
Research Article
PF :Website Fingerprinting Attack Using Probabilistic
Topic Model

Hongcheng Zou ,1 Ziling Wei ,1 Jinshu Su ,1 Baokang Zhao ,1 Yusheng Xia ,1

and Na Zhao 1,2

1College of Computer, National University of Defense Technology, Changsha, Hunan, China
2Department of Information Science and Technology, Changsha Normal University, Changsha, Hunan, China

Correspondence should be addressed to Ziling Wei; weiziling@nudt.edu.cn

Received 11 May 2021; Accepted 27 September 2021; Published 19 October 2021

Academic Editor: Fazlullah Khan

Copyright © 2021 Hongcheng Zou et al. *is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Website fingerprinting (WFP) attack enables identifying the websites a user is browsing even under the protection of privacy-
enhancing technologies (PETs). Previous studies demonstrate that most machine-learning attacks need multiple types of features
as input, thus inducing tremendous feature engineering work. However, we show the other alternative. *at is, we present
Probabilistic Fingerprinting (PF), a new website fingerprinting attack that merely leverages one type of features. *ey are
produced by using a mathematical model PWFP that combines a probabilistic topic model with WFP for the first time, due to a
finding that a plain text and the sequence file generated from a traffic instance are essentially the same. Experimental results show
that the proposed new features are more distinguishing than the existing features. In a closed-world setting, PF attains a better
accuracy performance (99.79% at most) than prior attacks on various datasets gathered in the scenarios of Shadowsocks, SSH, and
TLS, respectively. Besides, even when the number of training instances drops to as few as 4, PF still reaches an accuracy of above
90%. In the more realistic open-world setting, PF attains a high true positive rate (TPR) and Bayes detection rate (BDR), and a low
false positive rate (FPR) in all evaluations, which outperforms the other attacks. *ese results highlight that it is meaningful and
possible to explore new features to improve the accuracy of WFP attacks.

1. Introduction

Nowadays, privacy is one of themost important concerns for
online users. Hence, privacy-enhancing technologies (PETs)
like Shadowsocks [1], SSH, etc., have been leveraged to
guarantee people’s privacy, including those criminals who
engage in illegal online activities. *ese unlawful activities
severely impair society. For instance, in just two and a half
years, the scale of illicit transactions in the black market site
“Silk Road” reaches about 1.5 billion U.S. dollars, gathering
more than 4,000 illegal merchants and 150,000 anonymous
users. A literature survey reveals that a website finger-
printing (WFP) attack can detect these activities by inferring
the websites being visited. Hence, WFP plays an important
role in fostering a peaceful society that is free of fear and
violence. *is goal is a part of the 17 sustainable develop-
ment goals (SDGs) accepted by the United Nations General
Assembly in 2015 [2].

*e primary idea of WFP attacks can be summarized as
follows. A local eavesdropper (i.e., an attacker) listens on the
wire and intercepts the target user’s network traffic. After
that, he trains a classifier according to the statistical features
of the traffic. Note that the features generally contain packet
length, timing information, order information, and so on.
Finally, the attacker could leverage the classifier to identify
the surfing websites of the user. *e possible target user
under WFP attacks might be anyone who is surfing the
Internet even under the protection of PETs.

To monitor and stop online criminal activities, as of
today, researchers have proposed various attacks by utilizing
traditional machine-learning and deep-learning methods to
undermine all kinds of PETs. Specifically, the former
methods cover naive Bayers (NB) [3, 4]; support vector
machine (SVM) [5, 6]; and edit distance [7, 8], random forest
(RF) [9, 10], K-nearest neighbor (KNN) [11, 12], hidden
Markov model (HMM) [13], and so on. *e latter methods

Hindawi
Security and Communication Networks
Volume 2021, Article ID 3265300, 17 pages
https://doi.org/10.1155/2021/3265300

mailto:weiziling@nudt.edu.cn
https://orcid.org/0000-0001-5587-2584
https://orcid.org/0000-0002-7858-1445
https://orcid.org/0000-0001-9273-616X
https://orcid.org/0000-0001-9200-9018
https://orcid.org/0000-0003-4290-7279
https://orcid.org/0000-0001-8578-7620
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/3265300

leverage different deep neural networks (DNN), such as
stacked denoised autoencoder (SDAE) [14], convolutional
neural networks (CNN) [15, 16], and long short-term
memory (LSTM) [17], to automated extract features. Gen-
erally speaking, most traditional machine-learning attacks
need to leverage multiple types of features to reach an ex-
pected accuracy. For example, the KNN attack proposed by
Wang et al. uses six types of features [18].

As known to all, more types of features result in more
tedious feature engineering work for WFP, which is un-
likable. To avoid such annoying jobs, researchers have
turned to deep-learning techniques for help. Previous
studies show that deep-learning attacks (e.g., Abe_SDAE
[14], DF (deep fingerprinting) [19], and Tik-Tok [20])
usually utilize one type of feature, such as packet direction,
and achieve a satisfying accuracy performance, which is
better than that of traditional machine-learning attacks
[19, 20]. *e reason for the difference between the two kinds
of attacks is probably ascribed to their different ability of
automatic feature learning. *us, we have the comprehen-
sion that introducing more types of features is not indis-
pensable for reaching a good performance.

Unfortunately, although deep-learning attacks can avoid
the tedious feature engineering work, they generally need a
lot of computing resources, which require an additional
budget. Besides, previous research also indicates that a
considerable number of training samples are necessary for
deep-learning attacks to obtain an expected accuracy [16].
Inevitably, gathering enough training samples will consume
a lot of time. It is even a much more unpleasant and hard
work. On top of that, considering that a WFP attack should
frequently retrain its model to face the challenge of data
staleness problem, the work of data gathering becomes
heavier and tougher for a deep-learning attack.

In this case, traditional machine-learning attacks become
meaningful and essential for WFP. Hence, the second al-
ternative to reduce the work of feature engineering is to find
out one type of more effective features, which is the aim of
representational learning. *us, it is interesting to investi-
gate whether it is possible to reach a well-pleasing accuracy
for a traditional machine-learning attack only using one type
of features.

To the best of our knowledge, there already exist two
traditional machine-learning attacks (i.e., CUMUL [5],
PHMM [13]) that only take one type of features as input.
Unfortunately, they are inferior to deep-learning attacks in
accuracy performance [19]. By careful dimensional analysis,
we note that creating new features in PHMM and CUMUL
does not involve dimensional change. In other words, the new
features have the same physical significance (i.e., a length) as
the existing features for the two attacks. *is truth possibly
explains why CUMUL and PHMMperformworse than deep-
learning attacks. In this case, it is meaningful for us to devise a
type of features with some different physical significance.

*us, in this work, we propose a new type of feature, i.e.,
topic probability vector, which is demonstrated to be highly
effective. *e proposed features have a different physical
significance (i.e., a probability) from the existing features
(i.e., a length). *e new type of features are obtained by the

PWFPmodel, which combines the typical probabilistic topic
model, namely, Probabilistic Latent Semantic Index (PLSI),
with WFP. Based on the new features, the Probabilistic
Fingerprinting (PF) attack is proposed and evaluated.
Evaluation results show that PF performs better than a deep-
learning attack (i.e., DF) while using fewer features. *is
work is the first to indicate that a traditional machine-
learning attack can beat a deep-learning attack.

*e major contributions and novelties of this paper are
summarized as follows:

(1) For the first time, we reveal the similarity of a plain
text and the sequence file of a traffic instance in
essence. Inspired by the finding, we create one type
of features, i.e., topic probability vector, each com-
ponent of which has a special physical significance,
namely, a probability. *e new features are obtained
by the PWFP model, which is based on PLSI. To the
best of our knowledge, it is the first time to leverage
the probabilistic topic model for WFP.

(2) We propose PF, which first introduces PLSI for WFP
and creates a topic probability vector for each traffic
instance. Based on the obtained vectors, a KNN
classifier is applied to perform awebsite fingerprinting
attack. To date, the topic probability vector has never
been presented and used before. PF has a powerful
ability to distinguish traffic instances gathered in
various scenarios. It can dramatically reduce feature
engineering work and the number of features needed
while obtaining a better accuracy than a deep-learning
attack, namely, DF. As far as we know, it is the first
time that a traditional machine-learning attack beats a
deep-learning attack.

(3) We show the superiority of the proposed type of
features over the existing features by comparison
evaluation. *e effectiveness of different attacks is
evaluated in the closed-world evaluations against
various traffic, including Shadowsocks, SSH, and TLS.
Amongst all, PF performs the best. We also experi-
ment on how the number of training instances affects
the accuracy. Results show that PF only needs as few
as four training instances to reach an accuracy of over
90%, which beats others. *is advantage is useful for
addressing the data staleness issues in WFP.

(4) In the open-world evaluation, we use the Precision-
Recall curves to compare different attacks’ perfor-
mances to avoid the base-rate fallacy. PF all achieves
a high recall and precision, which substantially
overwhelms the other attacks. Besides, we investigate
the impact of different ratios of the number of un-
monitored training instances to the number of total
unmonitored instances on TPR, FPR, and BDR. PF
works best in all situations. Our experiments also
indicate the excellent performance of PF against
defended datasets.

Organization. *e remainder of this paper is organized as
follows. In Section 2, we survey prior research work.

2 Security and Communication Networks

Subsequently, Section 3 describes the threat model of this
work. Furthermore, the key techniques of the PF attack are
explained in Section 4. To test our attack, Section 5 presents
the experimental preparation.*en, in Section 6, we evaluate
the PF attack in different scenarios and present the results,
respectively. Finally, we make a deep discussion in Section 7
and conclude the whole paper in Section 8.

2. Related Work

*is section first surveys different kinds of significant WFP
attacks, including resource length attacks, traditional ma-
chine-learning attacks, and deep-learning attacks. *en, we
categorize and summarize prior work on the main WFP
defense methods. Moreover, four representative attacks and
two typical defenses selected in the following experimental
evaluations are introduced in detail.

2.1. WFP Attacks. *e WFP attacks originate from resource
length attacks, which utilize the length of web page resources
to identify a web page. In HTTP1.0, web page resources
(images, scripts, etc.) are each requested with a separate TCP
connection. *us, the total length of each resource can be
identified by distinguishing different connections. *e
earliest prototype of the resource length attack was designed
and implemented by Cheng and Avnur [21]. Similar re-
search followed later [22–24]. With the emergence of
HTTP1.1 and various PETs, the performance of resource
length attacks decreases sharply. Hence, researchers dig out
more and more new features from traffic to improve the
accuracy performance.

With the help of traditional machine-learning and deep-
learning techniques, the success rate of WFP attacks rises
greatly. If an attacker uses a traditional machine-learning
method to make predictions on the websites, the attack can
be classified into a traditional machine-learning attack. Such
typical attacks include Li-NB [4], Li-Jaccard [4], OSAD [7],
DLSVM [8], Pa-SVM [6], He-SVM [25], CUMUL [5], KNN
[18], WPF [11], KFP (K-fingerprinting) [26], and PHMM
(profile hidden Markov model) [13]. *ese attacks leverage
different traditional machine-learning techniques, such as
Bayers classifier, Jaccard coefficient, SVM, KNN, RF, and
HMM. *e major disadvantage of traditional learning at-
tacks lies in their requiring heavy work of feature engi-
neering. To avoid this shortcoming, researchers need to
manually create a type of features that are highly effective.

Considering the excellent performance of deep-learning
methods, people have introduced them into the WFP area
lately. In deep-learning attacks, the training dataset is
absorbed to learn the parameters of deep neural networks,
which can then be used to classify the test dataset. *e deep-
learning attacks have thrived since Abe and Goto first
studied the application of stacked denoising autoencoders
(SDAE) inWFP attacks [14]. In recent years, different neural
networks, such as SDAE, LSTM, CNN, were leveraged by
various deep-learning attacks, including DF [19], var-CNN
[15], Tik-Tok [20], and AWF [17]. Although deep-learning
attacks reach a high accuracy performance, they have a high

demand for training data scale. Also, the attacker needs a
substantial budget, which significantly limits the application
of deep learning attacks.

To better evaluate our attack, we have selected four
typical attacks for comparison, namely, KNN [18], KFP [26],
DF [19], and PHMM [13]. *ey use different techniques and
are commonly selected as benchmarks in theWFP literature.
*ese attacks are briefly introduced as follows.

2.1.1. KNN. *eKNN classifier was presented byWang et al.
with weight adjustment based on a large set of features, as
many as 3736 [18]. *e weights are used to tune the con-
tributions to the KNN distance of different features. As
weight learning proceeds, the KNN distance comes to focus
on weights for features that are useful for classification. Due
to its good performance in efficiency and accuracy, the attack
is extensively used as a benchmark in the WFP area.

2.1.2. KFP. Hayes et al. proposed a KFP attack method
based on RF and KNN [26]. *e method uses the random
forest to extract the fingerprint for each traffic instance,
instead of directly using the classification output of the
forest. In the open-world setting, they feed these finger-
prints to a KNN classifier. Specifically, by computing the
Hamming distance of fingerprints, KFP classifies a test
instance as the label of the closest k training instances if
and only if the k labels are in complete agreement.
Otherwise, the test instance would be classified into the
unmonitored class.

2.1.3. DF. Sirinam et al. first presented the DF attack [19].
*is attack leverages CNN with sophisticated architectural
design. To train DF, the authors applied Dropout and Batch
Normalization (BN) to prevent overfitting. Also, DF attains
a high success rate in both closed-world and open-world
settings. It is a typical deep-learning attack.

2.1.4. PHMM. Zhuo et al. proposed the PHMM attack firstly
by introducing bioinformatics into theWFP attack [13].*is
attack collects the features of packet length with direction
from each traffic instance and transforms the feature value of
each packet into the alphabet to be recognized by the model.
*e transformation is named symbolization. In the scenarios
of SSH and Shadowsocks, PHMM achieves a good
performance.

2.2. WFP Defenses. To defend against WFP attacks, many
countermeasures were taken to obfuscate the traffic features
by modifying the traffic. *e WFP defenses can be classified
into packet padding defenses, decoy page defenses, and so on
[27, 28].We further classify the packet padding defenses into
two types, namely, packet padding defenses with and
without delay. *e latency of packet padding defenses de-
pends on their padding strategy. Some defense methods,
including maximum padding defense [29], AP (adaptive
padding)-based defenses [30], probabilistic defenses [13],
and so on, generally introduce very low latency, which can be

Security and Communication Networks 3

omitted. *e major packet padding defenses with delay
include BuFLO (buffered fixed-length obfuscator) [29], CS-
BuFLO (congestion sensitive BuFLO) [31], and Tamaraw
[32]. Decoy defenses contain two types. One is to mimic a
decoy page [33]. *e other one is to add a decoy page as the
background traffic [6].

Besides the aforementioned defenses, there also exist
some other defenses that work at the application layer, such
as randomized pipelining, which is embedded in browsers
and HTTPOS.*eHTTPOS defense was firstly presented by
Luo et al. [27]. It needs to modify the HTTP headers and
changes the HTTP requests to control the size of packets,
which makes the implementation of HTTPOS a little
complicated. In addition, Wang et al. presented another
defense called Walkie-Talkie [28]. Walkie-Talkie works in
the half-duplex mode and needs to add dummy packets and
delays to create collisions. It requires both latency overhead
and bandwidth overhead.

To evaluate our attack, this study selects two latest
probabilistic defenses, namely, probabilistic dummy packet
defense and probabilistic MTU (maximum transmission
unit) padding defense, to produce the defended datasets.*e
former enables each packet to insert a dummy packet ahead
of it with a given probability, while the latter lets each packet
to decide whether to pad its length to MTU or not with a
predefined probability. Each packet has the same probability
to make its decision in the two defenses. *e two proba-
bilistic defenses were first simulated by Zhuo et al. [13].*ey
both use the probability to weigh between latency and
efficacy.

3. Threat Model

Our work mainly focuses on website fingerprinting under
the protection of Shadowsocks, SSH, and TLS. *ese PETs
apply different techniques and are commonly used all over
the world. To be specific, Shadowsocks is a free and open-
source encryption protocol project that is widely used. It is
not a proxy on its own but a protocol. Shadowsocks has
become increasingly popular according to Google trend in
recent years. According to incomplete statistics, hundreds of
thousands of people have downloaded the Shadowsocks
client [9]. *e SSH protocol is included and supported in all
operating systems for the reason that telnet and rlogin are
insecure. *us, it is convenient for those people who seek to
protect their privacy. Also, the TLS technique is becoming
more and more universal. According to the statistical data of
Google in February 2021, about 95% of web traffic in
Chrome for Mac is encrypted, while 90% of web traffic in
Chrome for Windows is encrypted.

Figure 1 shows the typical attack scenario in theWFP area
[13, 19, 26]. We also use this scenario in our work. A user
browses the websites under the protection of Shadowsocks,
SSH, or TLS. A passive local attacker intercepts the encrypted
traffic between the user and the communication network
entrance and tries to infer the user’s browsing privacy.
Specifically, the word “passive” means that the adversary can
record network packets but not modify, delay, drop, or de-
crypt them. Besides, the word “local”means that the adversary

has access only to the link between the user and the entry of
the communication networks. It is noted that all the Shad-
owsocks, SSH, and TLS traffic is encrypted in a different way.
Like previous literature [13, 19, 26], we assume that the
adversary has some prior knowledge of the user and only aims
at identifying the websites. He does not try to decrypt packets
or modify transmissions. Hence, our attack has nothing to do
with the encrypted methods of the traffic.

In this work, we study the fingerprinting of the home
page of those websites. *at is, all instances are obtained
from the homepages of websites. *is task is called website
fingerprinting by most authors in this field. As previous
literature has mentioned, the adversary is supposed to be
able to isolate and parse each traffic generated by a web page
visit. Such isolating and parsing would be done before
performing website fingerprinting attacks.

As with prior work, we study two scenarios, namely,
closed-world and open-world. To be specific, in a closed-
world scenario, it is assumed that the user only visits a given
set of websites, namely, monitored websites, whereas in an
open-world scenario, the user is allowed to visit not just the
monitored websites but a large number of unmonitored
websites, namely, the open-world. Apparently, the open-
world scenario is of practical interest.

4. THE Proposed PF Attack

*is section explains in detail the scheme of PF. For a better
understanding, we first give an overview of PF, which
presents the data processing flow and the module diagrams
in the whole process of identification. In the following
subsections, each module is elaborated by further decom-
position if needed. To validate the PF scheme, the last
subsection introduces the implementation of PF by pseu-
docode and an example.

4.1. PF Overview. In the scenario of PETs like Shadowsocks,
SSH, and TLS, we create a new type of features based on an
existing type of features, i.e., packet length with direction.
Based on the new features, we put forward a new attack PF,
whose basic principle is shown in Figure 2. At the very
beginning of the PF, the attacker needs to gather datasets in
different scenarios of PETs. *en, the datasets are put into
the framework of PF, which contains three basic modules,
including preprocessing datasets, proposing new features,
and classifying.

Specifically, the first module needs to perform the
symbolization to produce the sequence files for all the in-
stances and do the TF-IDF transformation to produce the
representative vector of each instance. *e vectors are taken
as the input of the PWFP model. *e second module le-
verages two submodules, including model training and fold-
in process, to obtain the proposed new features of training
instances and test instances, respectively. Finally, we use the
new features to perform classification in the third module.
Note that KNN is used as the classifier in this work. *e
technical details of these modules are explained in the
following subsections.

4 Security and Communication Networks

4.2.PreprocessingDatasets. In this subsection, we preprocess
the training and test instances to fit the PWFP model.
Specifically, the TF-IDF (Term Frequency-Inverse Docu-
ment Frequency) transformation, which has been exten-
sively used in the field of text classification, is then applied to
obtain a good data representation for the traffic instances.

To do the TF-IDF transformation, we need to construct a
connection between a traffic instance and a plain text. We
build the connection by the following steps. Firstly, we
introduce the concept of symbolization by which each traffic
instance is converted into a traffic sequence file. *en, we
reveal the similarity between a plain text and the sequence
file of a traffic instance for the first time. Based on the
finding, we can view each traffic instance as a plain text
naturally.

4.2.1. Symbolization. At the very beginning of preprocess-
ing, each traffic instance, i.e., a series of consecutive packets
generated from a complete web page visit, should be con-
verted into a sequence file. *e conversion is named sym-
bolization, as shown in Figure 3.

At first, each packet size with direction should be
converted into a feature value (e.g., −1500). To be specific,
the packet size decides the quantity of the feature value.
Besides, the packet direction determines whether or not the
feature value is positive. Since the packet size is nomore than
1500 bytes, the feature value of each packet can be defined by

a number ranging from −1500 to 1500. After doing sym-
bolization, the feature value of each packet in a traffic in-
stance (e.g., −1500) can be further turned into the
corresponding symbol (e.g., AA), as illustrated in Figure 3.
As we see from the figure, the feature values within a certain
range are denoted by two given letters [13]. It is noted that
the letters used for symbolization stem from 20 built-in
amino acids in the HMMER tool [34]. *us, the number of
optional letters equals 20.

4.2.2. Our Finding. After doing the symbolization, the
sequence files are obtained. To apply the probabilistic
topic model, we reveal the similarity between a plain text

Training traffic
instances

Training
sequence files

Representative
vector

PWFP
Model

Topic probability vector

Classifier
(KNN)

Test traffic
instances

Test
sequence files

Representative
vector Topic probability vector

Symbolization

Symbolization

TF-IDF

TF-IDF

Proposing new features

Browser Attacker PETs Websites

Preprocessing training datasets

Preprocessing test datasets

The proposed PF attack

Data gathering

Preprocessing datasets

Model training

Fold-in process

Classifying

Figure 2: *e basic principle of the PF attack.

User

Attacker

Possible Communication Scenarios Servers

Encrypted Traffic

Figure 1: *e typical threat model in different communication scenarios, e.g., Shadowsocks, SSH, and HTTPS.

(Range of feature values, Symbol)

(-1500 to -1491, AA) ...

(-1490 to -1481, AC) ...

... ...

... ...

(-1310 to -1301, AY)

(1300 to 1309 , RA)
(1310 to 1319 , RC)

(1490 to 1499 , RY)

Note: (Range of feature values, Symbol) indicates that the feature values in
the given range should be converted into the given symbol a�er doing
symbolization. Each symbol is composed by two letters in HMMER
Alphabet, namely {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y}.

(Range of feature values, Symbol)

...

...

Figure 3: An intuitive illustration of symbolization.

Security and Communication Networks 5

and the sequence file of a traffic instance by comparing
two specific examples, as shown in Figure 4. *at is, we
randomly select a plain CNN news text and a sequence file
in our experiments as examples. To the best of our
knowledge, it is the first time that the latent similarity is
uncovered.

According to the symbolization method mentioned
above, the feature value of each packet would be turned into
a symbol, which is notated as a “word” in this work. Hence,
each sequence file comprises of a lot of “words.” On the other
side, a plain text comprises many meaningful symbols in-
side, called words. *e similarity in essence between a se-
quence file and a plain text can be concluded by the
following comparison analysis.

At the very beginning, we essentially analyze the
similarity of a “word” in a sequence file with a word in a
text. On the one hand, the essence of both a word in a text
and a “word” in a sequence file is a kind of symbol. On the
other hand, similar to a single word in a text, each “word”
in a sequence file also has its meaning, which indicates the
size and direction of the corresponding packet. *erefore,
each “word” in a sequence file is analogous to a word in a
text. One more step further, a text is a combination of
words. Similarly, a sequence file is a combination of
“words”. Given the above, each sequence file is analogous
to a text. *e above analysis is intuitively shown in
Figure 4.

For the similarity between a sequence file and a plain
text, it is natural to leverage text classification methods for
website fingerprinting. *us, the PWFP model, which in-
corporates the extensively used text classification method
PLSI with WFP, is proposed.

4.2.3. TF-IDF Transformation. As mentioned above, we will
get the sequence file of each traffic instance after symboli-
zation. However, the sequence files cannot be input into the
PWFP model directly. To launch the PWFP model, the
sequence file of each traffic instance, including the training
instance and test instance, should be represented by a
representative vector, namely, the input of the PWFPmodel.
Hence, we also call “a representative vector” as “an input
vector.” Since the TF-IDF transformation quantifies the
importance of each symbol in the traffic sequence files well,
we utilize the TF-IDF transformation to produce the input of
the PWFP model.

In the process of model training, each training sequence
file, e.g., di, needs to be converted into the corresponding
input vector, namely vdi

, such that it can be fed into the
model.*e j th component of the input vector is obtained by
the TF-IDF transformation of wj, which is the j th “word” in
the sequence file. *e TF-IDF transformation of wj is de-
fined by equation (1).

vdi
(j) � tfdi

wj􏼐 􏼑 × idf wj􏼐 􏼑, (1)

where tfdi
(wj) and idf(wj) mean the TF transformation

and IDF transformation of wj, respectively. In detail,
tfdi

(wj) and idf(wj) are defined as equations (2) and (3),
respectively.

tfdi
wj􏼐 􏼑 � log 1 +

n di, wj􏼐 􏼑

max n di, wj􏼐 􏼑|j � 1, . . . , M􏽮 􏽯
⎛⎝ ⎞⎠, (2)

idf wj􏼐 􏼑 � log 1 +
N

m wj􏼐 􏼑
⎛⎝ ⎞⎠, (3)

where M denotes the total number of different “words” in
the corpus, i.e., all the set of the training sequence files. N

denotes the total number of training sequence files.
n(di, wj) denotes the number of the “word” wj occurring
in the training sequence file di. m(wj) denotes the
number of training sequence files which contain the
“word” wj.

Similarly, the test instances need to perform the TF-IDF
transformation before the fold-in process. Each test se-
quence file, e.g., qi, needs to be converted into a corre-
sponding input vector, namely, vqi

. *e related equations are
shown below.

vqi
(j) � tfqi

wj􏼐 􏼑 × idf wj􏼐 􏼑,

tfqi
wj􏼐 􏼑 � log 1 +

n qi, wj􏼐 􏼑

max n qi, wj􏼐 􏼑|j � 1, . . . , M􏽮 􏽯
⎛⎝ ⎞⎠,

(4)

where n(qi, wj) denotes the number of the “word” wj oc-
curring in the test sequence file qi.

4.3. Proposing the New Features. After the TF-IDF trans-
formation, each sequence file will generate a representative
vector. Since the vector is taken as the input of the following
model, it is also called the input vector. *e proposed PF
attack leverages the PWFP model to process the input
vectors. PLSI, which associates a latent semantic variable
(i.e., topic) with each observation [35], is the mathematical
basis of the PWFPmodel. After processing the input vectors,
the parameters of the PWFP model are solved, which lays a
solid foundation for proposing new features. *us, in this

Warren Buffett’s Berkshire
Hathaway Inc.’s may have sold
some Apple Inc. shares during the
third quarter, but …
…

QMQLATSARHQSIHGQMNIH
HMRRMNMCHSIHGIRRLEKT
FWRRMMRRMMMMMMMM
MMLAIHHMIHIHHMHMIHIH
HMHMIHIHHMMNLVHMMN...

A CNN news text The sequence file of a traffic instance

Warren Buffett’s|Berkshire
Hathaway Inc.’s|may|have|sold|
…
…

QM|QL|AT|SA|RH|QS|IH|GQ|
…
…

Words in the CNN news text “Words” in the sequence file

We draw the conclusion: the sequence file is a text in essence.

Figure 4: *e comparison of a plain CNN news text and the
sequence file of a specific traffic instance.

6 Security and Communication Networks

section, the basic theories of PWFP, including the basis of
the PWFP model, model training, and fold-in process, will
be detailed at first. Lastly, we will propose a type of new
features based on the obtained PWFP model.

4.3.1./e Basis of the PWFPModel. In this part, we show the
basis of PWFP. Similar to using PLSI for the task of text
classification, the PWFP model also introduces a latent
variable called “topic,” which has the same functions as the
latent variable (i.e., topic) in PLSI. Rather than an intelligible
meaning in the PLSImodel, the variable “topic” in the PWFP
model has an abstract meaning. In PWFP, “topic” is an
intermediate concept that associates a sequence file (i.e.,
“text”) with a symbol (i.e., “word”) therein. *e interrela-
tions between a sequence file, a “topic”, and a “word” are
represented as conditional probabilities. *e crux of the
PWFP model is to figure out these conditional probabilities,
namely, PWFP parameters. To estimate these conditional
probabilities, the EM (Expectation-Maximization) algo-
rithm is extensively used.

Once the conditional probabilities are obtained, each
traffic instance can be represented by a “topic” probability
vector. Each component of the vector indicates the proba-
bility of the sequence file (i.e., “text”) belonging to the
corresponding “topic.” Hence, mathematically speaking, the
PWFP model can be viewed as a multidimensional space
transformation. To better understand the PWFP model, we
define some notations as shown in Table 1. Note that we add
quotation marks when describing the concepts (e.g., text,
topic, word) inWFP to differentiate the same concepts in the
field of text classification.

To begin with, we show the graph model of PWFP in
Figure 5. *us, in terms of a generative model, the PWFP
model can be built up in the following way:

(1) Select a training sequence file d with probability p(d),
(2) Pick a “topic” z with probability p(z|d),
(3) Generate a “word” w with probability p(w|z).

After the above three steps, we obtain an observed pair
(d, w), and the latent variable z is discarded. Hence, for
given values of di and wj, the joint probability of p(di, wj)

can be deduced by

p di, wj􏼐 􏼑 � p wj|di􏼐 􏼑p di(􏼁 � 􏽘
K

k�1
p wj|zk􏼐 􏼑p di|zk(􏼁p zk(􏼁.

(5)

By repeating the above process, we get all the training
sequence files, i.e., the corpus. Hence, the generative
probability of the corpus D, namely L(D, W), can be rep-
resented as joint probabilities of all the observation pairs.
Furthermore, L(D, W) is calculated by

L(D, W) � 􏽙
N

i�1
􏽙

M

j�1
p di, wj􏼐 􏼑

n di,wj(􏼁
. (6)

After taking the logarithm of L(D, W), L′(D, W) is
obtained by

L′(D, W) � 􏽘
N

i�1
􏽘

M

j�1
n di, wj􏼐 􏼑log p di, wj􏼐 􏼑􏼐 􏼑. (7)

By combination with equations (5) and (7), L′(D, W) is
further deduced to

L′(D, W) � 􏽘
N

i�1
􏽘

M

j�1
n di, wj􏼐 􏼑log 􏽘

K

k�1
p wj|zk􏼐 􏼑p di|zk(􏼁p zk(􏼁⎛⎝ ⎞⎠.

(8)

*e goal of model training is to estimate the probabilities
p(zk), p(di|zk), and p(wj|zk), namely, PWFP parameters.
To figure out the probabilities, it is necessary to domaximum
likelihood estimation for the function L′(D, W). Only when
the function L′(D, W) reaches the maximum, the proba-
bilities are optimal. Intuitively, the probabilities can be
figured out by letting the derivative of L′(D, W) equal zero.
*e EM algorithm is introduced to solve the optimization
problem.

*e EM algorithm includes two steps, i.e., E (expecta-
tion) step and M (maximization) step. *e two steps take
turns to execute until the PWFP parameters converge.

In the E-step, the posterior probability, p(zk|di, wj), is
introduced. It can be computed based on the current esti-
mates of the PWFP parameters, i.e., p(zk), p(di|zk), and
p(wj|zk), according to equation (9) derived by the Bayes
rule.

p zk|di, wj􏼐 􏼑 �
p zk(􏼁p di|zk(􏼁p wj|zk􏼐 􏼑

􏽐
K
l�1 p zl(􏼁p di|zl(􏼁p wj|zl􏼐 􏼑

. (9)

In the M-step, the PWFP parameters are updated by the
posterior probabilities that are computed in the previous
E-step. *e equations for undating the parameters can be
derived by the Lagrange multiplier method and demon-
strated as

p wj|zk􏼐 􏼑 �
􏽐

N
i�1 n di, wj􏼐 􏼑p zk|di, wj􏼐 􏼑

􏽐
M
j�1 􏽐

N
i�1 n di, wj􏼐 􏼑p zk|di, wj􏼐 􏼑

,

p di|zk(􏼁 �
􏽐

M
j�1 n di, wj􏼐 􏼑p zk|di, wj􏼐 􏼑

􏽐
M
j�1 􏽐

N
i�1 n di, wj􏼐 􏼑p zk|di, wj􏼐 􏼑

,

p zk(􏼁 �
1
R

􏽘

M

j�1
􏽘

N

i�1
n di, wj􏼐 􏼑p zk|di, wj􏼐 􏼑,

R ≡ 􏽘
M

j�1
􏽘

N

i�1
n di, wj􏼐 􏼑.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

4.3.2. Model Training. *e aim of model training is to es-
timate the PWFP parameters for the training instances. We
use the EM algorithm to achieve this goal. *e procedures of

Security and Communication Networks 7

using the EM algorithm to estimate the PWFP parameters
can be specified as follows:

(1) Initialization: Randomly initialize the posterior
probabilities p(zk|di, wj) and the PWFP parameters
of the training instances, namely, p(di|zk), p(wj|zk),
and p(zk).

(2) E-step: Based on the current PWFP parameters,
update the posterior probabilities p(zk|di, wj)

according to equation (9).
(3)M-step: Based on the current posterior probabili-

ties, update the PWFP parameters of the training
instances according to equation (10).

(4) Repeat the E-step and M-step until the number of
iterations reaches the setting value. *e results in the
last iteration are taken as the estimated PWFP pa-
rameters for the training instances.

4.3.3. Fold-In Process. Once the PWFP parameters of the
training instances are estimated by the EM algorithm, the
obtained parameters p(zk) and p(wj|zk) can be further used
to infer the parameters of the test instances, i.e., p(qi|zk).
*e inference is called as “fold-in process” in previous work
[36]. We also leverage the EM algorithm in the fold-in
process. In the fold-in process, the parameters p(wj|zk) and
p(zk) remain fixed, whereas the rest parameters p(qi|zk)

and the posterior probabilities p(zk|qi, wj) need to be
updated by the EM algorithm. *e fold-in process can be
implemented by the following procedures:

(1) Initialization: Randomly initialize the new PWFP
parameters, including the conditional probabilities
of the test instances p(qi|zk) and the posterior
probabilities of the test instances p(zk|qi, wj), while
keeping the PWFP parameters p(zk) and p(wj|zk)

fixed.
(2) E-step: Based on the known PWFP parameters, i.e.,

p(zk) and p(wj|zk), and the current estimated
PWFP parameters, i.e., p(qi|zk), update the posterior
probabilities p(zk|qi, wj) according to the following
equation:

p zk|qi, wj􏼐 􏼑 �
p zk(􏼁p qi|zk(􏼁p wj|zk􏼐 􏼑

􏽐
K
l�1 p zl(􏼁p qi|zl(􏼁p wj|zl􏼐 􏼑

. (11)

(3) M-step: Based on the current posterior probabilities
p(zk|qi, wj), update the parameters p(qi|zk)

according to the following equation:

p qi|zk(􏼁 �
􏽐

M
j�1 n qi, wj􏼐 􏼑p zk|qi, wj􏼐 􏼑

􏽐
M
j�1 􏽐

N′
i�1n qi, wj􏼐 􏼑p zk|qi, wj􏼐 􏼑

. (12)

(4) Repeat the E-step and M-step until the number of
iterations reaches the setting value. *e results of the
last iteration are taken as the estimated PWFP pa-
rameters for test traffic instances.

4.3.4. /e Proposed New Features. *e model training and
fold-in process aim to figure out the model parameters,
namely, p(di|zk), p(zk), and p(qi|zk). Based on p(di|zk) and
p(zk), each training traffic instance can be represented by a
probability vector, each component of which is a “topic”
probability. Similarly, each test instance can be represented by
a probability vector calculated by p(qi|zk) and p(zk). Hence,
in the PF attack, each instance is represented by a vector
constituted by “topic” probabilities. Note that the “topic”
probabilities are also called the proposed new features.

Table 1: *e notations used in this work.

Notations Descriptions
d a training sequence file
q a test sequence file
z a “topic”
w a “word” in a sequence file
W *e vocabulary, i.e., the set of different “words”
D *e corpus, i.e., the set of training sequence files
Z *e set of “topics”
M *e total number of different “words” in the corpus
M′ *e total number of “words” in the corpus
N *e total number of training sequence files
N′ *e total number of test sequence files
K *e total number of latent “topics”
n(d, w) *e number of the “word” w occurring in the training sequence file d

n(q, w) *e number of the “word” w occurring in the test sequence file q

p Probability
p(|) Conditional probability
p(,) Joint probability

d z w

N
M’

p(d) p(z|d) p(w|z)

Figure 5: *e graph model of PWFP.

8 Security and Communication Networks

*e proposed new features of a traffic instance and a test
instance can be calculated similarly with respective pa-
rameters of PWFP. To be specific, the proposed new features

of a training instance di, namely div, can be computed by
equation (13). Similarly, the proposed new features of a test
instance qi, i.e., qiv, would be calculated by equation (14):

div � p z1|di(􏼁, . . . , p zk|di(􏼁, . . . , p zK|di(􏼁(􏼁,wherep zk|di(􏼁 �
p zk(􏼁p di|zk(􏼁

􏽐
K
k�1 p zk(􏼁p di|zk(􏼁

, (13)

qiv � p z1|qi(􏼁, . . . , p zk|qi(􏼁, . . . , p zK|qi(􏼁(􏼁,wherep zk|qi(􏼁 �
p zk(􏼁p qi|zk(􏼁

􏽐
K
k�1 p zk(􏼁p qi|zk(􏼁

. (14)

4.4. Classifying. *e PF attack leverages typical KNN to
make a classification. To achieve this goal, it is needed to
select a similarity strategy. *e similarity strategy is a way to
evaluate the differences between two different feature vec-
tors. *e cosine similarity and Euclid similarity are two
typical strategies. According to the experimental results, the
Euclid similarity is used in our evaluations.

Known from text classification, there usually exist more
common words between two texts that belong to the same
class than two different classes. *us, we add a weight co-
efficient to tune the similarity between two traffic instances
or between a traffic instance and a web page class. For two
traffic instances, the weight coefficient is defined by the
number of common “words” between their respective se-
quence files. For the similarity between a traffic instance and
a web page class, the weight is defined by the average number
of the common “words” between the traffic instance and
each instance belonging to the web page.

4.5. Implementation. In the above subsections, the theo-
retical part of PF has been demonstrated extensively. To
validate PF, we need to implement all the above techniques
step by step, as shown in Algorithm 1. *e PF algorithm
takes the folder paths of training data and test data as input,
and output various metrics in different experiments. *e
metrics will be discussed in detail in the next section. For
convenience, we perform the symbolization before the PF
implementation in this work. Note that four parameters are
needed for the PF to run, including t, k, m, and n. *e
parameter t is influenced by the number of web pages, while
the parameter k can tune the performance of PF. For the
parameters m and n, we set them the same as in our eval-
uations. According to our experimental results and previous
literature [35], the number of iterations can be set as a fixed
number 50 in all the evaluations. We also validate the ra-
tionality of this setting by a specific experiment.

For a better understanding, we further show the em-
pirical illustration of the PF attack, as shown in Figure 6.
Each step is explained with an example of a real dataset in
our evaluations.

5. Experimental Preparations

In this section, we make several necessary preparations for
the following evaluations. Firstly, we specify the datasets

used in our experiments, including the open datasets and
our gathered datasets. *en, the metrics of different ex-
perimental settings are explained at length. Subsequently,
the baseline attacks are briefly introduced.

5.1. Datasets. We use seven datasets in our evaluations,
including three open datasets released in Ref. [4, 13], and
four datasets collected by ourselves. *ese datasets are
collected in different scenarios, such as Shadowsocks, SSH,
and TLS.

5.1.1. /e Open Shadowsocks Datasets. We evaluate one
open Shadowsocks datasets, i.e., Alexa74 [13], in this work.
*e Alexa74 dataset contains 74 webpages. Each web page
contains 25 instances, 17 of which are for training. *e
webpages of Alexa74 are filtered from the Alexa top 100 sites.

5.1.2. /e Open SSH Datasets. We test two open SSH
datasets, namely, SSH55 and SSH100. Both of them are
filtered from the Liberatore’s dataset [4]. It was collected
over an encrypted SSH tunnel for about three months and
contains traces of encrypted connections to 2000 sites. Since
the dataset has a lot of empty pcap files caused by various
failures during the collecting process, we first pick out two
datasets with different average lengths of traffic instance file
(15k and 20k) for each web page. Note that all the traffic
instance files of each chosen web page are successive in time.
*en, we extract the timestamp and length of each TCP
packet in each file, and thus obtain the desired datasets.

Besides the open datasets, we gather another four datasets
in different scenarios. *ree of them are gathered in a
Shadowsocks environment, while the rest is gathered in a TLS
scenario. *e gathering method is specified in the following.

5.1.3. Data Gathering. We rent a cloud server to collect our
datasets. To collect the Shadowsocks datasets, the Clash
software is installed as the client to communicate with the
remote Shadowsocks proxy server, through which we can
directly connect to the websites. *e datasets are collected
automatically by a C crawling script. *e script simulates the
user’s behavior of surfing websites by controlling the Firefox
Browser 76.0.1, whose cache function is disabled to prevent
loading from the cache, and leverages tcpdump to capture
the traffic on the wire. Moreover, the script runs on an

Security and Communication Networks 9

Ubuntu 16.04 virtual machine to avoid perturbations in-
troduced by the background network traffic. Besides, we
disable all the automatic or background network traffic such
as the auto-updates. It is also important tomake sure that the
system-level network settings are all right. For example, it is
critical to change the MTU to the standard Ethernet MTU
(1500 bytes) and disable offload. We collect three Shad-
owsocks datasets, i.e., AleSS73, AleSS287, and OpwSS6879.
*e total size of them is about 23.5 GB, 17.6GB, and 23.2GB,
respectively.

To collect the HTTPS100 dataset, we follow the same
routine mentioned above while closing the Clash software.
*e total size of HTTPS100 amounts to about 10.4GB. Note

that all the webpages are randomly selected from the Alexa
top 10k webpages.

5.1.4. Our Collected Shadowsocks and HTTPS Datasets.
*e collected datasets, AleSS73, AleSS287, and HTTPS100,
contain 73, 287, and 100 webpages, respectively. Each web page
has 100, 20, and 40 instances, respectively. *ey are evaluated
in the closed-world setting. Besides, the OpwSS6879 dataset
contains 6879 webpages. Each web page has one instance. It is
evaluated in the open-world setting together with the AleSS287
dataset. It is worth noting that none of the webpages in
AleSS287 is included in the webpages in OpwSS6879.

input: training data, test data
output: different combinations of performance indicators, including (TP, FN, FP, TN, TPR, FPR, BDR, ACC) and (TP, FN, TPR)
(1) function PF (training data path, test data path)

(2) set the number of iterations in the training process, i.e., m

(3) set the number of iterations in the fold-in process, i.e., n

(4) set the number of “topics”, i.e., t

(5) set the number of nearest neighbors for KNN, i.e., k

(6) load the training samples, perform the TF-IDF transformation for training instances
(7) train the PWFP model
(8) compute the “topic” probability vectors of training samples, i.e., p(z|dtraining)

(9) load the test samples, perform the TF-IDF transformation for test instances
(10) fold-in the test samples
(11) compute the “topic” probability vectors of test samples, i.e., p(z|dtest)

(12) calculate the distance between each training sample and test sample
(13) perform a KNN classification
(14) statistic the results
(15) end function

ALGORITHM 1: *e PF implementation in this work

Traffic instance Traffic sequence file

Symbolization
PWFP

KNN

Results Training Fold-in

Output Input

Topic probability vector

1591850465583 -259
1591850465583 -67
1591850465583 -311
1591850465591 -259
1591850465591 -70
1591850465591 -556
1591850465601 -259
1591850465601 -53
1591850465601 -352

STOCKHOLM 1.0
0/0
HFIEGWHFIEFRHFI
FRHRHRHRHRHRH
RHRHGVRHRHRHR
0/1
HFIEGWHFIFGRHFI
FGWHVIYIYKIHFID
FRHFIFFRRHEVRH

TF-IDF

No. Topic0
Topic1
Topic2
Topic3
Topic4
Topic5
Topic6
Topic7
Topic8

Predict
0
0
1
1
2
2
3
3

0
1
2
3
4
5
6
7

0.006524333029
0.007427116580
0.006417176095
0.007130516668
0.007171376917
0.006799537509
0.007013569396
0.006271077123
0.007708445723

Figure 6: *e empirical illustration of the PF attack with a specific example.

10 Security and Communication Networks

For a better understanding, the datasets used in this work
are listed in Table 2.

5.2. Metrics. To evaluate the experimental results, we utilize
the following metrics that are extensively used in the WFP
area.

In the closed-world evaluation, we use the attacker’s
accuracy, which is defined as the ratio of the number of
correctly classified traces to the total number of traces, to
evaluate the performance of different attacks as previous
research [13, 19, 26]. *e ratio equals TPR, namely, the
probability that a monitored web page is classified as the
correct monitored web page, in the closed-world scenario.
Besides, another indicator called “recall” has the same
definition as TPR. In the open-world evaluation, we take into
consideration 3 indicators, including TPR, FPR, and BDR:

BDR �
TPR × p(mon)

TPR × p(mon) + FPR × p(unmon)
, (15)

where p(mon) � |monitered test instances|/
|total test instances|, p(unmon) � 1 − p(mon). Note that
FPR is defined as the probability that an unmonitoredweb page
is incorrectly classified as a monitored web page. Since BDR
considers the differences in the size of the different classes, it is
widely used to evaluate the feasibility and effectiveness of an
attack [13, 26]. Besides, a metric called “precision” is also used
in previous literature [19]. In fact, it can be proved that BDR is
equivalent to precision. *us, we also called BDR as precision
in this work.

5.3. State-of-the-Art Attacks. For comparison, we consider
four state-of-the-art attacks, including KFP [26], KNN [18],
PHMM [13], and DF [19]. Besides, these attacks are based on
traditional machine-learning techniques or deep-learning
techniques, including RF, ameliorated KNN, HMM, and
CNN. Hence, they are representative.

6. Experimental Evaluation

In this section, we first perform two preliminary exper-
iments to adjust the optimal parameters of PF and
compare our proposed new type of features with the
existing features. To validate the feasibility of PF, the
subsequent experiments are conducted under three

different scenarios that are extensively studied in previous
literature. To be more persuasive, all the Shadowsocks,
SSH, and TLS traffic are tested.

6.1. Preliminary Experiments. At the beginning of the ex-
perimental evaluation, we conduct two preliminary exper-
iments, including parameters tuning and feature evaluation.
*e former is used to pick out the optimal parameters for PF.
Besides, we design a simple experiment, namely, feature
evaluation, to compare the proposed features and their
source features. *e details are specified below.

6.1.1. Parameters Tuning. As mentioned above, four pa-
rameters need to be determined in the PF implementation.
We define the four parameters as m, n, t, and k. Specifically
speaking, m denotes the number of iterations in the training
process. n denotes the number of iterations in the fold-in
process. t denotes the number of “topics”. k denotes the
number of nearest neighbors of KNN. To find out the op-
timal parameters, we devise a method by ourselves. In the
following, we show our method by three specific experi-
ments based on SSH55. Each experiment is used to deter-
mine one parameter.

To determine m and n, we need to fix the value of t and k.
Furthermore, we let m equal to n according to previous PLSI
applications.*en, m and n are set as several different values.
Subsequently, we run the PF algorithm, draw the accuracy
curve, and choose the best parameter value. Similarly, we
determine the parameters t and k in the closed-world setting.
*e experimental results are demonstrated in Figure 7. As
the left figure in Figure 7 shows, the accuracy of PF does not
improve as the number of iterations rises from 50 into 150.
For efficiency, we set the parameters m and n as 50. Known
from the middle figure in Figure 7, the accuracy reaches
maximum when the parameter k equals 1. Hence, the pa-
rameter k is set as 1 in this scenario on the SSH55 dataset. In
the right figure of Figure 7, we get the maximal accuracy
when the parameter t is set as 150. Naturally, we set the
parameter t as 150. Similarly, we obtain the optimal pa-
rameters’ values used on other datasets.

6.1.2. Feature Evaluation. We perform feature evaluation by
comparing the effectiveness of the proposed new type of

Table 2: *e details of the datasets.

Datasets PETs Source Total Size1 Training size Test size Evaluations
SSH55 SSH Open 55 × 20 55 × 18 55 × 2 Closed-world evaluation
SSH100 SSH Open 100 × 20 100 × 18 100 × 2 Closed-world evaluation
HTTPS100 TLS Ours 100 × 40 100 × 36 100 × 4 Closed-world evaluation
Alexa74 Shadowsocks Open 74 × 25 74 × 17 74 × 8 Closed-world evaluation
AleSS73 Shadowsocks Ours 73 × 100 73 × 90 73 × 10 Closed-world evaluation
AleSS287 Shadowsocks Ours 287 × 20 It depends2 It depends Closed-world evaluation
AleSS287 Shadowsocks Ours 287 × 20 It depends It depends Open-world evaluationOpwSS6879 6879 × 1
1*e total/training/test size column is formatted as web page number × instances per web page. 2“It depends”means that the training/test size varies according
to the specific experiments.

Security and Communication Networks 11

features, i.e., the “topic” probability vector, with the existing
type of features, i.e., packets length with direction. For the
sake of fairness, the KNN classifier is applied for both two
kinds of features. For convenience, the latter attack is named
LF (Length Fingerprinting). We compare PF and LF in a
closed-world scenario on the AleSS73 dataset. *e accuracy
of PF and LF is 99.79% and 51.46%, respectively. *us, it is
evident that our proposed new type of features are more
effective than the existing features. *at is to say, by
leveraging the PWFPmodel, we obtain a type of features that
are more informative and powerful than the existing fea-
tures, which paves a road for devising a concise traditional
machine-learning attack.

6.2. Closed-World Evaluation. *e closed-world evaluation
includes two kinds of experiments. *ey are different in that
whether the dataset is defended or not. For the nondefended
datasets, we test six datasets based on three different PETs,
including Shadowsocks, SSH, and TLS. For the defended
datasets, we created twenty datasets to perform our
experiments.

6.2.1. Attack on Nondefended Datasets. To validate the
feasibility of a WFP attack and tune the proper parameters’
values for a WFP attack, the closed-world evaluation is
fundamental and critical. We leverage six nondefended
datasets of various types in this closed-world scenario.

*e PF attack needs to set four parameters to start.
Specifically, we set the number of iterations as 50 for both the
model training and fold-in process; meanwhile the number
of nearest neighbors is set as 1. As for the number of “topics,”
we set 150 for SSH55, SSH100, HTTPS100, Alexa74, and
AleSS73, while set 400 for AleSS287. It is noted that we
utilize the original codes to run the state-of-the-art attacks
and each algorithm is run five times to obtain its mean
performance. *e performance of all the attacks is shown in
Table 3.

According to Table 3, the PF attack attains a stable
better accuracy performance than the other attacks, even

reaches an accuracy as high as 99.79% on AleSS73, while
KNN and PHMM show fluctuating performance on dif-
ferent datasets. Specifically, PF reaches an accuracy of
above 93% on five datasets, above 95% on three datasets. It
beats other attacks, including DF that is based on deep
neural networks, on all the datasets. As for KNN and KFP,
their accuracy performance decreases to 70.91% and
43.64% on SSH55, 56.01% and 47.00% on SSH100, 78.75%
and 55.75% on HTTPS100, respectively. *e oscillation of
performance of KNN and PHMM probably ascribes to
their sensitivities to some factors, such as the number of
training instances, the data quality. Although KFP ach-
ieves a comparable performance with PF on AleSS73,
Alexa74, and SSH100, and DF attains a comparable
performance with PF on AleSS73, they have respective
disadvantages compared with PF. As for DF, when the
number of training instances reduces, more numbers of
iterations are needed to obtain a better accuracy, which
requires more time. Regarding KFP, it needs more types of
features than PF, thus introducing more feature engi-
neering work. *e results demonstrate that PF is highly
effective in different scenarios, including Shadowsocks,
SSH, and TLS.

Moreover, we investigate the impact of different ratios of
the number of training instances to the number of total
instances on classification accuracy.*e results are shown in
Figure 8. Since the steeper curve in Figure 8 means the more
sensitive to the change of the number of training instances
for each attack, it can be concluded that PF and PHMM are
less sensitive to the change of training ratio than other at-
tacks. As the results show, PF only needs rare training
samples to reach a high success rate. To be specific, the PF
attack only uses 4 training samples to obtain a success rate of
91.46%. *is is a piece of good news for WFP, which is
bothered by the data staleness issues [16]. Conversely, the
accuracy curve of DF is the steepest one. Specifically, the
accuracy of DF improves from 39.9% to 73.95% when the
ratio increases from 20% to 40%, and continues to rise as the
ratio further increases. *is is in line with the characteristics
of deep-learning methods.

1.0

0.9

0.8

0.7

0.5

0.6

A
CC

0.9

1.0 1.0

0.8

0.7

0.5

0.6

A
CC

0.9

0.8

0.7

0.5

0.6

A
CC

50 100 150
The number of iterations, i.e. m The number of nearest neighbors, i.e. k

PF

50 100 150 200
The number of ‘topics’, i.e. t

PFPF

0 1 2 3 4 5

t=150, k=1 m=n=50, t=150 m=n=50, k=1

Figure 7: *e results of the experiments of parameters tuning based on SSH55.

12 Security and Communication Networks

6.2.2. Attack on Defended Datasets. In this evaluation, we
consider two typical countermeasures in Shadowsocks,
namely, probabilistic MTU padding defense, and proba-
bilistic dummy packet defense, which were put forward by
Zhuo et al. [13]. *e former one means padding the specific
packets to MTU. Whether a packet needs to be padded
depends on a given probability. *e latter defense denotes
inserting a new packet with random size and direction
following the original packet in a given probability. It is
noticed that the decisions, namely, whether to pad or insert,
are made by every packet in a traffic instance with the same
probability. *e more the probability is, the more overhead
and disturbance are introduced. In total, we produce 20
defended datasets with different padding or inserting
probabilities, ranging from 10% to 100%, based on
AleSS287.

Note that we use the same parameters as the closed-
world evaluation on nondefended datasets in this part.
Table 4 shows the results of each attack against the defended
datasets. Results show that our attack can well resist the two
typical defenses, and achieves the best performance among
all the evaluated attacks. Specifically, in the evaluation of
attack on the probabilistic dummy packet defense, PF attains
an accuracy of 55.66% when the inserting probability is 50%,
even reaches an accuracy of 23.17% when the inserting
probability becomes as high as 100%, whereas DF gets an
accuracy of 34.15% and 1.92%, and PHMM obtains an
accuracy of 0.53% and 0.35% in the two situations. Similarly,
in the evaluation of attack on the probabilistic MTU padding

defense, the accuracy of PF reaches up to 32.93% when the
padding probability becomes as high as 90%, while PHMM
only attains an accuracy of 0.17% by this time. It can be
concluded that the two probabilistic defenses need a rela-
tively high overhead to resist PF compared to PHMM and
DF, which indicates the strong distinguishing ability of our
proposed features.

6.3. Open-World Evaluation. In this part, we first investigate
the impact of the parameter k on the performance indicators
in the open-world setting, including TPR, FPR, and BDR.
*en, two typical experiments are performed to evaluate the
performance of PF.

6.3.1. Impact of the Parameter k. *e parameter k is vital to
the KNN algorithm. In the KNN implementation, the al-
gorithm picks out the top k closest training samples for each
test sample. *en, it assigns the test sample to the category
that most of the k samples belong to. Known from the basic
principle of KNN, the test sample tends to be assigned to the
categories with larger sample sizes as the parameter k in-
creases. Hence, to investigate the impact of k on the per-
formances of PF in an open-world setting, we design this
experiment. To be specific, we set all the parameters except
for k as those in the closed-world setting while varying the
value of k.

We perform seven experiments.*e parameter k is set as
1, 3, 5, 7, 9, 13, and 21, respectively, in each experiment.
Furthermore, the performance indicators, i.e., TPR, FPR,
and BDR, are recorded and plotted in Figure 9. From the
curves in Figure 9, FPR shows a slight decrease while BDR
indicates a minor increase as k increases. In addition, the
TPR curve shows a slight increase when k is less than 3,
whereas it slowly declines as k increases from 3. *e results
are consistent with previous expectations. From the general
tendency of the curves, k can be used to tune the perfor-
mance of PF. For example, if the adversary puts more
emphasis on TPR, k should be set as a small value. On the
contrary, if FPR is more important, then k should be set as a
large value.

6.3.2. Open-World Evaluation. In the open-world evalua-
tion, there exist two kinds of training strategies for the at-
tacker. As for the first one, the attacker not only trains the
monitored dataset but also the unmonitored dataset,
whereas he only trains the monitored dataset under the

Table 3: *e results of the closed-world evaluation on nondefended datasets.

Datasets KNN KFP DF PHMM PF
SSH55 70.91 88.37 85.45 43.64 93.18
SSH100 56.01 86.00 85.50 47.00 87.75
HTTPS100 78.75 90.00 88.25 55.75 93.5
Alexa74 96.96 97.42 93.24 97.97 98.48
AleSS73 96.57 98.97 99.24 91.51 99.79
AleSS287 82.66 82.68 86.41 62.89 95.73

1.0

0.9

0.8

0.7

0.5

0.4

0.3

0.6

A
cc

ur
ac

y

0 20 40 60 80 100
Ratio (%)

KNN
KFP
DF

PHMM
PF

Figure 8: Closed World: *e impact of different ratios of the
number of training instances to the number of total instances on
classification accuracy based on AleSS287.

Security and Communication Networks 13

second strategy. We consider the first strategy, which is
called the standard model in previous literature [19]. Since
PHMM takes the second strategy in the original paper, all
the attacks besides PHMM are evaluated on the AleSS287
and OpwSS6879 datasets.

We conduct two experiments here. We first investigate
the impact of different ratios of the number of unmonitored
training instances to the number of total unmonitored in-
stances on the performance of all the attacks, except for
PHMM. In this experiment, we conduct five tests and draw
the curves of TPR, FPR, and BDR for all the attacks in each
test.*e ratio is set as 50%, 60%, 70%, 80%, and 90% for each
test. *e results are shown in Figure 10. We can see that the
PF attack obtains an over 89.48% TPR in all cases. *e
performance is superior to all other attacks. Besides, PF
attains an over 93.07% BDR, a below 1% FPR in all the tests.
Such performance beats all other attacks in all situations.
Although KFP reaches a comparable FPR and BDR per-
formance with PF in most tests, its TPR performance is far
falling behind PF.

Next, we experiment and draw the Precision-Recall
curves for comparing these attacks. Since the size of the
monitored and unmonitored datasets is heavily unbalanced,
the Precision-Recall curves are extensively used to represent
the performance of the classifiers to avoid the base-rate
fallacy [5]. At first, we take 90% of monitored instances and
80% of unmonitored instances for the training, while the rest
of the instances are used for the test. *en, we conduct a set
of tests by configuring a series of different settings for each

attack. For different attacks, the configuring methods are
different. Specifically, for KNN, KFP, and PF, we configure
multiple settings by varying the parameter k following
previous literature [19]. However, since DF uses the pre-
diction probability to classify the input traffic instances, we
take multiple thresholds of probability as different settings.
Finally, the precision and recall performance of each attack
in each test is calculated. According to the evaluation results
of all the attacks, the Precision-Recall curves are plotted.

As we see in Figure 11, our attack achieves a performance
of more than 97% precision and 93% recall in all settings,
which outperforms the other attacks remarkably. To be
specific, when the precision is 97%, the recall of DF, KFP,
and KNN is remarkably less than PF. Similarly, when the
recall is 93%, the precision of DF and KNN is also less than
PF. For KFP, when KFP attains a comparable high precision
performance (e.g., 1) as FP, its recall performance is under
80%, whereas the recall of PF is over 93%. Hence, the
Precision-Recall curves demonstrate the good performance
of PF.

7. Discussion

In this study, our goal is to seek another traditional machine-
learning attack that merely uses one type of features, which
are more effective than existing features. *is goal mitigates
the burden of feature engineering work for WFP. By
combining the probabilistic topic model with WFP, we
devise the new type of features, i.e., “topic” probability

Table 4: Accuracy in a closed-world scenario on the AleSS287’s defended datasets.

Attack on the probabilistic dummy packet defense
Attacks p � 0 p � 10 p � 20 p � 30 p � 40 p � 50 p � 60 p � 70 p � 80 p � 90 p � 100
PF 95.73 90.67 80.65 72.99 62.53 55.66 42.59 39.55 34.05 26.22 23.17
PHMM 62.89 60.10 55.92 52.79 43.72 34.15 24.04 11.15 5.74 2.96 1.92
DF 86.41 18.03 1.22 0.53 0.53 0.53 0.53 0.35 0.35 0.35 0.35

Attack on the probabilistic MTU padding defense
Attacks p � 0 p � 10 p � 20 p � 30 p � 40 p � 50 p � 60 p � 70 p � 80 p � 90 p � 100
PF 95.73 94.68 93.99 93.03 90.06 89.72 84.64 76.04 63.93 32.93 0.78
PHMM 62.89 61.84 58.01 56.97 50.17 38.15 26.13 8.36 1.90 0.17 0

1.0

0.9

0.8

0.7

0.6

0.5

TP
R

0.9

1.0

0.8

0.7

0.6

0.5

BD
R

FP
R

0 5 10 15 20
The number of nearest neighbors, i.e. k

0 5 10 15 20
The number of nearest neighbors, i.e. k

0 5 10 15 20
The number of nearest neighbors, i.e. k

0.175

0.200

0.150

0.125

0.100

0.075

0.050

0.025

0.000

PF PF PF

m=n=50, t=400 m=n=50, t=400 m=n=50, t=400

Figure 9: *e impact of the parameter k on the performances of PF in an open-world setting.

14 Security and Communication Networks

vector. Based on the new features, the PF attack is proposed
and evaluated on the Shadowsocks, SSH, and TLS traffic. To
be more sound and persuasive, we not only use the open
datasets but also the datasets collected in a realistic scenario.
*e evaluation results show the good performance of PF,
which proves that using a probabilistic topic model for WFP
is workable.

*e reason that PF is effective can be explained by the
angle from which we look at a traffic instance. Traditionally,

a traffic instance is represented by a length vector, each
component of which indicates the value of packet length
with direction. Hence, each component of the vector has the
same physical significance (i.e., a length), which means that
the traffic instance is merely viewed and described in a one-
dimensional space. However, in the PF scheme, a traffic
instance is represented by the “topic” probability vector,
whose components have different physical significances that
indicate the probabilities of the traffic instance belonging to
different “topics.” Hence, each traffic instance is mapped to a
multidimensional space in our work. *is truth probably
explains the reason why PF is more effective than LF and
performs best in both the closed-world and open-world
evaluations.

Besides lessening the boring work of feature engineering,
PF also reduces the number of features fed into the classifier.
For example, the KNN attack needs 3736 features as its
input. Besides, DF takes 5000 features as the input of DNNs.
However, the needed number of features in PF equals the
number of “topics,” which is one of the model parameters
and usually has the same order of magnitude as the number
of monitored webpages (|″topics″|/|monitoredweb pages|
< 200%) according to the experimental results.

Regarding the future work, since our key idea lies in the
combination of probabilistic topic model with WFP, other
models, such as LDA (latent Dirichlet allocation), HDP
(hierarchical Dirichlet process), should be effective in WFP
too. Note that our work gives an example of digging out a
new type of distinguishing features from the existing (i.e.,

1.0

0.9

0.8

0.7

0.5

0.4

0.3

0.6TP
R

0.200

0.175

0.150

0.125

0.075

0.050

0.000

0.025

0.100FP
R

1.0

0.9

0.8

0.7

0.5

0.4

0.3

0.6BD
R

40 50 60 70 80 90 100

40 50 60 70 80 90 100 40 50 60 70 80 90 100

KNN
KFP

DF
PF

X: the ratio of the number of unmonitored
training instances to the number of total
unmonitored instances (%)

Y: the value of TPR, FPR, and BDR

Figure 10: OpenWorld:*e impact of different ratios of the number of unmonitored training instances to the number of total unmonitored
instances on TPR, FPR, and BDR.

1.0

1.1

0.9

0.8

0.7

0.6

0.5

Pr
ec

isi
on

0.5 0.6 0.7 0.8 0.9 1.0 1.1
Recall

KNN
KFP

DF
PF

Figure 11: Open World: *e Precision-Recall curves.

Security and Communication Networks 15

baseline) type of features, i.e., packets length with direction.
However, the baseline type of traffic features is not limited to
that used in this paper. Besides, the symbolization method
can be designed in another way too. Similar work might be
the potential new directions to improve and extend our
attack.

Besides, our methodmight be used in other related fields,
such as radio frequency fingerprint identification (RFFID)
[37, 38]. RFFID is a lightweight access authentication
method in mobile edge computing. It uses the radio fre-
quency signal fingerprint of the wireless devices for iden-
tification. Generally speaking, the first process of RFFID is
offline to establish a fingerprint database for legitimate
wireless devices. *en, the fingerprint is used on the sub-
sequent online authentication process. Like a website fin-
gerprinting attack, if the fingerprint of wireless devices can
be converted into a symbol with some rule, it is very possible
to apply our method in the second process of RFFID. Such
direction has great potential.

8. Conclusions

In this work, we are the first to investigate the performance
of a WFP attack using the probabilistic topic model. Our
work is inspired by a neglected truth, that is, the sequence
file generated from a traffic instance and a plain text are
similar essentially. *en, we propose the PWFP model and
the PF attack. Furthermore, our attack is tested and
compared with four state-of-the-art attacks. *e results in
three extensively applied scenarios, i.e., Shadowsocks, SSH,
and TLS, prove that PF is feasible and effective. In all, we
find and leverage the new type of features, i.e., the “topic”
probability vector, to identify the test webpages under the
protection of different PETs, and obtain a better perfor-
mance than prior attacks, including a deep learning attack.
To the best of our knowledge, it is the first time that a
traditional machine-learning attack beats a deep-learning
attack. *e success of PF means that there exists great
potential information for existing traffic features. Besides, it
indicates that the performance of current WFP attacks
might further improve while using fewer types of features
and need less feature engineering work if the unexploited
potential information of known traffic features is dug out
and leveraged. It points at a research direction for the
future.

Data Availability

To ensure the reproducibility of the evaluation results, the
source code and datasets of this work will be provided upon
request.

Conflicts of Interest

*e authors declare that they have no conflicts of interest.

Acknowledgments

*is work was supported by the National Key Research and
Development Program of China (No. 2018YFB0204301) and

the Science and Technology Innovation Plan of Hunan
Province (No. 2020RC2047).*e authors are very grateful to
Marc Liberatore, Zhongliu Zhuo, Tao Wang, Jamie Hayes,
and Payap Sirinam for their useful feedback and sharing
their code and data with us, which greatly expanded the
scope of our work.

References

[1] L. Max Mc, “Shadowsocks,” 2016, http://www.shadowsocks.
org/.

[2] J. Wu, S. Guo, H. Huang, W. Liu, and Y. Xiang, “Information
and communications technologies for sustainable develop-
ment goals: state-of-the-art, needs and perspectives,” IEEE
Communications Surveys & Tutorials, vol. 20, no. 3,
pp. 2389–2406, 2018.

[3] D. Herrmann, R. Wendolsky, and H. Federrath, “Website
fingerprinting,” in Proceedings of the IEEE International
Conference on Cloud Computing Technology and Scienc,
pp. 31–42, IEEE, Beijing, China, December 2009.

[4] M. Liberatore and B. N. Levine, “Inferring the source of
encrypted HTTP connections,” in Proceedings of the Com-
puter and Communications Security, pp. 255–263, ACM,
Alexandria, VA, USA, October 2006.

[5] A. Panchenko, F. Lanze, A. Zinnen et al., “Website finger-
printing at internet scale,” in Proceedings of the Network and
Distributed System Security Symposium, February 2016.

[6] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel, “Website
fingerprinting in onion routing based anonymization net-
works,” in Proceedings of the Workshop on Privacy in the
Electronic Society, pp. 103–114, ACM, Waterloo, Canada,
October 2011.

[7] T. Wang and I. Goldberg, “Improved website fingerprinting
on Tor,” in Proceedings of the Workshop on Privacy in the
Electronic Society Bloomington, pp. 201–212, ACM, Indiana,
U.S USA, November 2013.

[8] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson, “Touching from
a distance: website fingerprinting attacks and defenses,” in
Proceedings of the Computer and Communications Security,
pp. 605–616, Association for Computing Machinery, Raleigh,
NC, USA, October 2012.

[9] Y. Zhao, X. Ma, J. Li, S. Yu, and W. Li, “Revisiting website
fingerprinting attacks in real-world scenarios: a case study of
Shadowsocks,” in Proceedings of the International Conference
on Network and System Security, pp. 319–336, Springer, Hong
Kong, China, August 2018.

[10] M. Shen, Y. Liu, L. Zhu, X. Du, and J. Hu, “Fine-grained
webpage fingerprinting using only packet length information
of encrypted traffic,” IEEE Transactions on Information Fo-
rensics and Security, vol. 16, pp. 2046–2059, 2021.

[11] M. Shen, Y. Liu, S. Chen, L. Zhu, and Y. Zhang, “Webpage
fingerprinting using only packet length information,” in
Proceedings of the ICC 2019 - 2019 IEEE International Con-
ference on Communications (ICC), May 2019.

[12] M. Guo, J. Fei, and Y. Meng, “Deep nearest neighbor website
fingerprinting attack Technology,” Security and Communi-
cation Networks, vol. 2021, Article ID 5399816, 14 pages, 2021.

[13] Z. Zhuo, Y. Zhang, Z.-l. Zhang, X. Zhang, and J. Zhang,
“Website fingerprinting attack on anonymity networks based
on profile hidden Markov model,” IEEE Transactions on
Information Forensics and Security, vol. 13, no. 5, pp. 1081–
1095, 2018.

16 Security and Communication Networks

http://www.shadowsocks.org/
http://www.shadowsocks.org/

[14] K. Abe and S. Goto, “Fingerprinting attack on Tor anonymity
using deep learning,” in /e Asia Pacifc Advanced
NetworkAPAN), 2016.

[15] S. Bhat, D. Lu, A. Kwon, and S. Devadas, “Var-CNN and
DynaFlow: improved attacks and defenses for website fin-
gerprinting,” 2018, https://arxiv.org/abs/1802.10215.

[16] P. Sirinam, N. Mathews, M. S. Rahman, and M. Wright,
“Triplet fingerprinting: more practical and portable website
fingerprinting with N-shot learning,” in Proceedings of the
Computer and Communications Security, London UK,
November 2019.

[17] V. Rimmer, D. Preuveneers, M. Juarez, T. V. Goethem, and
W. Joosen, “Automated website fingerprinting through deep
learning,” in Proceedings of the Network and Distributed
System Security Symposium, February 2018.

[18] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg,
“Effective attacks and provable defenses for website finger-
printing,” in Proceedings of the Usenix Security Symposium,
pp. 143–157, USENIX Association, San Diego, CA, USA,
August 2014.

[19] P. Sirinam, M. Imani, M. Juarez, and M. Wright, “Deep
fingerprinting: undermining website fingerprinting defenses
with deep learning,” in Proceedings of the 2018 Acm Sigsac
Conference on Computer and Communications Security,
October 2018.

[20] M. S. Rahman, P. Sirinam, N. Matthews, K. G. Gangadhara,
and M. Wright, “Tik-tok: the utility of packet timing in
website fingerprinting attacks,” 2019, https://arxiv.org/abs/
1902.06421.

[21] H. Cheng and R. Avnur, “Traffic analysis of SSL encrypted web
browsing,” 1998, http://wwwcsberkeleyedu/daw/teaching/
cs261-f98/projects/final-reports/ronathanheyningps 1998.

[22] Q. Sun, D. R. Simon, Y. M. Wang, W. Russell,
V. N. Padmanabhan, and L. Qiu, “Statistical identification of
encrypted Web browsing traffic,” in Proceedings of the IEEE
Symposium on Security and Privacy, pp. 19–30, IEEE, Ber-
keley, CA, USA, January 2002.

[23] A. Hintz, “Fingerprinting websites using traffic analysis,” in
Proceedings of the International Workshop on Privacy En-
hancing Technologies, June 2003.

[24] L. Lu, E. C. Chang, and M. C. Chan, “Website fingerprinting
and identification using ordered feature sequences,” in Pro-
ceedings of the European Conference on Research in Computer
Security, September 2010.

[25] G. He, M. Yang, X. Gu, J. Luo, and Y. Ma, “A novel active
website fingerprinting attack against tor anonymous system,”
in Proceedings of the 2014 IEEE 18th International Conference
on Computer Supported Cooperative Work in Design, May
2014.

[26] J. Hayes and G. Danezis, “K-fingerprinting: A robust scalable
website fingerprinting technique,” in Proceedings of the 25th
Usenix Security Symposium, pp. 1187–1203, USENIX Asso-
ciation, Austin, TX, USA, August 2016.

[27] X. Luo, P. Zhou, E. W. W. Chan, W. Lee, R. K. C. Chang, and
R. Perdisci, “HTTPOS: sealing information leaks with
browser-side obfuscation of encrypted flows,” in Proceedings
of the Network and Distributed System Security Symposium,
pp. 1–20, San Diego, California, USA, February 2011.

[28] T. Wang and I. Goldberg, “Walkie-talkie: an efficient defense
against passive website fingerprinting attacks,” in Proceedings
of the 26th USENIX Security Symposium, pp. 1375–1390,
USENIX Association, Dallas, TX, USA, August 2017.

[29] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton,
“Peek-a-Boo, I still see you: why efficient traffic analysis

countermeasures fail,” in Proceedings of the IEEE Symposium
on Security and Privacy, pp. 332–346, IEEE, San Francisco,
CA, USA, May 2012.

[30] V. Shmatikov and M.-H. Wang, “Timing analysis in low-la-
tency mix networks: attacks and defenses,” in Proceedings of
the European Conference on Research in Computer Security,
pp. 18–33, Springer, Hamburg, Germany, September 2006.

[31] X. Cai, R. Nithyanand, and R. Johnson, “CS-BuFLO,” in
Proceedings of the Workshop on Privacy in the Electronic
Society, November 2014.

[32] T. Wang and I. Goldberg, “Comparing website fingerprinting
attacks and defenses,” Technical Report 2013-30, 2013.

[33] C. V. Wright, S. E. Coull, and F. Monrose, “Traffic morphing:
an efficient defense against statistical traffic analysis,” in
Proceedings of the Network and Distributed System Security
Symposium, pp. 237–250, San Diego, California,C.A, USA,
February 2009.

[34] S. Eddy, HMMER User’s Guide: Biological Sequence Analysis
Using Profile Hidden Markov Models, HMMER User’s Guide,
1998.

[35] T. Hofmann, “Probabilistic latent semantic indexing,” In-
ternational ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, vol. 51, no. 2, pp. 50–57,
1999.

[36] T.-C. Chou and M. C. Chen, “Using incremental PLSI for
threshold-resilient online event analysis,” IEEE Transactions
on Knowledge and Data Engineering, vol. 20, no. 3, pp. 289–
299, 2008.

[37] F. Xie, H. Wen, J. Wu et al., “Data augmentation for radio
frequency fingerprinting via pseudo-random integration,”
IEEE Transactions on Emerging Topics in Computational In-
telligence, vol. 4, no. 3, pp. 276–286, 2019.

[38] S. Chen, H. Wen, J. Wu et al., “Radio frequency fingerprint-
based intelligent mobile edge computing for internet of things
authentication,” Sensors, vol. 19, no. 16, p. 3610, 2019.

Security and Communication Networks 17

https://arxiv.org/abs/1802.10215
https://arxiv.org/abs/1902.06421
https://arxiv.org/abs/1902.06421
http://wwwcsberkeleyedu/daw/teaching/cs261-f98/projects/final-reports/ronathanheyningps 1998
http://wwwcsberkeleyedu/daw/teaching/cs261-f98/projects/final-reports/ronathanheyningps 1998

