real output.

)is paper designs the generator and discriminator in
FGAN based on the fully connected network. Detailed in-
formation will be in Section 4.3.

3.3. Training Conv-BiLSTM for IoT Device Classification.
In this section, we build a deep learning model Conv-BiLSTM
for identifying the IoT devices. )is model is different from
the traditional classification methods based on manually
extracted features and statistical features. Firstly, the model
can simultaneously learn the spatial and temporal features of
the device traffic, which improves the accuracy of device
identification. In addition, the traditional device identification
method based on manual design and statistical features has
some limitations. When these features are designed and se-
lected artificially, the inherent features in the original com-
munication flow of the device are changed, and some
potential features are ignored. )ese potential features can
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help to improve the recognition accuracy and generalization
ability of the model. In addition, artificially designed features
might not fully represent the high-level semantics of the
network traffic, and models trained based on these features
cannot learn these high-level semantics. )e Conv-BiLSTM
network model can learn highly semantic features from the
original communication traffic generated by the device.

)e CNN [40] is widely used in the field of image
classification because of its influential spatial feature
learning ability. )e CNN has a convolutional layer, pooling
layer, and fully connected layer. )e main function of the
convolutional layer is to extract features. )e pooling layer
implements data subsampling without destroying the clas-
sification results in terms of reducing the dimensionality of
the features, compressing the data, and avoiding the over-
fitting of parameters. )e convolutional layer and the
pooling layer play the role of mapping the original data to
the hidden layer feature space. )e fully connected layer is a
fully connected neural network. )e weight parameters are
adjusted by weighing the proportion of each neuron’s
feedback. )e model also uses dropout to avoid overfitting.

LSTM is a special recurrent neural network (RNN) [41].
)e difference between LSTM and the standard recurrent
neural network is that the LSTM overcomes the problems of

gradient explosion and gradient disappearance by intro-
ducing memory units and gate mechanisms, and it performs
well in extracting the long-term dependence in the sequence
data. )e LSTM architecture is composed of an input gate,
forget gate, output gate, storage unit, hidden state, and so on.
)e specific calculation process of the input gate, output
gate, and forget gate is as follows.

3.3.1. Forget Gate. ft is called the forget gate, which indi-
cates that some features of ct−1 are used to calculate ct. ft is
obtained by a logical function to calculate the input xt and
the last hidden layer value ht−1. )e value of the forget
parameter is between 0 and 1, which controls how much
information is retained from ct−1 to ct. Here, 1 means to
retain the information completely, whereas 0 means to
discard the information entirely.

ft � σ Wf · ht−1, xt􏼂 􏼃 + bf􏼐 􏼑. (2)

3.3.2. Input Gate. )e input gate decides what new infor-
mation to store in the “cell state.” )e sigmoid layer decides
what value is to be updated. )e tanh layer creates a new

Input: raw network traffic pcap files
Output: Samples_Data
Samples Data⟵∅
Use SplitCap tool to convert raw pcap files into Flows with the same 5-tuple
information, F1, F2, . . ., Fm, m represents the last Flow in raw pcap

(1) for each Fi do
(2) Packets Number←Len(Fi), Flow Feature⟵∅
(3) if Packets Number> � 10 then
(4) Packets Sequence⟵ Get the top 10 packets in Fi

(5) for each P in Packets Sequence do
(6) if length(P)> � 250 bytes then
(7) Packet Feature⟵ Get the first 250 bytes in P

(8) else
(9) Packet Feature⟵ Get all bytes in P + ″0″∗ (250 − length(P))

(10) Set the MAC address field and IP address field in Packet Feature to 0
(11) Flow Feature←Flow Feature∪Packet Feature
(12) end for
(13) else
(14) Packets Sequence⟵ Get all packets in Fi

(15) for each P in Packets Sequence do
(16) if length(P)> � 250 bytes then
(17) Packet Feature⟵ Get the first 250 bytes in P

(18) else
(19) Packet Feature⟵ Get all bytes in P + ″0″∗ (250 − length(P))

(20) Set the MAC address field and IP address field in Packet Feature to 0
(21) Flow Feature⟵Flow Feature∪Packet Feature
(22) end for
(23) for j � 1; j< � 10 − Packets Number; j + + do
(24) Flow Feature⟵Flow Feature∪ (″0″∗ 250)

(25) Samples Data.append(Flow Feature)
(26) end for
(27) Return Samples Data

ALGORITHM 1: )e algorithm for data preprocessing.
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candidate value vector 􏽥ct, and it determines the part of the
information to be updated. When updating ct−1 to 􏽥ct, we
must multiply the old state with ft, discard the information
that needs to be discarded, and add it ∗􏽥ct.

it � σ Wi · ht−1, xt􏼂 􏼃 + bi( 􏼁,

􏽥ct � tan h Wc · ht−1, xt􏼂 􏼃 + bc( 􏼁,

ct � ft ∗ ct−1 + it ∗􏽥ct.

(3)

3.3.3. Output Gate. ht can be considered the last output at
the current moment. ht−1 is the output at t − 1. ot is a
probability vector that is used to determine which part is the
output. Firstly, we run a sigmoid layer to determine which
part of the cell state is to be the output. )en, tanh is used to
process the cell state (obtaining a value between −1 and 1).
Finally, this value is multiplied with the output of the sig-
moid gate to obtain the output.

ot � σ Wo ht−1, xt􏼂 􏼃 + bo( 􏼁,

ht � ot ∗ tan h ct( 􏼁.
(4)

Unlike other types of deep neural networks, LSTM
shares weights at all time steps, which reduces the number of
parameters that the network must learn. )e BiLSTM [42] is
composed of two LSTMs: one LSTM is the input forward,
whereas the other LSTM is the output backward. BiLSTM
effectively increases the amount of information available to
the network and improves the context available for the al-
gorithm. BiLSTM can not only address gradient disap-
pearance and gradient explosion, as in the LSTM, but also
learn more context information from the network.

)e Conv-BiLSTM network model structure is shown in
Figure 5.

)e convolutional neural network model used in this
paper is improved on the basis of the classical lenet-5 [43].
)e convolutional neural network constructed in this paper
has seven layers. More detailed network structure infor-
mation is provided in Section 4.3.)e training process of the
Conv-BiLSTM model is shown in Algorithm 2.

)e feature dimension of each sample after CNN is 1600.
We reshape the 1600-dimensional data into a 10∗160
format and input it into BiLSTM, where 10 represents the
number of time steps. )e vector dimension of each time
point is 160. )e BiLSTM consists of two layers, each with
512 hidden cells, and each layer uses the sigmoid function for
nonlinear operations. )e last layer of the BiLSTM network
adopts the fully connected layer, and the number of neurons
in the fully connected layer is equal to the number of IoT
devices. Softmax is used as the activation function, which
maps the output of multiple neurons to (0, 1), and the sum of
each output is 1. )e type with the largest probability value
can be selected for multiple classifications.

4. Evaluation Setup

4.1. Computing Platform Configurations. We use Keras [44]
as the neural network framework to construct the Conv-
BiLSTM model. )e detailed configuration information is
shown in Table 2.

4.2. Dataset Description. )e UNSW dataset is the traffic data
generated by the IoTdevices in twoweeks.)edataset contains a
total of 22 IoTdevices. Some of these devices generate very little
communication traffic. For example,Withings_Smart_Scale and
Blipcare_Blood_Pressure_meter generated 8 and 13 sample
data, respectively, after data preprocessing. In the experimental
part, we selected 18 IoTdevices with relatively large sample sizes.

Pdata (x)

Real Data

Real Sample

. . .

. . .

. . .

. . .

G(z)
Generator

Fake Sample
D(x)

Discriminator

. . .
. . .

. . .

. . .

. . .

Real

Fake

Fine Tune Training

Fine Tune Training

pz(z)
Random

Noise

Figure 4: )e framework of FGAN.
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We built an IoT device traffic collection platform in the
laboratory environment. We collected the two-week com-
munication traffic of 23 IoT devices, covering a variety of
device types and device brands, including 360, Amazon,
Hikvision, Huawei, TP-Link, Xiaomi, and other common
IoT device manufacturers. )e device types include smart
cameras, smart speakers, smart gateways, smart doorbells,
and so on. Also, there are IoTdevices of the same brand and
type, but of different models, such as the two cameras
Hikvision_DS-IPC-E22H-IW andHikvision_DS-IPC-S12P-
IWT from Hikvision and the three smart cameras
TP_Link_Camera_IPC42A-4, TP_Link_Camera_IPC43A
N-4,and TP_Link_Camera_IPC64C-4 from TP-Link. )e

data traffic generated by 23 IoT devices was processed to
generate a total of 636,789 sample data. Detailed information
on the UNSW dataset and the laboratory dataset is shown in
Table 3.

As shown in Table 3, the number of samples of cameras
in the two datasets is relatively vast. )e traffic data
generated by some cameras in the laboratory dataset is not
very large, such as D-Link-DSH-C310, Hikvision_DS-
IPC-E22H-IW, and Hikvision_DS-IPC-S12P-IWT. We
checked the settings of these devices and found that they
adopted the “Standard Definition” video recording
method rather than the “High Definition” or “Super
Definition” as the other cameras did. Some cameras also

Input data

Convolutional 2D

M
axPooling2D

Convolutional 2D

M
axPooling2D

Flatten

CNN Model

Full-Connected Layer

D
ropout Layer

BiLSTM
 Layer

BiLSTM
 Layer

D
ropout Layer

Full-Connected Layer

A
ctivation Layer (so�m

ax)

BiLSTM Model

Classification Result

D
ropout Layer

Figure 5: )e architecture of Conv-BiLSTM.

Input:
Samples Data composed of network flows, the dimension of each network flow is 2500.
{Epoch, Batchsize, dropout, Loss function} represent some of the parameters during model training.

Output:
)e categories of Samples Data

(1) for each epoch in (1, Epoch) do
(2) for each Batchsize data of the Samples Data do
(3) for each Sample Data in batch do
(4) Reshape Sample Data to 50 ∗ 50 form
(5) Compute convolution with 6 filters
(6) Compute the result through Relu
(7) Max Pooling
(8) Compute convolution with 16 filters
(9) Compute the result through Relu
(10) Max Pooling
(11) Flatten the data
(12) Run through a densely connected layer
(13) Dropout
(14) Reshape output data as 10 ∗ 160
(15) Run through the 2-layered BiLSTM with dropout
(16) Run through a densely connected layer
(17) Output the result referring Loss function
(18) Update the parameters of weight and bias
(19) end for
(20) end for
(21) end for

ALGORITHM 2: Training process of the Conv-BiLSTM model.
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enabled face recognition, automatic tracking, and other
modes, and hence, the communication traffic generated
was enormous.

4.3. Parameter Settings. )is section provides detailed in-
formation about the FGAN and Conv-BiLSTM network
structures used in the experiment. Both generator and
discriminator in FGAN are implemented based on a mul-
tilayer perceptron (MLP). )e specific information is shown
in Tables 4 and 5. )e input of the generator is a 100-di-
mensional Gaussian noise vector, and the hidden layer
contains 256, 512, 1024, and 2500 neurons. )e input of the
discriminator contains both real data and generated data,
and its dimension is 2500. )e LeakyReLU activation
function, dropout, and BatchNormalization are used in
FGAN to optimize the model.

Detailed information on Conv-BiLSTM is shown in
Table 6, including the structural parameters of each layer of
the network, the optimizer, loss function, and other
hyperparameters.

4.4. EvaluationMetrics. To evaluate the performance of the
neural network model, this paper selects four perfor-
mance metrics: the recall, precision, accuracy, and F1-
score:

recall �
TP

TP + FN
,

precision �
TP

TP + FP
,

accuracy �
TP + TN

TP + FP + FN + TN
,

F1 − score �
2TP

2TP + FP + FN
,

(5)

where TP, TN, FP, and FNdenote the true positives, true
negatives, false positives, and false negatives, respectively.

5. Experimental Results and Analyses

5.1. Ablation Study. To verify the effectiveness and ratio-
nality of the data augmentation module FGAN in CBBI, we
performed the corresponding experiments on the UNSW

dataset and the laboratory dataset. We used the precision,
recall, and F1-score to evaluate the results of the experiment.
Tables 7 and 8 show the experimental results on CBBI,
including FGAN, on the UNSW dataset and the laboratory
dataset, respectively. From the two tables, it can be seen that
FGAN in CBBI has well alleviated the problem that the
classification results of a small number of samples are biased
toward large sample classes due to data imbalance.)e small
sample classes iHome, Nest_Dropcam, NEST_Pro-
cet_Smoke_Alarm, and Triby_Speaker in the UNSW dataset
and D-Link-DSH-C310, Huawei_Smart_Scale, Hua-
wei_Smart_Scale, Xiaomi_Air_Purifier, and Xiaomi_Hub in
the laboratory dataset have significantly improved the
performance after using FGAN. )e performance of other
categories has also been improved to varying degrees as the
samples become more balanced. )e data augmentation
FGAN module in CBBI realizes the relative balance of the
sample and further improves the classification accuracy of
the model.

5.2. Misclassification Analysis. To analyze the misclassifi-
cation of the CBBI model in the two datasets, we give the
confusion matrixes of the experimental results in the two
datasets, as shown in Figure 6. )e classification accuracy of
most of the devices in the UNSW dataset is close to 100%.
)e accuracy of Nest_Dropcam is 96%, and 4% of its data
samples are identified as Netatmo_Welcome. )ese two
devices are products of two different device manufacturers,
however, both belong to the smart camera type, and there are
certain similarities in the traffic model.

)e accuracy of CBBI in the laboratory dataset reached
97.26%, which is not as high as that in the UNSW public
dataset. We can determine the following reasons by ana-
lyzing the experimental data and the results: (1) the labo-
ratory dataset contains more IoT devices than the UNSW
dataset, which increases the difficulty of multiclassification
of the model; (2) the number of samples generated by the
devices in the laboratory dataset is more unbalanced, which
affects the fitting effect of the model; (3) there are more
devices from the same manufacturer and type in the labo-
ratory dataset, and there are more similarities between the
devices; the confusion matrix shows that IoT devices of the
same device manufacturer and type are prone to misclas-
sification between one another. Hikvision_DS-IPC-E22H-
IW and Hikvision_DS-IPC-S12P-IWT from Hikvision,
Ezviz_Camera_CS-C6CN and Ezviz_Door_CS-DB2C from
Ezviz, as well as four devices from TP-Link, have all been
misclassified to varying degrees. )e worst classification
effect in the laboratory dataset is TP_Link_WDA6332RE
and Xiaomi_Air_Purifier. )e sample size of these two
devices is extremely small, and FGAN has improved the
classification accuracy of these two devices to a certain
extent.

5.3. Visualization of Spatial and Temporal Features. In this
section, we input the spatial and temporal feature vectors
learned by CBBI from the UNSW dataset and laboratory
dataset into the t-SNE algorithm before applying softmax

Table 2: Experiment settings.

Category Parameter
Operating system Ubuntu 16.04 LTS OS

CPU Intel(R) Xeon(R) Bronze 3106 CPU@
1.70GZ

Deep learning
platform Keras

Deep learning
backend TensorFlow-gpu 2.2.0

GPU version NVIDIA GP104GL(Quadro P4000)
CUDA version 10.1.243
CuDNN version 7.6.5
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classification to achieve dimension-reduction visualization.
)e dimensions of each sample input to the t-SNE algorithm
in the UNSW dataset and the laboratory dataset are 18 and
23, respectively, which are consistent with the number of IoT
devices in the two datasets. )e visualized effect of the di-
mensionality reduction result is shown in Figure 7. In the
laboratory dataset, some devices are not highly distin-
guished, especially for several devices with the same man-
ufacturer and type. )e visualization results of these two
datasets are consistent with the aforementioned experi-
mental results. )e clustering effect of the two datasets is
excellent, and the separation distance among the different
categories is relatively obvious. In general, CBBI can learn
representative spatial and temporal characteristics from
device communication traffic, which can be used as the basis
for device identification.

5.4. Comparison Results. )e classification accuracy of CBBI
on the UNSW dataset is 99.83%, which achieves a similar effect
to UNSW [27]. )e detailed experimental results are shown in
Figure 8. As far as we know, UNSW [27] is currently the
highest accuracy rate for IoTdevice identification-related work,
reaching 99.88%.)e study in [27] used 6months of IoTdevice
communication traffic data. In addition, the author achieves
accurate identification of IoT devices based on manually
extracted features combined with a multistage device identi-
fication framework. )e UNWS dataset that we used contains
two weeks of traffic data, and thus, the communication traffic

Table 3: Description of the UNSW dataset and laboratory dataset.

UNSW dataset Laboratory dataset
No. Device name Sample number No. Device name Sample number
0 Amazon_Echo 73780 0 360_Camera 5950
1 Belkin_Wemo_Switch 17148 1 Amazon_Echo 9584
2 HP_Printer 2794 2 D-Link-DSH-C310 836
3 Insteon_Camera 216088 3 Hikvision_DS-IPC-E22H-IW 2082
4 Light_Bulbs_LiFX_Smart_Bulb 7226 4 Hikvision_DS-IPC-S12P-IWT 2149
5 Netatmo_Weather_Station 4703 5 Ezviz_Camera_CS-C6CN 65366
6 Netatmo_Welcome 16000 6 Ezviz_Door_CS-DB2C 88273
7 PIX_STAR_Photo_Frame 12311 7 Huawei_Camera_HQ5 35742
8 Samsung_SmartCam 61815 8 Huawei_Speaker 50183
9 Smart_)ings 10367 9 Huawei_Smart_Scale 378
10 TP_Link_Day_Night_Cloud_Camera 4954 10 Imou-Camera_TP1-2525 19534
11 TP_Link_Smart_Plug 2586 11 Imou-Camera_TP7C-E152 15110
12 Withings_Aura_Smart_Sleep_Sensor 13963 12 Philips_Hue 103687
13 Withings_Smart_Baby_Monitor 20229 13 TP_Link_Camera_IPC42A-4 79354
14 iHome 346 14 TP_Link_Camera_IPC43AN-4 61061
15 Nest_Dropcam 154 15 TP_Link_Camera_IPC64C-4 61815
16 Nest_Procet_Smoke_Alarm 221 16 TP_Link_WDA6332RE 221
17 Triby_Speaker 669 17 Xiaomi_Air_Purifier 133
— — — 18 Xiaomi_Camera_MJSXJ06CM 22120
— — — 19 Xiaomi_Door_LSC_M01 4203
— — — 20 Xiaomi_Hub 242
— — — 21 Xiaomi_Humidifier 1414
— — — 22 Xiaomi_Soundbox 7352
Total 465354 Total 636789

Table 4: )e structure of the generator.

Layer Output shape
Dense_1(Dense) (None, 256)
LeakyReLU (None, 256)
BatchNormalization (None, 256)
Dense_2(Dense) (None, 512)
LeakyReLU (None, 512)
BatchNormalization (None, 512)
Dense_3(Dense) (None, 1024)
LeakyReLU (None, 1024)
BatchNormalization (None, 1024)
Dense_4(Dense) (None, 2500)
LeakyReLU (None, 2500)

Table 5: )e structure of the discriminator.

Layer Output shape
Dense_1(Dense) (None, 2500)
LeakyReLU (None, 2500)
Dropout (None, 2500)
Dense_2(Dense) (None, 1024)
LeakyReLU (None, 1024)
Dropout (None, 1024)
Dense_3(Dense) (None, 512)
LeakyReLU (None, 512)
Dropout (None, 512)
Dense_4(Dense) (None, 256)
LeakyReLU (None, 256)
Dropout (None, 256)
Dense_5(Dense) (None, 1)
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Table 6: )e structure of Conv-BiLSTM.

Hyperparameters Value Activation function

Conv-BiLSTM

Conv2D #filters� 6, filter size� 5 ReLU
MaxPlooing2D #pool size� 2, padding� “valid” —

Conv2D #filters� 16, filter size� 5 ReLU
MaxPlooing2D #pool size� 2, padding� “valid” —

Flatten — —
Dense #neurons� 1600, dropout� 0.5 ReLU
BiLSTM #neurons� 512, dropout� 0.3 Sigmoid
BiLSTM #neurons� 512, dropout� 0.3 Sigmoid
Dense #neurons� 18/23 Softmax

Optimizer — #Adam with learning rate� 0.001 —
Loss function — #Categorical_crossentropy —
Batch size — #512 —
Epochs — #50 —

Table 7: Results of the ablation study on the UNSW dataset.

Method CBBI w/o FGAN CBBI
FGAN 7 ✓
Conv-BiLSTM ✓ ✓
Device name Precision Recall F-score Precision Recall F-score
Amazon_Echo 0.9878 0.9932 0.9905 0.9983 0.9988 0.9985
Belkin_Wemo_Switch 0.9932 0.9929 0.9931 0.9982 0.9988 0.9985
HP_Printer 0.9056 0.9646 0.9342 0.9908 0.9981 0.9944
Insteon_Camera 0.9931 0.9981 0.9956 0.9994 0.9994 0.9994
Light_Bulbs_LiFX_Smart_Bulb 0.9825 0.9825 0.9825 0.9979 0.9965 0.9972
Netatmo_Weather_Station 0.9865 0.9963 0.9914 0.9988 1.0000 0.9994
Netatmo_Welcome 0.9181 0.9533 0.9354 0.9937 0.9956 0.9947
PIX_STAR_Photo_Frame 0.9926 0.9887 0.9907 0.9990 0.9951 0.9971
Samsung_SmartCam 0.9978 0.9922 0.9950 0.9992 0.9989 0.9991
Smart_)ings 0.9956 0.9888 0.9922 0.9985 0.9980 0.9983
TP_Link_Day_Night_Cloud_Camera 0.9898 0.9563 0.9728 0.9892 0.9989 0.9940
TP_Link_Smart_Plug 0.8638 0.8675 0.8657 0.9804 0.9615 0.9709
Withings_Aura_Smart_Sleep_Sensor 0.9929 0.9793 0.9861 0.9989 0.9985 0.9987
Withings_Smart_Baby_Monitor 0.9823 0.9961 0.9891 0.9997 0.9997 0.9997
iHome 1.0000 0.6833 0.8119 1.0000 1.0000 1.0000
Nest_Dropcam 0.3193 0.4371 0.3980 1.0000 0.9600 0.9796
NEST_Procet_Smoke_Alarm 1.0000 0.7317 0.8451 1.0000 1.0000 1.0000
Triby_Speaker 0.8841 0.4552 0.6010 0.9817 0.9469 0.9640
Macro average performance 0.9325 0.8865 0.9039 0.9958 0.9914 0.9935
Total accuracy 0.9865 0.9983

Table 8: Results of the ablation study on the laboratory dataset.

Method CBBI w/o FGAN CBBI
FGAN 7 ✓
Conv-BiLSTM ✓ ✓
Device name Precision Recall F-score Precision Recall F-score
360_Camera 0.9504 0.9017 0.9254 0.9697 0.9566 0.9631
Amazon_Echo 0.9023 0.9395 0.9205 0.9435 0.9764 0.9597
D-Link-DSH-C310 0.8882 0.8988 0.8935 1.0000 1.0000 1.0000
Hikvision_DS-IPC-E22H-IW 0.9526 0.9161 0.9340 0.9902 0.9731 0.9816
Hikvision_DS-IPC-S12P-IWT 0.9255 0.9535 0.9393 0.9753 0.9907 0.9829
Ezviz_Camera_CS-C6CN 0.9251 0.9382 0.9316 0.9676 0.9264 0.9465
Ezviz_Door_CS-DB2C 0.9289 0.9596 0.9440 0.9300 0.9856 0.9570
Huawei_Camera_HQ5 0.9966 0.9968 0.9967 0.9988 0.9992 0.9990
Huawei_Speaker 0.9982 0.9936 0.9959 0.9991 0.9978 0.9985
Huawei_Smart_Scale 0.7975 0.8289 0.8129 0.9663 0.9101 0.9373
Imou-Camera_TP1-2525 0.9979 0.9962 0.9971 0.9986 0.9977 0.9982
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Table 8: Continued.

Method CBBI w/o FGAN CBBI
Imou-Camera_TP7C-E152 0.9894 0.9894 0.9894 0.9977 0.9932 0.9955
Philips_Hue 0.9504 0.9165 0.9332 0.9606 0.9379 0.9491
TP_Link_Camera_IPC42A-4 0.9638 0.9499 0.9568 0.9806 0.9836 0.9821
TP_Link_Camera_IPC43AN-4 0.9581 0.9492 0.9536 0.9881 0.9731 0.9805
TP_Link_Camera_IPC64C-4 0.8520 0.9287 0.8887 0.9360 0.9682 0.9518
TP_Link_WDA6332RE 0.6364 0.4667 0.5385 0.7815 0.8378 0.8087
Xiaomi_Air_Purifier 0.6923 0.3333 0.4500 0.8676 0.8806 0.8741
Xiaomi_Camera_MJSXJ06CM 0.9919 0.9923 0.9921 0.9986 0.9979 0.9983
Xiaomi_Door_LSC_M01 0.9905 0.9881 0.9893 0.9952 0.9967 0.9960
Xiaomi_Hub 0.6857 0.4898 0.5714 0.9975 0.9988 0.9982
Xiaomi_Humidifier 0.8881 0.8975 0.8928 0.9730 0.9689 0.9709
Xiaomi_Soundbox 0.9135 0.9041 0.9088 0.9814 0.9483 0.9646
Macro average performance 0.9033 0.8752 0.8850 0.9651 0.9652 0.9649
Total accuracy 0.9524 0.9726
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Figure 6: )e confusion matrix of the two datasets. (a) )e confusion matrix of the UNSW dataset. (b) )e confusion matrix of the
laboratory dataset.
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Figure 7: Visualization of the final fully connected layer based on t-SNE. (a) Visualization of the UNSW dataset. (b) Visualization of the
laboratory dataset.
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generated was relatively small, especially for several devices
such as Nest_Dropcam, NEST_Procet_Smoke_Alarm, and
Triby_Speaker. Our method achieves an accuracy rate similar
to that of UNSW [27]. Additionally, CBBI does not need to
manually extract features, which increases the timeliness of the
device recognition.

We have implemented more comparative experi-
ments, including CNN, FGAN +CNN, BiLSTM,
FGAN + BiLSTM, CNN+ BiLSTM, and CBBI. )e de-
tailed experimental results are shown in Table 9. Each
method gives the accuracy, precision, recall, and F1-score
values. We can conclude that FGAN and the simultaneous

learning of temporal and spatial features can effectively
improve the identification accuracy.

In summary, various experimental results show that
our method can effectively and accurately identify the
IoT devices. Compared with traditional manual feature
extraction methods, this method can not only auto-
matically learn the representative features of devices but
also has good classification capabilities. On the other
hand, the experimental results on the two datasets also
show the effectiveness and flexibility of CBBI, which can
address the complex and changeable IoT device
environment.

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

100.00

A
cc

ur
ac

y 
(%

)

Tr
ib

y_
Sp

ea
ke

r

N
ES

T_
Pr

oc
et

_S
m

ok
e_

A
la

rm

N
es

t_
D

ro
pc

am

iH
om

e

W
ith

in
gs

_S
m

ar
t_

Ba
by

_M
on

ito
r

W
ith

in
gs

_A
ur

a_
Sm

ar
t_

Sl
ee

p_
Se

ns
or

TP
_L

in
k_

Sm
ar

t_
Pl

ug

TP
_L

in
k_

D
ay

_N
ig

ht
_C

lo
ud

_C
am

er
a

Sm
ar

t_
�

in
gs

Sa
m

su
ng

_S
m

ar
tC

am

PI
X_

ST
A

R_
Ph

ot
o_

Fr
am

e

N
et

at
m

o_
W

el
co

m
e

N
et

at
m

o_
W

ea
th

er
_S

ta
tio

n

Li
gh

t_
Bu

lb
s_

Li
FX

_S
m

ar
t_

Bu
lb

In
ste

on
_C

am
er

a

H
P_

Pr
in

te
r

Be
lk

in
_W

em
o_

Sw
itc

h

A
m

az
on

_E
ch

o

Device name

UNSW

CBBI

Figure 8: Comparison with related work on the UNSW dataset.

Table 9: Performance comparison of different model combinations.

Method Accuracy Precision Recall F1-score

CNN UNSW dataset 0.9464 0.8919 0.8858 0.8872
Laboratory dataset 0.9302 0.9026 0.8774 0.8877

FGAN+CNN UNSW dataset 0.9517 0.8990 0.8963 0.8950
Laboratory dataset 0.9463 0.9081 0.8925 0.8989

BiLSTM UNSW dataset 0.9465 0.8897 0.8800 0.8812
Laboratory dataset 0.9382 0.8875 0.8581 0.8664

FGAN+BiLSTM UNSW dataset 0.9541 0.9059 0.8882 0.8906
Laboratory dataset 0.9478 0.8900 0.8671 0.8754

CNN+BiLSTM UNSW dataset 0.9865 0.9325 0.8865 0.9039
Laboratory dataset 0.9524 0.9033 0.8752 0.8850

FGAN+CNN+BiLSTM (CBBI) UNSW dataset 0.9983 0.9958 0.9914 0.9935
Laboratory dataset 0.9726 0.9651 0.9652 0.9649
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6. Conclusions and Future Work

In this paper, we propose an IoT identificationmethod called
CBBI. )is method uses the spatial and temporal features of
the original network traffic generated by the IoT devices,
which avoids the overhead and cumbersomeness of feature
extraction in the traditional methods and reduces the
complexity of the IoT device identification task. CBBI has
three modules: data preprocessing, data augmentation
FGAN, and Conv-BiLSTM. )e main task of the data
preprocessing module is to quickly process the raw network
traffic generated by the IoT device and convert it into input
that can be used in a deep learning model. )e data aug-
mentation module FGAN solves the problem of class im-
balance in deep learning and further improves the accuracy
and generalization ability of the model. )e hybrid deep
learning model Conv-BiLSTM can learn the spatial and
temporal characteristics of the device communication traffic.
In this paper, we use a public dataset and a laboratory dataset
to verify the effectiveness of CBBI. )e experimental results
show that CBBI has good classification performance, even
for some IoT devices from the same equipment manufac-
turers. In our future work, we will consider a combination of
active and passive IoT device identification schemes to re-
alize the identification of unknown IoT devices. [45].
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