
Research Article
NSGA-II-Based Granularity-Adaptive Control-Flow Attestation

Jing Zhan ,1,2 Yongzhen Li ,1,2 Yifan Liu ,1,2 Hongchao Li ,1,2 Shuai Zhang ,1,2

and Li Lin 1,2

1School of Computer Science, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
2Beijing Key Laboratory of Trusted Computing, Beijing 100124, China

Correspondence should be addressed to Jing Zhan; zhanjing@bjut.edu.cn, Yongzhen Li; liyongzhen97@163.com, and Li Lin;
linli_2009@bjut.edu.cn

Received 17 September 2021; Accepted 27 October 2021; Published 18 November 2021

Academic Editor: Chunhua Su

Copyright © 2021 Jing Zhan et al. .is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Since the widespread adoption of edge computing and IoT technology, Control-Flow Hijacking (CFH) attacks targeting programs
in resource-constrained embedded devices have become prevalent. While the Coarse-Grained Control-Flow integrity Attestation
(CGCFA) lacks accuracy for the CFH attacks detection, the Fine-Grained Control-Flow integrity Attestation (FGCFA) detect the
attacks more accurately but with high overheads, which can be a big burden (e.g., to industrial control system with strict
performance requirements). In this paper, we propose a NSGA-II (Nondominated Sorting Genetic Algorithm-II) based
Granularity-Adaptive Control-Flow Attestation (GACFA) for the programs in embedded devices. Specifically, we propose a
Granularity-Adaptive Control-Flow representation model to reduce the complexity of programs’ control-flow graph and propose
NSGA-II-based granularity-adaptive strategy generation algorithm to balance the security and performance requirements.
Besides, runtime protection for the GACFA at the program end with SGX is proposed to protect the integrity and confidentiality
of control-flow measurement data. .e experiments show that our work can find out the best-so-far control-flow granularity with
stability and provide secure program attestation for the verifier. In addition, the security/performance benefit of adopting our
proposal over CGCFA is 13.7, 25.1, and 43.0 times that of adopting FGCFA over ours in different threat scenarios.

1. Introduction

With the rapid development of edge computing and IoT
technology, more and more embedded devices are con-
nected together and reach people’s daily works and lives,
which brings us both convenience and security concerns.
For example, the connection between the industrial control
system which contains lots of resource-constrained em-
bedded devices and the corporate intranet or the Internet
has increased the attack surface, leading to more remote
attacks [1]. In recent years, Control-Flow Hijacking (CFH)
attacks, which can directly tamper with the behaviour of
programs running in the memory, make it a challenge to
ensure the security of programs of embedded devices.

Remote attestation is a method of verifying the integrity
of the software on a remote device. At the end of the at-
testation, the verifier obtains a report signed by a security
chip (e.g., Trusted Platform Module, TPM) inside the device

from the prover on whether the hardware and software
codes’ hashes to be executed meet the verifier’s expectations.
Later, the research on memory verification and attestation of
the hosts [2] and embedded devices [3] is proposed too.
However, these memory verification and attestation works
can only verify the integrity of the whole memory chuck but
cannot find out whether the control flow of specific program
running in the memory is hijacked.

In recent years, practical control-flow integrity research
has been proposed to ensure runtime program integrity by
comparing whether the destination address of the jump
instruction is in the branch target sets recorded by pre-
analysis [4]. However, the method of comparing address and
target sets can only find out the attacks tampering with the
control data (the called function pointer, the address pointed
to by the jump instruction inside the function, etc.) but
cannot detect the hijacking attack on the program control
flow by tampering with the noncontrol data (such as branch

Hindawi
Security and Communication Networks
Volume 2021, Article ID 2914192, 16 pages
https://doi.org/10.1155/2021/2914192

mailto:zhanjing@bjut.edu.cn
mailto:liyongzhen97@163.com
mailto:linli_2009@bjut.edu.cn
https://orcid.org/0000-0002-3875-6052
https://orcid.org/0000-0002-5311-367X
https://orcid.org/0000-0003-0052-3824
https://orcid.org/0000-0002-0077-1345
https://orcid.org/0000-0003-4533-3063
https://orcid.org/0000-0002-3097-4995
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/2914192


and loop variable value) inside the function [5]. Later, the
fine-grained control-flow integrity measurement and at-
testation [6, 7] are proposed to verify runtime program
control flow more accurately, since it obtains more context
information in the granularity of basic block, but with in-
creased overheads, which is not efficient for providing real-
time and reliable services in mission critical systems, for
example, industrial control system.

In order to balance the security and efficiency of CFH
attacks detection in a resource-constrained embedded envi-
ronment, this paper proposes NSGA-II (Nondominated
Sorting Genetic Algorithm-II) based Granularity-Adaptive
Control-Flow Attestation (GACFA), which take functions and
basic blocks as different control-flow monitoring granularities.
.rough genetic algorithm NSGA-II, basic block-level fine-
grained control-flow monitoring is performed on core func-
tions that have a greater impact on program security, and
function-level control-flow monitoring is performed on a
noncore function. In this way, the verifier can verify in runtime
whether the program has suffered CFH attacks with balanced
security and overhead costs.

.e contributions of this paper are as follows:

(1) A Granularity-Adaptive Control-Flow representa-
tion model for CFH detection is proposed, in which
the granularity of function and basic block and
virtual nodes are introduced to reduce the com-
plexity of programs’ control-flow graph and to
mitigate verification path explosion problem.

(2) A NSGA-II-based granularity-adaptive strategy
generation method on multiobjective optimization
algorithm is proposed, which combines low-over-
head and high control-flow security as the optimi-
zation goal. With this method, the optimal
granularity division strategy is generated, achieving
the balance between CFH detection accuracy (e.g.,
the security goal) and detection overheads (e.g., the
performance goal).

(3) .e Granularity-Adaptive Control-Flow Attestation
protected by the SGX technology is also proposed to
protect the integrity and confidentiality of control-
flow measurement data on the program-end
environment.

(4) We also implement a proof of concept system of
GACFA. .e experiments show that our work can
find the best-so-far control-flow granularity with
stability and provide secure program attestation for
the verifier. .e security/performance benefit of
adopting our proposal over CGCFA is 13.7, 25.1, and
43.0 times that of adopting FGCFA over ours in
different threat scenarios.

2. Related Works

Research on program verification and attestation at the
control-flow level is mainly in two fields, including Control-
Flow Integrity (CFI) detection/prevention and Control-Flow
integrity Attestation (CFA).

.e CFI detection/prevention is proposed to detect/
prevent the hijacking on program control flow by checking it
with the original control-flow graph (CFG) or predefined
control-flow policy (e.g., matching set of targets for each
indirect control transfer). .e GRIFFIN [8] provided online
CFI enforcement over unmodified binaries by checking
captured control flows with predefined control-flow policies
with the aid of the hardware. CFI based on a Lightweight
Encryption Architecture with Advanced Encryption Stan-
dard (LEA-AES) [9] was proposed to ensure its security
through encryption. Burow et al. [10] introduced and
compared a broad range of CFI mechanisms and discussed
them from the aspects of precision, security, and perfor-
mance. In order to improve the accuracy, lots of research was
proposed to use more context information of CFI detection.
Ding et al. [11] proposed a path-sensitive CFI scheme, which
used path-sensitive points at runtime to calculate the legal
control transfer target. .e value-based constraint CFI
(vCFI) [12] was proposed to improve the effectiveness of CFI
by monitoring and protecting control and noncontrol data
that may be manipulated for Control-Flow Hijacking. .e
Origin-Sensitive CFI (OS-CFI) [13] was proposed to im-
prove the security of CFI with new contextual information,
such as the last branches taken. Khandaker et al. [14] also
proposed Control-Flow Integrity with Backtracking (CFI-
LB) with adaptive call site sensitivity, which improves
program security. Jang et al. [15] proposed an Index-based
Bit Vector Control-Flow Integrity (IBV-CFI) scheme to
reflect the CFG with accuracy. All in all, the current CFI
schemes (including control-flow capture and integrity
verification) with more context information are costly and
thus expensive for resource-constrained embedded devices.

Remote attestation allows a resource-rich verifier to
obtain the program status of the prover with limited re-
sources, which can reduce the CFI verification overhead for
embedded devices. .e traditional remote attestation
schemes are mostly static or coarse, which can only guar-
antee the integrity of the binary code before the program
runs or guarantee the security of the whole embedded de-
vices’ memory [3]. Later, C-FLAT (Control-Flow Attesta-
tion) [6] was proposed to the verifier with the proof of the
application’s control-flow path on the prover’s device using
ARM TrustZone hardware. .en, LO-FAT (Low-Overhead
Control-Flow Attestation) [16] was introduced as a hard-
ware version of C-FLAT with lower performance overhead.
A runtime remote attestation system ATRIUM [7] was also
proposed to attest both the code’s binary and its execution
behaviour to resist Time of Check Time of Use (TOCTOU)
attacks. In addition, ATRIUM provided the method to
protect codes’ control flow and CFG with the help of the
FPGA. Although the hardware-based CFA improves the
security of the attestation mechanism, it means extra
hardware support and costs.

.e SGX (Software Guard Extensions) is an instruction
set extension supported by Intel CPU since 2013 [17, 18]. .e
SGX can provide applications with a trusted execution en-
vironment for many scenarios now, such as secure cloud
computing [19] andmachine learning [20]. SGX is also widely
adopted for code and data confidentiality protection for

2 Security and Communication Networks



endpoint systems and devices with relatively cheap perfor-
mance costs compared to other customized secure hardware
because it is a Commercial Off-.e-Shelf (COTS) solution.
For example, Wang et al. [21] proposed security-enhanced
attestation between IoT terminals and devices with SGX-
protected attestation codes and keys with about additional 3%
time costs. SGX-Log [22] was proposed to protect the system
logging program and log data’s HMAC key using SGX en-
clave and sealing primitives with an overhead of 4.84% in log
generation and 6.29% in log reading.

3. Threat Model and Assumptions

.e existing CFH attacks can be categorized into two groups
of attacks, where one is attacks tampering control data and
the other is attacks tampering noncontrol data of program
control flows. Specifically speaking, the control data includes
the return address pointed to by the indirect jump in-
struction, function pointer, saved return address of func-
tions, and so on. Noncontrol data can be divided into control
flow-related variable data, such as branches and loop vari-
ables that affect program control flow, and pure data, such as
program variables that have nothing to do with control flow.
.is paper mainly studies control data and control flow-
related noncontrol data attacks detection and attestation.

We assume that, in a running program’s memory, the
code segment can be read and executed, while data and
stack/heap segment can only be read and written. .is
protection is already widely adopted and can ensure that
malicious code cannot be executed in the data and stack/
heap segment. Figure 1 shows four types of control-flow
attacks that the attackers may launch on a program that
diverts the original path of the program to an unexpected
one. .e control-flow graph on the right side represents the
control flow of the program running in the memory.

Attack 1 (branch variable attacks): this type of attack
achieves the purpose of the attack by tampering with the
variables that control the direction of the branch. .e attack
makes the program control flow going to a branch different
from the original one. For example, as the CFG in Figure 1
shows, the attacker tampers with the condition variable in
node 1, causing the control flow that should have jumped to
node 2 to jump to node 6, making the control flow to an
unexpected but legal path.

Attack 2 (loop variable attack): this attack tampers with
the loop variable to change the number of loops. For example,
the attackermay skip the loop of node 2 by changing the cyclic
variable that controls the number of program loops to 0.

Attack 3 (return address attack): this attack alters the
return address of functions to make the program control
flow to the wrong place. For example, after function calling,
node 3 should return to node 2, but if the return address is
tampered with, the program returns to node 5 instead.

Attack 4 (function pointer attack): this kind of attack
makes the program control flow go to the wrong direction by
tampering with the function pointer. For example, after the
execution of node 4, the program should call the function
going to node 5, but the attacker tampered with the calling
function pointer to cause the program to turn to node 7.

We also give the following three assumptions for our
method.

(1) GACFA detects attacks that affect program control
flow but does not detect pure data-driven attacks.
Because pure data attacks are related to specific
applications, they often need to be jointly considered
with other methods.

(2) Attackers cannot physically tamper with the pro-
gram code while the program is running. We assume
it is more difficult for the attackers to tamper with the
hardware device than with embedded software. In
some cases, embedded devices (e.g., industrial
control equipment) usually receive certain physical
protection and are difficult for an attacker to tamper
with physically.

(3) .e verifier has enough memory space to store the
control-flow information of the program to be
verified and thus can help ensure the integrity and
confidentiality of the verification process. It is as-
sumed that the verifier has more resources and thus
more security mechanisms (e.g., could be SGX) than
the embedded device to be verified.

4. System Architecture

.is paper proposes a Granularity-Adaptive Control-Flow
Attestation (GACFA) method based on NSGA-II [23]. In
this way, we extend the traditional static binary attestation
and the CFA at the control-flow level to the dynamic
runtime attestation with adaptive granularity. As shown in
Figure 2, our system architecture consists of two roles: the
verifier and the prover. .e verifier is responsible for offline
verification of the program to be verified, including a
granularity division module and a control-flow measure-
ment module. .e online attestation module is deployed
between the verifier and the prover. In addition, the prover is
also in charge of collecting control-flow information of the
program and prover-end control-flow measurements
calculation.

4.1. Granularity DivisionModule. We regard the function as
the high-level unit for program execution, and we mark
every function as the core function or noncore function
according to the importance of the function to the program.
.en, we perform basic block-level control-flow monitoring
for core functions and perform function-level control-flow
monitoring for noncore functions.

Definition 1 (core function). It refers to the function that has
a strong impact on the whole program. .e more the
function is called, the more important the function is to the
program, which implies it is easier to be exploited by an
attacker.

Definition 2 (noncore function). It refers to the function
that has less impact on the whole program.

Security and Communication Networks 3



Granularity division can be regarded as a combined
optimization problem, which integrates two goals, that is,
reducing overheads and improving control-flow security.
.e granularity division module includes three parts: input
generation, target optimization, and strategy selection.

(1) Input generation: the program A to be verified is
usually composed of multiple functions. Firstly, the
verifier obtains the function set F (A) contained in
program A with static analysis. .en the verifier
dynamically analyses the execution process of pro-
gram A under a specific input (or no input). For
function fi in F (A), count the number of times fi is
called, and the number of control-flow events con-
tained in fi. Here, the number of control-flow events
is the number of the basic blocks in the function. At
last, we take the number offi calls and the number of
control-flow events as the input of the NSGA-II
algorithm, where the number of function calls
represents the degree of the security impact of the

function on the entire program, and the number of
control-flow events represents the overhead.

(2) Target optimization: we use NSGA-II multiobjective
optimization method to evaluate the combined
target, which is composed of control-flow security
and overhead. After determining the control-flow
granularity of the program, its security benefits are
measured. And the overhead refers to the time re-
quired to authenticate the program’s control flow.

(3) Strategy selection: we select the optimal core func-
tion marking scheme according to the optimization
result, in order to perform fine-grained measure-
ment on core functions and coarse-grained mea-
surement on noncore functions later.

4.2. Control-Flow Measurement Module. .e control-flow
measurement module is responsible for calculating the
control-flow hash value of the program to be verified, which

attacker

noncontrol data

control data

code (rx)

1

2 6

7

43

5

data/stack/heap (rw)
control-flow graph

process memory

1)branch variable
2)loop variable

3)ret address
4)function pointer
and code pointer

tamper

tamper

Attack1

Attack2

Attack4
Attack3

normal path
unexpected path
program code block or function

Figure 1: .reat model.

getting the
number of

function calls

NSGA-II multi-
objective optimization

obtaining the
optimal

granularity
division plan

representing
control-flow

security
benefits

overhead
costs

getting the
control-flow

event within the
function

measuring
control-flow

database

running program

SGX Enclave

Control-flow
measurement

calculation

Prover
end

Verifier 

control-flow information

Granularity division module
Control-flow

measurement module

Prover

Verifier
end

Online attestation module

Figure 2: System architecture of GACFA.

4 Security and Communication Networks



is divided into control-flow representation, control-flow
measurement, and the measurement database.

(1) Control-flow representation: according to the divi-
sion results, we perform basic block-level instru-
mentation on the core function and function-level
instrumentation on the noncore function. .en, we
obtain the control-flow information that combines
the coarse and fine granularity of the program.

(2) Control-flow measurement: after control-flow rep-
resentation, we can get the granularity-adaptive CFG
of the program. .e type of the node in the CFG can
be function node, basic block node, and so on. .en,
we generate the expected measurement value along
the path of the CFG with accumulated hashing. .e
calculation formula is as follows:

H A1( 􏼁 � H H(0), A1( 􏼁 i � 1,

H Ai( 􏼁 � H H Ai−1( 􏼁, Ai( 􏼁 i> 1&& type Ai( 􏼁 � type Ai−1( 􏼁.
􏼨

(1)

Here, Ai is the node i in program’s CFG. H (0) is the
initial hash value, which is all zero. .ere are three
types of nodes, including function node, basic block
node, and virtual node, which is specified in Section
5. For each path in the CFG, the path is divided into
several parts when the node type changes. For a part
in the path, the hash value of the current node and
later node are taken as the inputs of the SHA-256
hash algorithm to get the accumulated hash value
until all nodes are processed.
As formula (2) shows, after every parts’ hash value is
calculated, all parts’ hash value can be accumulated
again in the way similar to formula (1), and the final
hash value of every path is the measurement of
current program control flow. In this way, if the final
hash value verification failed, we can find out which
part is wrong quickly:

H P1( 􏼁 � H H(0), P1( 􏼁 i � 1,

H Pi( 􏼁 � H H Pi−1( 􏼁, Pi( 􏼁 i> 1.
􏼨 (2)

(3) Database: it stores all the parts and paths (in the CFG
of the program to be attested) accumulated hash
value corresponding to program A in the mea-
surement database.

4.3. Online Attestation Module. .e online attestation
module contains the verifier-end and the prover-end. As the
prover obtains the program’s runtime control-flow infor-
mation, it generates and submits the signed control-flow
report to the verifier for runtime verification. At the prover-
end, Intel SGX provides a trusted execution environment for
the prover to calculate the final hash value on the program’s
execution path and ensures the integrity of the report. .e
remote attestation protocol is as shown in Figure 3 and the
following description.

Step 1: the verifier sends a challenge to the prover to
indicate the attestation request, including the id of the
program to be authenticated, the random number N,
and the input i of the program. Among them, the
random number is to ensure the freshness of the at-
testation result and prevent replay attacks.
Step 2: after receiving the attestation request from the
verifier, the prover initializes the attestationmechanism
and runs program A under input i. .e control flow of
the program is sent to the measurement module in the
SGX enclave with the help of the runtime tracing tool
(e.g., Intel Pin). .e obtained control-flow information
is calculated with formulas (1) and (2), and the final
hash value of program’s control flow and N are signed
by the private key sk of the enclave for attestation report
r generation.
Step 3: the prover sends signed r and the measurement
h to the verifier.
Step 4: the verifier uses the public key pk to verify the
signature after receiving the attestation report. If the
verification succeeds, the verifier continues to check
whether the control-flow measurement is consistent
with the expected value under input i stored in the
database. If the result is true, it means that program A
has not been attacked by Control-Flow Hijacking.

4.4. SGX Protected Control-Flow Measurement Module.
We use the SGX to create a trusted execution environment
for control-flow measurement calculation and the prover-
end attestation to protect the measurement calculation and
attestation report generation.

.e prover-end attestation module is already introduced
in Section 4.3. And the control-flow measurement calcu-
lation module gets control-flow information from the
running program and then calculates the hash value of the
program execution path.

5. Granularity-Adaptive Control-Flow
Representation Model

In order to perform Control-Flow Attestation, the verifier
asks the execution path of the program to be measured from
the prover’s device. Recording and transmitting each exe-
cuted instruction in the execution path is not feasible be-
cause it will lead to very long and nested paths requiring the
prover to be calculated and the verifier to traverse, which is
costly to attestation. To reduce the complexity of the pro-
gram’s control-flow graph and balance the overheads and
the security of Control-Flow Attestation, this paper proposes
a granularity-adaptive control flow representation model,
which provides basic block-level monitoring for core
functions and function-level monitoring for noncore
functions. .e specific definition of the model is introduced
below.

Definition 3. Directed graph of the control flow of a pro-
gram, denoted asG.G� 〈V, E, A〉..emodel of granularity-

Security and Communication Networks 5



adaptive control flow is a directed graph representing
program control-flow information, which is defined as a
triplet 〈V, E, A〉.

Definition 4. Vertices set of G, denoted as V. V � vi|i ∈ N􏼈 􏼉.
V is the set of vertices in G and each vertex represents a
control-flow node, which can be a function, basic block, or
virtual node.

Definition 5. Edge set of G, denoted as E.
E � vi⟶ vi+1|i ∈ N􏼈 􏼉. E is the set of edges in G, which is
used to represent the call, jump, and return relationship
between node vi and vi+1.

Definition 6. Attribute set of a node i, denoted as Ai.
Ai � (type, cont1, cont2)􏼈 􏼉. ∀v ∈ V; define Ai as the attribute
set of node i, where the type indicates the type of the node i
and type ∈ 00, 01, 10{ }, and cont1 and cont2 specify the
context attributes of the node i (e.g., the start address, the
next jump address, etc.). As shown in Figure 4, there are
three types of nodes, which are function node, basic block
node, and virtual node, explained as follows.

(1) Function node: we monitor noncore functions at the
function level and record the calling relationships of
functions..e function call relationship can describe
the execution path of the program in a coarse-
grained manner. For ∀f ∈ F(A), if there is a direct
edge from fi to fi+1, it means that the function fi

calls the function fi+1. .e function node is repre-
sented by “00,” and the content includes the entry
address of the function and the entry address of the
called function. .e outdegree of a node represents
the number of functions directly called by the
function represented by the node, and the indegree
indicates the number of times the function is called;
if a node has no indegree, the node is generally
considered to be an entry function. And if a node has
no outdegree, the node is generally considered a
function call path.

(2) Basic block node: we monitor the core functions at
the basic block level. .e basic block consists of a
section of assembly instructions with only entry and
exit. .e entry event may be the first statement of the
program, the target statement of a conditional jump
or unconditional jump, and a conditional jump. .e

exit event may be a stop statement, a jump statement,
or the previous statement of the jump target state-
ment. .e basic block node is identified by “01,” and
the content includes the first address of the basic
block, that is, the address of the first instruction in
the basic block and the address of the basic block to
jump to. .e core function is composed of basic
block nodes, including start nodes, internal nodes,
and exit nodes. Among them, the start node is the
function entry block, and the exit node is the end
block of the function, such as the ret instruction..e
internal node is a basic block divided by the internal
instructions of the function.

(3) Virtual node: when a program is running, the loop
codes may generate lots of basic block jump edges,
which are basically the same, causing a large number
of repeated measurements and increasing unneces-
sary performance costs. .is paper introduces a
virtual node to represent the loop codes in the
function, using the “10” mark, and the content in-
cludes the loop entry address, that is, the loop ID and
the number of loops.

.e main function of virtual nodes is to separate
common basic blocks and loops to prevent iterative cal-
culations during measurement. .e loop structure in the
program includes do-while, while, and for. From their
assembly code, it can be found that the conditional branch
of the backward jump points to the beginning of a loop.
.is paper uses this common feature as the basis for
judging whether to start the loop. When the loop contains
jump statements, break, and continue, its control flow will
change. For break jump statements, when executed, they
jump directly outside the loop, which is equivalent to the
exit statement of the second loop, so the normal loop
control flow will be recorded, as well as the loop control
flow when it encounters a break. When continue is exe-
cuted, it will jump to the beginning of the next loop, which
will also lead to inconsistent control flow, so we will
record the number of executions of the continue state-
ment and the control-flow information when the continue
is executed. When we encounter a jump statement, we get
at least two control-flow metrics, and the repeated codes
are only calculated once.

Taking Figure 5 as an example, we explain the control
flow measurement and verification as follows.

We can see from Figure 5 that
V � F1, F2, B3, B4, B5, B6, B7, B8{ },

ProverVerifier

1. challenge (id , i , N)

2. CF ← exec (A (i))
h ← hash (CF)

r ← sign (h||N, sk)3. r, h

4.versig (r, pk)
ver (h, database)

Figure 3: Online attestation protocol.

the entry address of
the called function

jump address

number of cycles

00

01

10

function entry
address

basic block first
address

loop entry address

function
node

basic block
node

virtual
node

Figure 4: Node structure.

6 Security and Communication Networks



E � F1⟶ F2, F2⟶ B3, B3⟶ B4, B4⟶{ B5, B5
⟶ B6, B6⟶ B7, B7⟶ B6, B4⟶ B8}. Suppose fun1
and fun2 are noncore functions, and fun3 is the core
function. Node V0 ∈ F1, F2{ } is a function node, and
F1⟶ F2 represents fun1 calling fun2. .e node
V1 ∈ B3, B4, B5, B6, B7, B8{ } is a basic block node. Node L is
a virtual node, which points to a loop structure used to store
the number of loops. When auth� � 1, if the virtual node is
not introduced, the program execution path is. However, if
we introduce the virtual node L, the program execution path
will be P′ � F1⟶ F2⟶ B3⟶ B4⟶{ B5⟶ L

⟶ B6⟶ B7}. And the program execution path length is
reduced from 17 (the length of P) to 8 (the length of P′ ).

As shown in Figure 5, the control-flow graph consists of
two paths, and the first path is divided into 3 parts. .e
measurement results are as follows:

F1⟶ F2: H0 � H(H(H(0), F1), F2),

B3⟶ B5: H1 � H(H(H(H(0), B3), B4), B5),

L: H2 � H(H(H(0), B6), B7)‖loop num.

(3)

Each part and the whole path’s measurements are stored
in the measurement database in the form of a key-value pair.
.e key contains the start node and the end node, and the
value is the metric value of the part..e first path is stored as

(F1⟶ F2: H0), (B3⟶ B5: H1), (L: H2)􏼈 􏼉, Hpath􏽮 􏽯.
.en, we show the four types of attacks (in Figure 1)

detection with the example program shown in Figure 5:

(1) Branch variable attack: the attack tampers with the
verifier’s input auth, since the control flow that
should have jumped to B5 is changed to jump to B8.

.e control flow leads to an unexpected but legal
path.

(2) Loop variable attack: the attack tampers with the
value of the loop control variable count, causing the
number of while loops to change.

(3) Return address attack: the attack tampers with the
return address of the function fun2, so that func2,
which should have returned fun1, returns to an il-
legal address outside of fun1, for example, attacker’s
rogue codes.

(4) Function pointer attack: the attack the attacker
tampered with the code pointer to make node B5
turn to B3.

Due to the abovementioned four attacks, the original
control flow changes, resulting in a change in the final
calculated hash value of the execution path, which can be
detected by our method.

6. NSGA-II-Based Granularity-Adaptive
Strategy Generation

Many embedded devices (e.g., industrial control devices)
have high requirements for real-time performance. In this
case, fine-grained control-flow monitoring at the basic block
level can provide higher security guarantees, but the per-
formance overhead is relatively high. In contrast, control-
flow monitoring at the function level cannot detect Control-
Flow Hijacking attacks related to control data due to lack of
context information, such as loop variable attacks.

.is paper marks the function as a core function or a
noncore function and performs basic block-level fine-
grained control-flow monitoring for core functions and
function-level coarse-grained control-flow monitoring for
noncore functions. More marked core functions, more
functions need fine-grained control-flow monitoring, but
the security benefit improvement may be very little and
cause high-performance overhead, especially for resource-
limited devices (e.g., IoT or industrial control devices).

We define the optimization goals as security benefits and
overhead costs..en, we transform the above problem into a
multiobjective optimization problem as follows:

(1) .e goal of optimization:

max security(X)􏼈 􏼉,

min overhead(X){ }.
(4)

(2) .e condition of constraint:

security(X)> sthreshold,

overhead(X)< othreshold.
(5)

(3) Decision variables:

X � x1, x2, x3 . . . , xn􏼈 􏼉. (6)

(4) Parameters:

void fun1 (){

fun2 ()

}

void fun2 (){

fun3 ()

}

void fun3 (){

int auth;

scanf (“%d”, &auth);

if (auth==1){

int count=5;

while (count){

count--;

}

}else{

printf ( “error” );

}

}

F1

F2

B3

B4

B5 B8

B6

B7

L

1

2

3

4

5

6

7

8

Figure 5: Control-flow graph of a program.

Security and Communication Networks 7



X is the marking vector, representing the marking
scheme on all the functions of a program, showing
which functions should be core or noncore
functions.
Security(X) refers to the security benefits of the
system under the function marking scheme X.
Overhead(X) refers to the overhead costs under
function marking scheme X.
sthreshold refers to the value of security benefits when
all noncore functions are used.
othreshold refers to the overhead when all core func-
tions are used.

Suggest there are n functions in a program, for bit i of
marking vector X, referred to as xi. .ere is

xi �
1, core function,

0, noncore function.
􏼨 (7)

Among them, the constraint conditions ensure that our
function marking scheme will not be all core functions or all
noncore functions, resulting in excessive overhead or low-
security benefits.

(1) Security benefits: for optimization of a granularity
division plan, one of the optimization goals is the
security benefit of the system, that is, the security of
the control flow of the program because the finer the
monitoring granularity is, the more the security of
the control flow can be guaranteed. So, we hope to
perform fine-grained monitoring on core functions
and use the importance of the function and the
attacks that can be detected under different granu-
larity monitoring to quantify the security of the
control flow as follows:

Security � 􏽘
n

i�1
depi × att numi, (8)

depi �
fcalli

fcalltotal
. (9)

Among them, n is the number of functions in the
program and i corresponds to the number of the
function.
.is paper introduces the concept of function
dependency (dep) as an indicator to determine
whether a function is a core function. Function
dependency refers to the proportion of the
number of times a function is called to all calling
events during the running of the program. .e
greater the function dependency, the greater the
impact on the entire program after the function is
destroyed. So, depi represents the probability that
the i-th function is marked as a core function.
fcalli is the number of calls of the i-th function,
and fcalltotal is the sum of the number of calls of
all functions.

att_num is the number of attack types that can be
detected by different granularity monitoring
methods and represents the ability of the granularity
monitoring method to provide security protection.
As shown in the threat model, this paper proposes
four control flow-related attacks. .e tampering of
control data such as code or function pointer and
return address tampering can be detected by coarse-
grained monitoring methods, and fine-grained
monitoring methods can detect all attacks. .ere-
fore, att numi ∈ {2, 4}, and when the i-th function
performs coarse-grained monitoring, the value is 2.
Otherwise, the value is 4.

(2) Overhead:some resource-limited devices (e.g., in-
dustrial control devices) have extremely high re-
quirements for availability. From this perspective,
reducing overhead is an important optimization
goal. We use the control-flow event to represent a
node in the control-flow graph. Especially with fine-
grained monitoring, the number of control-flow
events is the number of basic block nodes. .e total
overhead depends on the number of control-flow
events.

Our experiments show the relationship between over-
head and control-flow events in Figure 6. .e abscissa
represents the number of control-flow events, and the or-
dinate represents the overhead. R2 � 0.9978> 0.99 indicates
that it is linearly related. .e linear relationship is shown as
follows:

Overhead � 􏽘
n

i�1
overhead � 0.0044∗ cfe numi + 0.0833.

(10)

Among them, cfe numi is the number of control-flow
events of the i-th function. When the function is a core
function, the number of control-flow events included is the
number of basic block nodes within the function. When the
function is a noncore function, the number of control-flow
events is 1. .e granularity division based on the NSGA-II is
described in detail as follows:

Step 1: first, the random population Pt is initialized. Pt
is composed of N individuals. Each individual repre-
sents a function marking scheme, and each function is
represented by a gene. Assuming that there are n
functions in the program to be verified, each individual
is composed of n genes, and the individual
p � (f1, f2, f3, . . . , fn), where fi ∈ 0, 1{ }, 1≤ i≤ n.
When fi � 0, it means that the i-th function is marked
as a noncore function. And when fi � 1, it means that
the i-th function is marked as a core function.
Step 2: the parent Pt generates a child Qt of size N
through selection, crossover, and mutation operators
and merges the parent and child into a Rt of size 2N.
Step 3: we perform nondominated sorting on Rt to
obtain the nondominated sequence of each function

8 Security and Communication Networks



marking scheme. In this paper, prank is used to rep-
resent the nondominated order of individual p. prank is
determined by the nondominated order of the indi-
vidual in the entire population. .e dominating rule is

􏽤securityp ≥ 􏽤securityq and 􏽤overheadp ≤ 􏽤overheadp

p⟶ q; that is, if the security of plan p is not less than
plan q and the cost of plan p is not higher than plan q, it
means plan p dominates plan q. We use the min-max
standardization method to standardize security and
overhead as follows:

􏽤Securityp �
securityp − min∀p∈Psecurity

max∀p∈Psecurity − min∀p∈Psecurity
,

(11)

􏽤Overheadp �
overheadp − min∀p∈Poverhead

max∀p∈Poverhead − min∀p∈Poverhead
.

(12)

Count the dominance set and the number of dominated
plans for each plan according to the dominance rules. If
the number of dominated plans for plan p is 0, then
prank � 0, and add this plan to the first dominance level
Rank0, while continuing to dominate ranking the
remaining plans until the entire population is stratified.
Step 4: we sort the congestion degree of Rt and use
pdistance to represent the congestion degree of plan p.
Step 5: when the sorting rule (prank < qrank) or ((prank �

qrank) and (pdistance < qdistance)) is satisfied, it means that
plan p is better than plan q. We select the first N better
individuals to form a new generation population Pt+1
for the next iteration.
Step 6: when judging whether the predetermined
number of iterations G is reached, output the first-
ranked optimal function marking scheme if it is
reached; otherwise, proceed to Step 2.

Table 1 describes the optimization process.

7. Runtime Control-Flow Attestation
Protection for Control-Flow Measurements
Based on SGX

Intel SGX [17, 18] (Intel Software Guard Extensions) is an
extension of the Intel CPU, which encapsulates the programs

that need to be protected in the enclave. All privileged or
nonprivileged software cannot access the content in the
enclave and can be used to protect applications. .e key
codes and data are not tampered with by malicious software
or high-level system management software (such as OS,
VMM, and BIOS)..e root of trust of SGX only includes the
CPU, which greatly improves the system’s security. .ere-
fore, this paper uses Intel SGX to provide a trusted execution
environment for the measurement of the program.

As shown in Figure 7, the prover is divided into safe area
and unsafe area. .e runtime tracking part of the program is
placed in the unsafe area, and the measurement and at-
testation part are placed in the safe area (SGX enclave),
ensuring the secure storage of the attestation report and
secret key information.

When the prover receives the verification request from
the verifier, it runs the program to be verified according to
the specified input. When the function call is executed, it will
jump to the coarse-grained interceptor; when the jump
instruction inside the core function is executed, it will jump
to the fine-grained interceptor and then send the intercepted
address information to the node inspection module. Nodes
are distinguished and then sent to the measurement module
to generate the accumulated hash value of each block. .e
attestation module uses enclave’s private key to sign the
measurement result and random number, generates an at-
testation report, and sends it to the verifier.

All key modules are introduced in the following.

7.1. Runtime Tracing. .is part is used to track the verified
application. .is paper rewrites the pin tool in Intel Pin-3.15
and makes it the tool for detecting control-flow events when
the program is running. In order to obtain the function call
relationship in the program, the program needs to be
instrumented at the function level. .e instrumentation
points are mainly in the call and ret instructions. In order to
obtain the internal control-flow information of the core
function, it is necessary to perform basic block-level in-
strumentation to monitor indirect jump statements.

7.2. Coarse-Grained Interceptor. During program execution,
when a function call instruction is encountered, GACFAwill
transfer the program control flow to the coarse-grained
interceptor. .e interceptor obtains the address of the
function at this time, the address of the called function, and
the node type of what we insert. .en, through the SGX
ECALL instruction, it switches to the SGX enclave, passes the
acquired address information to the node inspection module
in the safe area, and then returns the program control flow to
the program execution.

7.3. Fine-Grained Interceptor. When the core function of the
program is executed, the fine-grained interceptor intercepts
branch information, obtains the first address of the basic
block and the node ID we inserted, and sends the infor-
mation to the node inspection module in the security zone.

overhead = 0.0044*cfe_num+ 0.0833
R2 = 0.9978

10000 20000 30000 400000
control-flow event

0

50

100

150

200

ov
er

he
ad

 (m
s)

Figure 6: Relationship between overhead and control-flow events.

Security and Communication Networks 9



7.4. Node Check Module. .is module judges the node type
at this time. If the type changes, it initializes the measure-
ment result and restarts accumulating hash. If a virtual node
is detected, the number of cycles needs to be recorded and
sent to the measurement module.

7.5.MeasurementModule. In order to ensure the security of
the measurement process, we perform the SHA256 hash
calculation in the enclave container and send the metric
value to the attestation module.

7.6. Attestation Module. Use the SGX function to create
public and private key pair required for signing the
random number and measurement to generate the at-
testation report and send the attestation report to the
verifier.

8. Evaluation

.e following is an evaluation and analysis of our proposal
GACFA from three aspects: functionality, overhead, and
security.

8.1. Functional Evaluation. We use the SNU real-time
benchmark [24] to test the effectiveness of GACFA, which is
dedicated to the performance evaluation of C/C++ pro-
grams. GACFA aims to achieve a combination of coarse-
and fine-grained attestation methods, so we use multi-
objective optimization algorithms for function marking to
determine the Control-Flow Attestation scheme.

8.1.1. Multiobjective Optimization of NSGA-II. In order to
prove the effect of NSGA-II optimization, we selected the
program “adpcm-test” for the analysis, which contains the

Table 1: Granularity division algorithm based on NSGA-II.
Input: F(A), A.exe, A_inputs[ ]
//.e function collection of the program, binary file, and input list
Output: Res
//Output optimal granularity division plan
{
//F(A) is the set of all functions of the program
F(A).count� 0; //the number of functions of the program A
F(A).size[ ]� 0; //the number of control-flow events of each function
static_func (F(A), A.exe, inputs[ ], F(A).count , F(A).size[ ]);
//Count the number of function calls and control-flow events in each function
GranularityDivide (F(A).count , F(A).size[ ], Res);
//Granularity division, return the optimal granularity division plan

}
GranularityDivide (count, size[ ], best_scheme)
{

g � 0;
InitPopulation (Pt: N);
//.e population Pt is initialized, containing N individuals representing a granularity division plan each
while g≤G do:
CreateOffspring (Pt, Qt);
//.e crossover and mutation on Pt and Qt produce offspring
Rt�Merge (Pt, Qt);
for p in Rt do:
//Objective calculation

security� f_security (count, size[ ], p);
//Calculate the security benefits of each individual p according to formulas (8) and (9)
overhead� f_overhead (count, size[ ], p);
//Calculate the overhead costs of each individual p according to formula (10)

end for
NonDominatedSorting(Rt);
//Non-dominated sorting based on objective function according to formulas (11) and (12)
CrowdingDistanceSorting(Rt);
//Sort the congestion degree of Rt
Pt�Rt[0, N];
//Select the top N better solutions
g � g+ 1;//go to the next generation, trying to get better granularity division plan
end while
best_scheme� Pt[0];
//Return to the optimal partition plan

}

10 Security and Communication Networks



most functions (15 functions) in the SNU test set. .e
program’s information and test parameters are listed in
Table 2. We get the optimal function marking scheme
according to the algorithm described in Section 6. .e result
is shown in the last column of Table 2, in which functions
marked as “1” are chosen to be measured in the granularity
of the basic block, while functions marked as “0” are
measured as one piece.

Figure 8 shows the optimizing marking process of
program “adpcm-test.” .e blue/red line shows the change
trend of the security/overhead goal of each generation (with
different granularity division schemes). As we can see,
generation 67 is the optimal solution after convergence with
“010100110000111” as its gene (shown as the last column in
Table 2).

8.1.2. Control-Flow Attestation. .e verifier sends an at-
testation request to the prover (in our case, an embedded
industrial control computer) to verify the security of the
industrial control program. Take the program simulating
user verification process, described in Figure 5 in Section 5,
as an example. .e program includes two paths. When the
input is 1, it is an authorized path, and with the other input,
it is an unauthorized path.

.e verifier can perform measurement on both paths in
advance to get the expected measurement values shown in
Figure 9.

Figure 10 shows a successful attestation process. As
Figure 10(a) shows, after receiving the attestation request,
the control-flow measurements are gotten from the
running program and the report and signature are gen-
erated and sent to the verifier-end. As Figure 10(b)

indicates, the verifier verifies the data sent by the pro-
gram (the prover-end) with the measurement database.
Since there is no Control-Flow Hijacking attack, the at-
testation is successful.

8.1.3. Attack Detection. We launch all 4 kinds of CFH at-
tacks (Attacks 1–4) described in Section 3 to the program
“adpcm-test” (containing 15 functions) and test three dif-
ferent detection methods for comparative attack detection
experiments, namely, Fine-Grained Control-Flow Attesta-
tion [6] (noted as FGCFA, with the granularity of basic
block), GACFA (our proposal, with the optimal function
marking solution shown in Table 1), and Coarse-Grained
Control-Flow Attestation [25] (noted as CGCFA, with the
granularity of the function).

In the real world, the vulnerability may be found in any
function. .erefore, we use the potential threat ratio of 1 :1
(7 functions without attack and 8 functions with attacks), 1 :
2 (5 functions without attack and 10 functions with attacks),
and 1 : 4 (3 functions without attack and 12 functions with
attacks) to represent the ratio of the functions without

Runtime Trace

SGX Enclave

Target Program 

Coarse-grained 
interceptor

Execution
start Function call Branch

instruction
Execution

end

Fine-grained 
interceptor

Measurement
calculation

Attestation Node
Check

hi

Program execution flow
Data flow
GACFA Component

Figure 7: Runtime protection on program-end (the prover) based
on the SGX.

Table 2: Parameters and optimal function marking solution of
program “adpcm-test.”

Function
name

Number
of calls

Number of
dangerous

function calls

Number of
control-flow

events

Optimized
marking
solution

Abs 0 0 5 0
logsch 2000 4 7 1
invqah 0 0 2 0
Uppol1 4000 2 10 1
Uppol2 4000 2 13 0
upzero 4000 3 11 0
scalel 4000 2 2 1
logscl 2000 5 7 1
invqxl 0 0 2 0
encode 1000 2 37 0
decode 1000 1 24 0
reset 1 0 10 0
fabs 15729 4 5 1
filtez 4000 4 4 1
filtep 4000 5 2 1

11 21 31 41 51 61 71 81 911
generation

1
1.5

2
2.5

3
3.5

4
se

cu
rit

y

0.1

0.12

0.14

0.16

0.18

0.2

ov
er

he
ad

security
overhead

Figure 8: .e optimizing marking process of program “adpcm-
test”.

Security and Communication Networks 11



vulnerability to the functions with vulnerability. .at is, the
function potential threat ratio is 53%, 67%, and 80%. We
conducted 3 rounds of random attack tests on the program,
one round for each ratio. .e average detection rate results
are shown in Figure 11.

In Figure 11, the FGCFA can detect all attacks, so the
detection rate is 1 under different ratios. .e CGCFA de-
tection capability is related to the simulated attack category,
but it does not consider the risk function is more vulnerable
to attack, so the detection rate under different proportions is
low. With the increase in the number of attacks on threat
functions, the detection capability of the GACFA solution
increases. At the potential threat ratio of 53.3%, the detection
rate is 0.7, which is 30% lower than that of the FGCFA
solution and is 2.5 times the CGCFA solution. .e detection
rate of this scheme is 24% lower than that of the FGCFA
solution and 2.69 times the CGCFA solution. .erefore, as
the probability of being attacked by threat functions in-
creases, the detection capability of the scheme in this paper
gradually approaches the FGCFA solution, but the perfor-
mance overhead remains unchanged.

8.1.4. Runtime Control-Flow Attestation Protection with the
SGX. In this section, we discuss the security of GACFA..e
security requirement of GACFA is to verify the integrity of
the control flow of the program to be verified on the prover
to ensure that the measurement results are not tampered
with.

.e online attestation module includes the program’s
runtime tracking component and measurement attestation
component. .e runtime tracking component is a binary file
after the pin tool has been instrumented. Like C-FLAT [6],
we believe that the static measurement includes the target
program and runtime tracking, and the integrity of this part
will not be tampered with. GACFA places the measurement
and authentication components of control-flow information
in the SGX enclave and uses the program isolation mech-
anism of the SGX enclave to ensure the validity of the
authentication report.

In order to verify the security of the SGX enclave pro-
tected measurement and attestation at the program-end, this
paper attempts to tamper with the control-flow hash value
not protected and protected by the SGX enclave. .e
measured program is still the one shown in Figure 5.
Figure 12(a) shows the accumulated hash calculation process
of path 1 of the program. .en, we shut down the SGX and

tamper measurement code from memory. Figure 12(b)
shows the 3rd part’s hash value has changed, and the tam-
pering is successful. However, after placing the measure-
ment program in the SGX enclave, trying to access
measurement code outside the enclave is prohibited, and the
tampering on final measurement failed, which is shown in
Figure 12(c).

According to Figure 12, we can find that by introducing
SGX, GACFA can reliably verify the integrity of the control
flow of the program and ensure that themeasurement results
and attestation report from being tampered with.

8.2. Performance Analysis. Offline program analysis is
performed by the verifier and does not affect the execution
process of the program, so we only consider the performance
overhead of the online attestation phase. .e runtime
program attestation time includes the control-flow infor-
mation collection time t_col, the measurement time t_mea,
and the signing time t_sig, so the total runtime attestation
time is shown as follows:

ttotal � tcol + tmea + tsig. (13)

We have implemented the FGCFA, GACFA, and
CGCFA for the adpcm-test program. In particular, for our
proposal GACFA, we perform instrumentation according to
the optimal function marking scheme 010100110000111
given in Section 8.1, of which 8 functions perform coarse-
grained instrumentation and 7 functions perform fine-
grained instrumentation. Other procedures, such as mea-
surement and attestation, in all three methods are the same.

Figure 13 shows the time of online attestation for the
three methods. Although our time cost is increased by
31.79% compared with the CGCFA, which cannot detect any
basic block-level CFH attacks, our time cost is reduced by
56.99% compared with FGCFA. .is is because the neces-
sary time of control-flow collection and measurement is
greatly reduced compared to the FGCFA.

Figure 14 shows the comparison of the measurement
time for several different programs in the SNU data set.
Although the average size of SNU programs is small, we can
still see that, for different programs, the measurement time
cost of our proposal is much lower than the FGCFA.

8.3. Balance of Security and Overhead. In order to evaluate
the security and overhead balance capability of different
Control-Flow Attestation schemes, we propose the concept
of security/performance benefit ratio for different schemes
as spbrx/y (x, y are different schemes), that is, the detection
rate change ratio/detection time change ratio. Apparently,
when spbrx/y is bigger, scheme x is better than y. .e cal-
culation method of spbrx/y is shown as follows:

spbrx/y �
detectionratex − detectionratey/detectionratey

detectiontimex − detectiontimey/detection_timey

.

(14)

spbrFGCFA/GACFA and spbrGACFA/CGCFA are shown in
Table 3. It can be seen from the table that spbrGACFA/CGCFA is

Figure 9: Expected measurements of two execution paths.

12 Security and Communication Networks



the highest when the CGCFA is changed to our scheme
(GACFA), and spbrGACFA/CGCFA is 13.7, 25.1, and 43.0 times
that of spbrFGCFA/GACFA in the case of three different po-
tential threat ratios (specified in Section 8.1). .is means
changing from CGCFA to our scheme can achieve a much
better balance of security and overhead. .at is, higher
security can be obtained with less performance overhead in
our scheme.

9. Discussion

We propose GACFA for CFH detection of embedded
programs to detect control data and noncontrol data attacks
that indirectly affect control flow. To ensure the security of
attestation and measurement, we put the modules into the
SGX enclave, so that measurement calculation and attes-
tation report signing and generation will not be tampered

(a) (b)

Figure 10: .e prover-end and the verifier-end results in attestation: (a) the prover-end results and (b) the verifier-end results with no
control-flow tampering attack.

potential threat ratio

67 8053
(%)

0

0.5

1

1.5

de
te

ct
io

n 
ra

te

FGCFA [5]
GACFA (our proposal)
CGCFA [23]

Figure 11: Comparison of attack detection capabilities under different attack scenarios.

(a) (b)

(c)

Figure 12: SGX antitampering results. (a) Expected path and final hash result (H3). (b) Tampering (H3) succeeded. (c) Tampering (H3)
failed.

Security and Communication Networks 13



with by privileged attackers. However, the SGX is proposed
to protect applications. But the Intel pin tools are used to
take care of the process of monitoring and extracting control
flows of the running program, which cannot be protected by
the SGX because the tools rely on the kernel. .is means if
the pin tools are tampered with, the control-flow infor-
mation we get and use in the SGX enclave cannot be trusted.
Hardware-based method, such as LO-FAT [16], ATRIUM
[7], seems to be promising to solve this problem. LO-FAT
[16] extends branch tracking of processor pipeline with
additional logic to achieve efficient tracing of control-flow
information, along with measurement calculation and at-
testation, and implement the proof-of-concept system based
on a RISC-V SoC. ATRIUM [7] is tightly integrated with a
processor and can extract the executed instructions and
memory addresses and generate the final measurement and
attestation report. Of course, a hardware-based method
means extra hardware support and costs.

Besides, our proposal can only detect CFH attacks
based on program execution-related data (e.g., jump
address, branch, and loop variables), not pure data attacks
(data-oriented programming attacks, DOP attacks) [26].
.e DOP attacks manipulate data in the program and

tamper with key variables but not control data and
noncontrol data mentioned above, which means the
current control-flow detection method may be bypassed.
Hu et al. [27] proposed several new solutions, such as data
flow integrity protection and fine data flow randomiza-
tion. However, these solutions on data flow cost much
more than CFI methods and need more research before
they are used in practice.

10. Conclusions

Control-Flow Hijacking attacks have become the main
method of exploiting vulnerabilities, seriously threatening
the security of industrial control systems. .is paper pro-
poses a NSGA-II based Granularity-Adaptive Control-Flow
Attestation (GACFA) for CFH detection of embedded
programs, which can be used to detect control data attacks
and noncontrol data attacks that indirectly affect control
flow. A control-flow representation model is used to reduce
the complexity of programs’ control-flow graph, while the
NSGA-II algorithm is used in offline analysis to optimize the
granularity division strategy to maximize system security
benefits and minimize overhead. Besides, runtime

0.22

37.13 49.10 

115.72 

0.31 0.60 0.55 0.54 0.54 

control-flow attestation scheme

0.00

50.00

100.00

150.00

on
lin

e a
tte

sta
tio

n 
tim

e (
m

s)

CGCFA [23]FGCFA [5] GACFA (our proposal)

t_col
t_mea
t_sig

Figure 13: Comparison of online attestation time on different schemes.

program

fir.c lmsc.c fft1k.c fft1.cadpcm-test.c
0

0.2

0.4

0.6

0.8

m
ea

su
re

m
en

t t
im

e (
m

s)

FGCFA [5]
GACFA (our proposal)
CGCFA [23]

Figure 14: Comparison of measurement time on different schemes with different programs.

Table 3: Security/performance balance capability comparison in different threat scenarios.

Potential threat ratio (%) spbrFGCFA/GACFA spbrGACFA/CGCFA
53 0.32 4.69
67 0.18 4.69
80 0.12 5.27

14 Security and Communication Networks



protection for the GACFA at the program-end with SGX is
proposed to protect the integrity and confidentiality of
control-flow measurement data. Experiments have shown
that the algorithm can obtain a relatively balanced coarse
and fine granularity between control-flow security and
runtime efficiency. In addition, we evaluated the perfor-
mance and security of the runtime module and found that
compared with the current fine-grained Control-Flow At-
testation method, the security/performance benefit of
adopting our proposal over CGCFA is 13.7, 25.1, and 43.0
times that of adopting FGCFA over ours in different threat
scenarios.

Data Availability

All data are available from the corresponding author upon
request.

Conflicts of Interest

.e authors have no conflicts of interest.

Acknowledgments

.is work was supported by grants from the National Key
Research and Development Program of China (Grant no.
2016YFB0800204) and the Open Research Fund of Beijing
Key Laboratory of Trusted Computing.

References

[1] H. Ke, H. Wu, and Y. Dongmei, “Towards evolving security
requirements of industrial internet: a layered security ar-
chitecture solution based on data transfer
techniques,”pp. 504–511, Association for Computing Ma-
chinery, Beijing China, December 2020.

[2] N. Jr, T. Fraser, J. Molina, and W. A. Arbaugh, “Copilot - a
coprocessor-based kernel runtime integrity monitor,” in
Proceedings of the 13th USENIX Security Symposium,
pp. 179–194, USENIXAssociation, San Jose, CA, USA, August
2004.

[3] A. Seshadri, A. Perrig, L. Doorn, and P. Khosla, “SWATT:
SoftWare-based ATTestation for embedded devices,” in
Proceedings of the IEEE Symposium On Security And Privacy,
pp. 272–282, IEEE, Berkeley, CA, USA, May 2004.

[4] Z. Chao,W. Tao, and Z. Chen, “Practical control flow integrity
and randomization for binary executables,” in Proceedings of
the 2013 IEEE Symposium on Security and Privacy (SP),
pp. 559–573, IEEE, Berkeley, CA, USA, May 2013.

[5] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross,
“Control-flow bending: on the effectiveness of control-flow
integrity,” in Proceedings of the 24th USENIX Security Sym-
posium, pp. 161–176, USENIX, Berkeley, CA, USA, August
2015.

[6] T. Abera, N. Asokan, and L. Davi, “C-flat: control-flow at-
testation for embedded systems software,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security ACM, pp. 743–754, ACM, Darmstadt,
Germany, October 2016.

[7] S. Zeitouni, G. Dessouky, O. Arias, D. Sullivan, and
A. R. Sadeghi, “Atrium: runtime attestation resilient under
memory attacks,” in Proceedings of the 2017 IEEE/ACM

International Conference on Computer-Aided Design
(ICCAD), pp. 384–391, IEEE, Irvine, CA, USA, November
2017.

[8] X. Ge, W. Cui, and T. Jaeger, “Guarding control flows using
intel processor trace,” in Proceedings of the the Twenty-Second
International Conference, pp. 585–598, ACM, Redmond, WA,
USA, Apr 2017.

[9] P. F. Qiu, Y. Q. Lyu, J. Zhang, D. Wang, and G. Qu, “Control
flow integrity based on lightweight encryption architecture,”
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, pp. 1358–1369, 2017.

[10] N. Burow, S. A. Carr, J. Nash et al., “Control-flow integrity,”
ACM Computing Surveys, vol. 50, no. 1, pp. 1–33, 2017.

[11] R. Ding, C. Qian, C. Song, B. Harris, and W. Lee, “Efficient
protection of path-sensitive control security,” in Proceedings
of the 26th USENIX Security Symposium, pp. 131–148,
USENIX, Vancouver, BC, Canada, August 2017.

[12] D. Jung, M. Kim, J. Jang, and B. B. Kang, “Value-based
constraint control flow integrity,” IEEE Access, vol. 8, Article
ID 50542, 2020.

[13] MR. Khandaker, W. Liu, A. Naser, Z. Wang, and J. Yang,
“Origin-sensitive control flow integrity,” in Proceedings of the
28th USENIX Security Symposium, pp. 195–211, USENIX,
Santa Clara, CA, USA, August 2019.

[14] M. Khandaker, A. Naser, W. Liu, Z. Wang, Y. Zhou, and
Y. Cheng, “Adaptive call-site sensitive control flow integrity,”
in Proceedings of the 2019 IEEE European Symposium on
Security and Privacy (EuroSP), pp. 95–110, IEEE, Stockholm,
Sweden, June 2019.

[15] H. Jang, M. Park, and H. Dong, “IBV-CFI: efficient fine-
grained control-flow integrity preserving CFG precision,”
Computers & Security, vol. 94, 2020.

[16] G. Dessouky, S. Zeitouni, T. Nyman et al., “LO-FAT: low-
overhead control flow ATtestation in hardware,” in Pro-
ceedings of the 54th Annual Design Automation Conference
2017, pp. 1–6, IEEE, Austin, TX, USA, June 2017.

[17] I. Corporation, Intelsoftware Guard Extensions Programming
Reference, Intel, San Jose, CA, USA, 2014.

[18] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative
technology for CPU based attestation and sealing,” in Pro-
ceedings of the Workshop on Hardware and Architectural
Support for Security and Privacy (HASP), pp. 1–6, Tel-Aviv,
Israel, June 2013.

[19] F. Schuster, M. Costa, C. Fournet et al., “VC3: trustworthy
data analytics in the cloud using SGX,” in Proceedings of the
IEEE Symposium on Security and Privacy SP, pp. 38–54, San
Jose, CA, USA, 2015.

[20] F. Shaon, M. Kantarcioglu, Z. Lin, and K. Latifur, “SGX-
BigMatrix: a practical encrypted data analytic framework with
trusted processors,” in Proceedings of the 2017 ACM SIGSAC
Conference, pp. 1211–1228, ACM, Dallas, TX, USA, October
2017.

[21] J. Wang, H. Zhi, and Y. Zhang, “Enabling security-enhanced
attestation with intel SGX for remote terminal and IoT,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 37, pp. 88–96, 2017.

[22] V. Karande, E. Bauman, Z. Lin, and K. Latifur, “SGX-log:
securing system logs with SGX,” in Proceedings of the ACM
Asia Conference on Computer and Communications Security
(ASIA CCS), pp. 19–30, ACM, New York, NY, United States,
April 2017.

[23] C. Khammassi and S. Krichen, “A nsga2-lr wrapper approach
for feature selection in network intrusion detection,” Com-
puter Networks, vol. 172, 2020.

Security and Communication Networks 15



[24] “SNU real-time benchmarks,” http://www.cprover.org/
satabs/examples/SNU_Real_Time_Benchmarks/.

[25] Y. Yu, P. Wang, Y. Zhang, H. Zhang, and H. Zhang, “De-
tection of control flow attacks based on return address sig-
nature,” Journal of East China University of Science and
Technology, vol. 46, pp. 800–806, 2020.

[26] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-
control-data attacks are realistic threats,” in Proceedings of the
14thUnisex Security Symposium, Baltimore, MD, USA, July
2005.

[27] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and
Z. Liang, “Data-oriented programming: on the expressiveness
of non-control data attacks,” in Proceedings of the 37th IEEE
Symposium Gainurity and Privacy, pp. 969–986, IEEE, San
Jose, CA, USA, May 2016.

16 Security and Communication Networks

http://www.cprover.org/satabs/examples/SNU_Real_Time_Benchmarks/
http://www.cprover.org/satabs/examples/SNU_Real_Time_Benchmarks/

