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Data sharing has become a key technology to break down data silos in the big data era. Ciphertext-policy attribute-based
encryption (CP-ABE) is widely used in secure data-sharing schemes to realize flexible and fine-grained access control. However, in
traditional CP-ABE schemes, the access structure is directly shared along with the ciphertext, potentially leading to users’ private
information leakage. Outsourcing data to a centralized third party can easily result in privacy leakage and single-point bottlenecks,
and the lack of transparency in data storage and sharing casts doubts whether users’ data are safe. To address these issues, we
propose a blockchain-based CP-ABE scheme with partially hidden access structures (BCP-ABE-PHAS) to achieve fine-grained
access control while ensuring user privacy. First, we propose an efficient CP-ABE scheme with partially hidden access structures,
where the ciphertext size is constant. To assist data decryption, we design a garbled Bloom filter to help users quickly locate the
position of wildcards in the access structure. *en, to improve storage efficiency and system scalability, we propose a data storage
scheme that combines blockchain technology and the interplanetary file system, ensuring data integrity. Finally, we employ smart
contracts for a transparent data storage and sharing process without third-party participation. Security analysis and performance
evaluation show that the proposed BCP-ABE-PHAS scheme can preserve policy privacy with efficient storage and low
computational overhead.

1. Introduction

Cloud computing promotes the aggregation of storage and
computational resources and has a tremendous market
value. However, when data owners outsource data to cloud
services, they lose control of their data, and their private
information is at risk of leakage [1]. Recently, data security
incidents have occurred frequently, and such events un-
dermine users’ confidence in data security and raise con-
cerns regarding cloud storage.

In 2005, Sahai and Waters [2] proposed attribute-based
encryption (ABE) to achieve fine-grained access control.*e
ABE scheme is mainly categorized into ciphertext-policy
ABE (CP-ABE) [3] and key-policy ABE (KP-ABE) [4]. In the
KP-ABE scheme, the secret key and ciphertext are associated
with the access structure (or access policy) and attribute set,

respectively. In this case, the ciphertext can only be
decrypted when the attribute set satisfies the access policy.
Contrarily, in the CP-ABE scheme, the ciphertext and secret
key are associated with the access policy and attribute set,
respectively.

*e CP-ABE scheme features fine-grained access control
and one-to-many secure data sharing. However, in the
traditional CP-ABE scheme, the access policy is directly
shared along with the ciphertext. Consequently, anyone can
get this access policy while obtaining the ciphertext; how-
ever, the access policy may contain the user’s sensitive
information.

Consider a scenario in which a patient with a social
security number (SSN) 123-456-789 wants to outsource his
(or her) health data to the cloud and establish an access
policy, as shown in Figure 1(a). *is patient designs an
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access policy based on which only this patient or the psy-
chologist at the city hospital can access the data. If the patient
uses the traditional CP-ABE scheme to send the encrypted
data and access policy to the cloud, anyone with access to
this cloud can obtain the patient’s access policy. *us, the
data security of this patient, who is suffering from psy-
chological problems, is undoubtedly threatened.

*e most effective way to protect a user’s access policy
information is to hide the attribute information. Policy
hiding involves fully and partially hiding. In the CP-ABE
scheme, fully hidden access policies imply that no attribute
information in the access policy is revealed, and partially
hidden access policies imply that only sensitive attribute
values are hidden. As shown in Figure 1(b), the partially
hidden access policy is expressed as (SSN: ∗ OR (Affiliation:
∗ AND Occupation: ∗)), where the attribute values that
may expose a user’s information are hidden. A tradeoff is
obtained between the efficiency of the CP-ABE scheme and
the fully hidden access structure using a partially hidden
access structure embedded in the CP-ABE scheme to reduce
computational costs [5].

Additionally, centralized storage architectures are vul-
nerable to various network attacks such as single point of
attack, man-in-the-middle attack, and distributed denial-of-
service attack [6, 7]. Owing to such attacks, data owners may
lose control of their data. Because blockchain technology is
transparent, decentralized, and unforgeable, blockchain-
based data storage and sharing schemes have been proposed
to resist such attacks. Blockchain is an append-only dis-
tributed database, so large-scale data can quickly bloat the
blockchain and make it expensive and inefficient to scale. To
alleviate the storage pressure of the blockchain, we propose a
storage scheme that combines blockchain technology and
the interplanetary file system (IPFS) [8].

*erefore, we propose a blockchain-based CP-ABE
scheme with a partially hidden access structure (BCP-ABE-
PHAS) to realize secure data storage and sharing. Our main
contributions are summarized as follows:

(1) We propose a CP-ABE scheme with partially hidden
access structures to achieve fine-grained access
control and ensure user privacy. Moreover, to assist

data decryption, we design a garbled Bloom filter
(GBF) to locate the position of wildcards in the
access policy.

(2) To ensure data integrity and improve system scal-
ability, we adopt a storage scheme that combines
blockchain technology and the IPFS, in which the
real ciphertext is stored in the IPFS, and meanwhile,
the access policy is stored on the blockchain.

(3) We employ smart contracts to achieve automated
and trusted access control, where the entire data
storage and sharing process is transparent without
third-party participation.

(4) Security analysis and performance evaluation show
that the proposed scheme can achieve effective
privacy preservation without incurring considerable
overhead.

*e remainder of this paper is organized as follows. In
Section 2, we introduce the related work. In Section 3,
preliminaries are described. We then present the system
architecture and security model in Section 4, followed by the
detailed construction of the proposed scheme in Section 5.
*e security analysis and the performance evaluation are
performed in Section 6, and the conclusions are presented in
Section 7.

2. Related Work

Bethencourt et al. [3] proposed the first CP-ABE scheme.
*is scheme allows data owners to specify a fine-grained
access policy for their data to realize secure data sharing.
However, an access policy may contain a user’s sensitive
information which is attached to the ciphertext as a
plaintext, causing privacy leakage [9].

To address this problem, some schemes that hide the
access policy have been proposed. For example, Nishide et al.
[10] proposed a CP-ABE scheme with hidden access policies.
*ey proposed two schemes in which only attribute values
are hidden using AND gates on multivalued attributes with
wildcards. Based on this scheme [10], Li et al. [11] imple-
mented user accountability while hiding the access policy.

OR

ANDSSN:
123-456-789

Affiliation:
City Hospital

Occupation:
Psychologist

(a)

OR

ANDSSN: *

Affiliation: * Occupation: *

(b)

Figure 1: (a) Access structure. (b) Partially hidden access structure.
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Phuong et al. [12] proposed two CP-ABE schemes with a
hidden access policy. In this case, the access structure
employs AND gates on positive and negative attributes with
wildcards, and the ciphertext length is constant. Although
these schemes are secure and efficient, AND-based access
policies are limited in terms of expressiveness.

*us, to facilitate a more expressive access policy, Lai
et al. [13] proposed a partially hidden CP-ABE scheme that
supports linear secret-sharing scheme-based access policy.
Based on this scheme [13], Zhang et al. [14] proposed a
scheme that can support a large attribute universe. However,
these schemes are built using composite-order bilinear
groups; thus, their efficiency is low. Katz et al. [15] first
proposed the inner-product predicate encryption. However,
the “superpolynomial blowup” problem makes the CP-ABE
schemes that use the attribute-hiding IPE to construct a fully
hidden access policy very inefficient [16]. Hur [17] proposed
a CP-ABE scheme that can support any monotonous access
policy. In this case, the access policy is hidden by attribute
remapping, and most decryption operations are delegated to
the cloud storage center to considerably reduce the re-
quester’s computational overhead.

Because blockchain technology is decentralized, tam-
perproof, and transparent, it is widely used in secure data
sharing and access control schemes. Based on inner-product
predicate encryption [15], Gao et al. [18] proposed a
trustworthy secure CP-ABE scheme with a fully hidden
access policy based on blockchain technology. *is scheme
combines inner-product encryption and homomorphic
encryption to hide access policies and uses smart contracts to
store the generated proof on the blockchain permanently.
Zhang et al. [19] proposed an access control for the Internet
of *ings (IoT) based on the smart contract which consists
of the judge contract, access control contract, and register
contract to achieve intelligent and efficient access control.
Additionally, Xu et al. [20] proposed a blockchain-based
smart healthcare system for large-scale health data privacy
preservation.*is system uses digital envelope technology to
verify the confidentiality of information; however, it can
only support one-to-one secure transmission, which does
not satisfy the requirements of users who simultaneously
employ multiple third parties to provide services. In the IoT
environment, Xu et al. [21] and Novo [22] adopted the
blockchain technology to realize secure data sharing and
access control; however, these schemes do not satisfy large-
scale storage and privacy protection requirements.

3. Preliminaries

In this section, we introduce some basic knowledge asso-
ciated with our BCP-ABE-PHAS.

3.1. Bilinear Map. Let G and GT be multiplicative cyclic
groups of prime order q. A bilinear mapping is a function
e: G × G⟶ GT which has the following properties:

(1) Bilinearity: ∀u, v ∈ G and ∀a, b ∈ Z∗q , there exists
e(ua, vb) � e(u, v)ab

(2) Nondegeneracy: there exists g ∈ G such that
e(g, g)≠ 1

(3) Computability: ∀u, v ∈ G, e(u, v) can be effectively
computed

3.2.Blockchain. Blockchain is an append-only data structure
in a peer-to-peer network environment, where data blocks
are connected chronologically in a chain and the data in a
blockchain are assured to be tamperproof, unforgeable, and
traceable using cryptography [23]. As shown in Figure 2, a
block comprises the block header and block body. *e block
header consists of four components: (1) PreBkHash, which is
the digest of the previous block; (2) TS, which is the
timestamp of the block creation; (3) nonce, which is the
consensus proof computed by miners and guarantees the
consensus of the block; (4) Merkle root, which is the root
hash of the Merkle hash tree. *e block body stores
transaction details.

*e concept of smart contracts was first proposed by Szabo
[24]. A smart contract is a program that contains code (its
function) and data (its state). Smart contracts are used in
Ethereum blockchain [25].*e contract address is usually given
when a contract is deployed to the blockchain. Contract ad-
dress is the address to a collection of codes on the blockchain
that executes functions. *ese functions of a contract address
are executed when a transaction is made to the contract ad-
dress. Once a smart contract is deployed in the network, it can
run as programmed without human intervention.

3.3. Bloom Filter. *e Bloom filter is a space-efficient
probabilistic data structure used to determine whether an
element is contained in a specific set [26]. *e Bloom filter is
an m-bit array that can represent a set S of maximum n

elements. *e Bloom filter has k independent hash functions
H � (h1, . . . , hk), where hi: 0, 1{ }∗↦[1, m] and 1≤ i≤ k

indicates that the value generated by the hash function is
uniformly distributed in [1, m]. Herein, a Bloom filter with
parameters (m, n, k, H) is represented as (m, n, k, H)0BF, a
Bloom filter encoding the set S is represented as BFS, and the
value at index i in BFS is represented as BFS[i].

First, all bits in the Bloom filter are set to 0. As shown in
Figure 3, when we add the element x in the set S � x, y􏼈 􏼉 to
the Bloom filter, we set BFS[hi(x)] � 1 for 1≤ i≤ 3. When
we verify the existence of an element y in set S, if
BFS[hi(y)] � 0 exists for 1≤ i≤ 3, this proves that y ∉ S;
otherwise, y ∈ S with a high probability.

*e Bloom filter yields false positives; in other words, it
yields an element that does not belong to the set S, but the
corresponding position values are all 1. As shown in Fig-
ure 3, the element z does not belong to the set x, y􏼈 􏼉;
however, BFS[hi(z)] � 1 for 1≤ i≤ 3. According to Bose
et al. [27], the false positive probability is negligible if we
select the optimal k and m values.

3.4. Secret Sharing. Secret sharing technology is an impor-
tant aspect of cryptography research. For example, Shamir
[28] proposed a (k, n)-threshold secret-sharing scheme. *e
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basic concept of this scheme is that the secret s to be shared is
divided and distributed to n participants. *e secret can be
recovered in the case of minimum k participants; otherwise,
the secret cannot be recovered. When k � n, secret sharing
can be obtained using the ⊕ (XOR) operation. Randomly
generate n − 1 bit strings r1, . . . , rn−1 with the same length as
the secret s, and calculate rn � r1 ⊕ . . . ⊕ rn−1 ⊕ s; each of ri is
a part of the secret s. Finally, the secret s can be obtained by
computing r1 ⊕ . . . ⊕ rn.

3.5. Attribute Vector. As shown in Figure 4, we define two
attribute vectors W � (w1, . . . , wL) ∈ ΣL∗ and
W � (w1, . . . , wL) ∈ ΣL, where Σ ⊂ Z∗q and Σ∗ � Σ∪ ∗{ }.
Here, W contains the wildcard ∗, and
J � j1, . . . , jn􏼈 􏼉 ⊂ 1, . . . , L{ } represents the set of wildcard
positions in W.

*e decryption algorithm discussed in this paper em-
ploys the following polynomial identity, where wi is the
attribute value at position i in the attribute vector.

􏽘

L

i�1
􏽙
j∈J

(i − j)wi � 􏽘
L

i�1,i∉J
􏽙
j∈J

(i − j)wi. (1)

We use Viète’s formulas [29] to construct the polynomial
􏽑j∈J(i − j) � xn + an−1x

n− 1 + · · · + a0 in equation (1), and
the coefficients are calculated as follows:

an−k � (−1)
i− n

􏽙
1≤ i1< i2< ...< ik≤ n

ji1
ji2

. . . jik
, 0≤ k≤ n, (2)

where n � |J|. Here, if J is clear, we can calculate the
polynomial coefficients ai. For example, when
J � j1, j2, j3􏼈 􏼉, we can construct polynomial (x − j1)(x −

j2)(x − j3) and calculate the coefficients:

a0 � −j1j2j3,

a1 � j1j2 + j1j3 + j2j3,

a2 � − j1 + j2 + j3( 􏼁,

a3 � 1.

(3)

3.6.DecisionLinearAssumption. LetG be a bilinear group of
prime order q with a generator g. For any probabilistic
polynomial-time (PPT) adversaryA, its advantage AdvA(λ)

in solving the decision linear (DLIN) problem [30] in G is

AdvA(λ) � Pr A g, g
a
, g

b
, g

ac
, g

d
, g

b(c+d)
� 1􏼐 􏼑􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌

− Pr A g, g
a
, g

b
, g

ac
, g

d
, g

r
� 1􏼐 􏼑􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌,
(4)

where the probability is taken over all possible choices of
a, b, c, d, r ∈ Z∗q . We say that the DLIN assumption holds in
G if there exists a negligible function ε(λ) such that
AdvA(λ)< ϵ for any PPT algorithm A.

4. System Architecture and Security Model

4.1. System Architecture. *e system architecture of the
proposed scheme is shown in Figure 5. As illustrated, the
system architecture involves five entities, i.e., attribute au-
thority (AA), IPFS, data owner (DO), data user (DU), and
blockchain.

AA: the AA manages all attributes in the system and
assigns attributes to users. It is also responsible for
generating public parameters and issuing secret keys
based on the users’ attributes. In this paper, the AA is
fully trusted.
IPFS: the IPFS is a distributed file storage system based
on content addressing. Note that there is no central
server node in the IPFS; thus, it can avoid the risk of a
single point of failure. *e IPFS uses an encryption
algorithm to calculate the hash value hashipfs of a file,
and this hashipfs is used as the file’s address. *is
approach reduces the repeated storage of files and
ensures the integrity of files.

Tx1

H1 H2 H3 H4

H5 H6

Hr

Tx2 Tx3 Tx4

MerkleRootNonceTSPreBkHash·· · · · ·

· · ·· · ·

Figure 2: Blockchain structure.
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DO: the DO selects the file to be shared and creates a
corresponding access policy. First, the DO encrypts the
file using the symmetric key aeskey and stores the ci-
phertext encfile in the IPFS. *en, the proposed CP-
ABE scheme is used to encrypt aeskey and generate the
ciphertext CT. Finally, hashipfs and CT are stored on
the blockchain using a smart contract.
DU: the DU sends a request to the AA, and the AA
generates a secret key based on the attribute set of the
DU.*eDU obtains CT stored on the blockchain using
the smart contract and decrypts CT based on its secret
key. Here, if the attribute set satisfies the access
structure set by the DO, then the DU can obtain the file
from the IPFS using aeskey and hashipfs.
Blockchain: the blockchain is an append-only dis-
tributed database, where data are stored permanently
and are tamperproof. To ensure secure data sharing and
fine-grained access control, the DO only stores hashipfs
and CT on the blockchain using smart contracts.

4.2. 2e Definition of the BCP-ABE-PHAS Scheme. Here, we
present the definition of our scheme. *is scheme mainly
involves the following four algorithms:

(i) Setup(1λ): the Setup algorithm is executed by the
AA. *is algorithm takes security parameter 1λ as
the input and outputs the public parameters PK and
master secret key MSK.

(ii) KeyGen(PK, MSK, W): the KeyGen algorithm is
executed by the AA. Here, PK, MSK, and W of the
DU are taken as inputs, and the secret key SKW

associated with W is the output.
(iii) Encrypt(PK, M, (W, J)): the Encrypt algorithm is

executed by the DO. *is algorithm comprises the
BuildGBF and GenCT functions.

BuildGBF(W, J): this function takes an access
policy W and the wildcard position set J as inputs
and outputs GBF
GenCT(PK, M, (W, J)): this function takes PK, a
message M, an access policy W, and the wildcard
position set J as inputs and outputs ciphertext CT

(iv) Decrypt(PK, SKW, GBF, CT): the Decrypt algo-
rithm is executed by the DU and comprises the
QueryGBF and Dec functions.

QueryGBF(W, GBF): this function takes an at-
tribute vector W of the DU as the input and
queries GBF to obtain the wildcard position set J

Dec(PK, SKW, CT, J): this function takes PK,
SKW, J, and CT as inputs and outputs M

Here, let (PK, MSK)←Setup(1λ), SKW←KeyGen(PK,

MSK, W), and (CT, GBF)←Encrypt(PK, M, (W, J)). For
correctness, we require the following conditions to hold:

(1) If the attribute vector W of the DU satisfies the access
policy W, then M←Decrypt(PK, SKW, GBF, CT)

(2) Otherwise, Decrypt(PK, SKW, GBF, CT) outputs a
random message

4.3. Security Model

Definition 1. A CP-ABE scheme with the hidden access
policy is semantically secure in the selective model if for all
PPT adversaries A,

Pr ExpA(λ) � 1􏼂 􏼃 −
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< ε(λ), (5)

for some negligible function ϵ(λ). Based on [29], the security
game ExpA(λ) is described as follows:

Upload encrypted data

DO

Initialization

Generate a
storage

transaction

IPFS

Download encrypted data

Match Failed

Match

DU

AA

Initialization

Blockchain

Block 1 Block 2 Block n-1 Block n

Figure 5: System architecture.
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Init: A selects two different challenge attribute vectors
W0, W1 ∈ ΣL∗, for at least one wi ≠ ∗.
Setup: the challenger B runs Setup(1λ) algorithm,
which outputs PK andMSK. It sends PK toA and keeps
MSK to itself.
Query phase 1: A adaptively issues key queries for the
attribute vector W ∈ ΣL, under the restriction that
wi ≠w0i and wi ≠w1i. B runs KeyGen(PK, MSK, W)

algorithm to obtain SKW and sends SKW to A.
Challenge: A submits two messages M0, M1(|M0| �

|M1|) and sends them to B. Given W0 and W1, B
randomly selects β ∈ 0, 1{ } and encrypts Mβ under Wβ.
Finally, B sends CTβ to A.
Query phase 2: query phase 2 is the same as query phase 1.
Guess: finally, A outputs its guess β′ ∈ 0, 1{ } for β. If
β′ � β, then return 1; else, return 0.

5. Construction of the BCP-ABE-PHAS

5.1. SetupPhase. In this paper, we use U � att1, . . . , attL􏼈 􏼉 to
represent the attribute universe in the system. Here, Vi �

vi,1, . . . , vi,ni
􏽮 􏽯 is the set of possible values of the ith category
attribute, where ni � |Vi|. *us, the user’s attribute vector is
W � (w1, . . . , wL), where wi ∈ Vi, 1≤ i≤ L. *e access
structure of the proposed scheme is
W � (w1, . . . , wL) � ∧i∈IW

wi, where IW � i|1≤ i≤ L,{

wi ≠ ∗ }. If wi � wi or wi � ∗, we use W⊨W to denote that
the user’s attribute vector W satisfies the access policy W;
otherwise, we use W⊭W to denote that the user’s attribute
vector W does not satisfy the access policy W. Here, the
wildcard ∗ in the access structure means “do not care.” *e
upper bound of the wildcard in the access structure is de-
fined as N, where N≪ L.

*e setup phase is run by the AA. Here,G andGT are the
multiplicative cyclic groups of a large prime order q, g is a
generator of G, and e: G × G⟶ GT is a bilinear map. *e
AA randomly chooses α, t1, t2, (x1, . . . , xN) ∈ Zq and
V0, U1, . . . , UL ∈ G and sets Ω1 � e(g, V0)

αt1 and
Ω2 � e(g, V0)

αt2 . Let Vj � V
xj

0 for j � 1, . . . , N. *e AA also
generates k independent hash functions H � (h1, . . . , hk).
*erefore, the public parameters are expressed as follows:

PK � e,G,GT, g, q,Ω1,Ω2, g
α
, V0, x1, . . . , xN( 􏼁, H, U1, . . . , UL( 􏼁( 􏼁. (6)

Additionally, the master secret key is expressed as
follows:

MSK � α, t1, t2, V1, . . . , VN( 􏼁( 􏼁. (7)

5.2. Data Encryption Phase. *e encryption phase is exe-
cuted by the DO and involves three main parts, which are
described in the following section.

5.2.1. IPFS Storage. *e DO selects the file to be shared,
generates the symmetric key aeskey using the Advanced
Encryption Standard (AES), and encrypts the file using
aeskey to generate the ciphertext encfile.

To relieve the pressure on blockchain storage, the pro-
posed scheme stores encfile in the IPFS using the ipfs add
encfile command, and the IPFS returns unique hash value
ipfshash to retrieve encfile. Note that anyone can obtain the
ciphertext encfile stored in the IPFS using the ipfs get ipfshash
command.

5.2.2. Hidden Access Policy. *e blockchain is public, all
participants can obtain the data on the blockchain, so we
need to hide the attribute information of the access policy.
*e access policy developed by the DO is W � (w1, . . . , wL).
Assume that the access policy W contains n≤N wildcards
that occur at positions J � j1, . . . jn􏼈 􏼉.

When data are decrypted, determining the position of
the wildcard symbols is essential; however, directly
sending the set J may reveal the user’s private information.

*us, to solve this problem, we adopt an efficient posi-
tioning algorithm based on the GBF. *e GBF is a com-
bination of a Bloom filter and secret sharing technology.
Differing from traditional Bloom filters that use a bit array,
the GBF uses an array of λ bits. *e GBF can verify whether
an attribute exists in the specified set and locate the po-
sition index of the attribute to realize the hidden set J and
protect the user’s private information. In addition to the
probability of hash function collisions, the probability of
string matching must be verified. *erefore, the false
positive probability of the GBF is less than that of the
traditional Bloom filter.

When the DO adds an element attj, j ∈ J, to the GBF,
the algorithm first uses the (k, k)-secret-sharing scheme to
randomly generate k − 1 λ-bit strings r1,j, . . . , rk−1,j and sets
rk,j � r1,j ⊕ . . . ⊕ rk−1,j ⊕ j. *en, it hashes attj with k in-
dependent hash functions H � (h1, . . . , hk) and obtains
h1(attj), . . . , hk(attj), where hi(attj) is uniformly distrib-
uted in [1, m]. Finally, generated ri,j is stored in the GBF
based on the position index generated by hi(attj).

When elements are further added to the GBF, if a certain
position is already occupied by previously added elements,
we reuse the share already stored in the GBF. As shown in
Figure 6, when we add j2 to the GBF, the hash value of
hd(attj2

) is the same as the hash value of hi(attj1
). If we

modify ri,j1
, the previously added element j1 cannot be

restored; thus, we set rd,j2
� ri,j1

. *e construction of the
GBF is presented in Algorithm 1.

*e DO constructs a GBF to hide the set J of wildcard
positions based on Algorithm 1 and then uses Viète’s
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formulas to compute ai􏼈 􏼉1≤ i≤ n. Here, m � (􏽐
n
k�0 xkak)− 1,

where x0 � 1. It randomly chooses r1, r2 ∈ Z∗q . *e DO then
creates CT as

C0 � MΩr1
1 Ω

r2
2 ,

C1 � g
αmr1 ,

C2 � g
mr2 ,

C3 � V0􏽙
L

i�1Ui􏽙
n

k�1
i− jk( )mwi

􏼒 􏼓
r1+r2

,

(8)

where M is aeskey. *erefore, the ciphertext is
CT � (C0, C1, C2, C3, GBF).

5.2.3. Blockchain Storage. A blockchain is an append-only
distributed database that stores data on the blockchain
permanently, which ensures that the data can be tamper-
proof but increases the storage pressure on the blockchain.
*erefore, in this paper, the ciphertext encfile is stored in the
IPFS, and only ipfshash and CT are stored on the blockchain.
To achieve secure data sharing and fine-grained access

control, we employ smart contracts to ensure that the data
storage and sharing process is open and transparent without
third-party participation. Here, the public and private keys
of the DO in the blockchain are represented by BPKDO and
BSKDO, respectively.

Generally, the DO is the creator of the access control
contract (ACC) who wants to share data with DUs.*e ACC
provides application binary interfaces (ABIs) to manage and
implement access control. *e ABIs of the ACC are pre-
sented in Table 1.

*e DO creates and deploys the ACC and then obtains
the contract address and ABIs. Furthermore, the DO sends a
transaction to execute the uploadfile ABI of the ACC to
upload the data on the blockchain (Algorithm 2).

5.3. Key Generation Phase. *e key generation phase is
executed by the AA. In this phase, the secret key is generated
for the DU, the attribute vector of which is
W � (w1, . . . , wL) ∈ ΣL. *e AA randomly chooses s ∈ Zq

and sets s1 � t1 + s and s2 � t2 + s. *en, the following al-
gorithm is executed:

GBF

j2:
j1: hi (attj1

) h1 (attj1
)

h1 (attj2
)

hk (attj1
)

hk (attj2
)

ri,j1
r1,j2

r1,j1
rk,j2

rk,j1

hd (attj2)

Figure 6: *e garbled Bloom filter.

Input: set J, security parameter λ, m, and k hash functions H � h1, . . . , hk􏼈 􏼉

Output: garbled Bloom filter GBF
(1) GBF�new m-element array of bit strings;
(2) fori � 0 tom − 1 do
(3) GBF[i] � NULL;//initialize the GBF with “NULL”
(4) end for
(5) for eachx ∈ J do
(6) emptySolt � −1, finalShare � x;
(7) for i � 0 to k − 1 do
(8) j � hi+1(attx);//get the index of the position
(9) if GBF[j] �� NULL then
(10) if emptySolt �� −1 then
(11) emptySolt � j;
(12) else
(13) GBF[j]← 0, 1{ }λ;//get a new share
(14) finalShare � finalShare⊕GBF[j];
(15) end if
(16) else
(17) finalShare � finalShare⊕GBF[j];//reuse an existing share
(18) end if
(19) end for
(20) GBF[emptySolt] � finalShare;//store the last share
(21) end for
(22) for i � 0 tom − 1 do
(23) if GBF[i] �� NULL then
(24) GBF[i]← 0, 1{ }λ;//fill the position with random strings
(25) end if
(26) end for

ALGORITHM 1: Build GBF.
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*erefore, the secret key of the DU is SK � (K, K1, K1′).

5.4.DataDecryptionPhase. Data decryption is performed by
the DU and mainly comprises the following three phases.

5.4.1. Obtain Data on the Blockchain. *e DU sends a
transaction to execute the getfile ABI of the ACC to obtain
the data stored on the blockchain (Algorithm 3).

*erefore, the DU obtains ipfshash and CT stored on the
blockchain.

5.4.2. QueryGBF. *e DU obtains the data stored on the
blockchain, where CT � (C0, C1, C2, C3, GBF). As observed
from the data encryption phase, obtaining J is the key to
decrypting CT. Here, the DU obtains J according to
Algorithm 4.

First, we determine whether the hash value of the at-
tribute exists in the GBF. If the corresponding position of the

attribute in the GBF is 0, the attribute must not be in J.
When all GBF positions corresponding to the k hash values
of the attribute are not empty, the DU must calculate the
position index of the wildcard in the access policy using ⊕ ; if
the calculated value is the same as the position index cor-
responding to the attribute vector of the DU, the attribute is
present in J; otherwise, this attribute is not in J.

5.4.3. Data Decryption Phase. In this phase, the DU obtains
the set of wildcard positions J and then uses Viète’s formulas to
compute ai􏼈 􏼉1≤ i≤ n, where m � (􏽐

n
k�0 xkak)− 1. *e ciphertext

can only be decrypted when the attributes of the DU can satisfy
the access policy. *en, M can be computed as follows:

M � C0
e K, C3( 􏼁

e C1, 􏽑
n
k�0 K

ak

1,k􏼐 􏼑e C2, 􏽑
n
k�0 􏽑

n
k�0 K1,K
′􏼐 􏼑

ak
􏼐 􏼑

.

(10)

When the DU successfully decrypts the data, it obtains
aeskey. *en, the DU obtains encfile stored in the IPFS using
ipfshash. Subsequently, aeskey is used to decrypt encfile to
obtain the file shared by the DO.

6. Security Analysis and
Performance Evaluation

6.1. Correctness. In this section, we verify the correctness of
the proposed scheme. When we use a decryption key that
satisfies the given access policy, the Decrypt algorithm in-
deed returns the correct message.

e K, C3( 􏼁 � e g
αs

, V0 􏽙
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􏽑
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k�1 i−jk( )wi/􏽐
n

m�0 xmam

i
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(11)

Table 1: ABIs of the ACC.

ABI Permissions Description
uploadfile() Contract creator *e ABI uploads data on the blockchain
getfile() Public *e ABI obtains the data stored on the blockchain
kill() Contract creator *e ABI performs the selfdestruct operation to delete the ACC

Input: CT, ipfshash, time, BSKDO, ACC address addr, and uploadfile ABI
Output: storage transaction Txstorage

(1) Compute the message digest MD � H(time, ipfshash, CT);
(2) Generate the signature sign � signBSKDO

(MD);
(3) Generate a storage transaction Txstorage � time, ipfshash, CT, sign􏼈 􏼉;
(4) Send Txstorage according to addr and uploadfile ABI;
(5) return Txstorage;

ALGORITHM 2: Generate a storage transaction.
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Input: ACC address addr, getfile ABI, and BPKDO

Output: verified result
(1) Obtain the data according to addr and getfile ABI;
(2) Compute the message digest MD′ � H(time, ipfshash, CT);
(3) Verify the signature MD � VerifyBPKDO

(sign);
(4) if MD′ �� MD then
(5) return True;
(6) else
(7) return False;
(8) end if

ALGORITHM 3: Obtain the data stored on the blockchain.

Input: garbled Bloom filter GBF, n, the number of attributes L, security parameter λ, m, and k hash functions H � h1, . . . , hk􏼈 􏼉

Output: set J

(1) J � new set of length n;
(2) for x � 1 toL do
(3) recovered � 0{ }λ;
(4) for i � 1 to k do
(5) j � hi(attx);
(6) if GBF[j] �� NULL then
(7) break;
(8) else
(9) recovered � recovered⊕GBF[j];
(10) end if
(11) end for
(12) if recovered �� x then
(13) J.add(x);
(14) end if
(15) end for

ALGORITHM 4: QueryGBF.
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If the secret key of the DU is valid, then wi � wi,
i ∉ j1, . . . , jn􏼈 􏼉. *us,
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6.2. Security Analysis

Theorem 1. 2e proposed BCP-ABE-PHAS scheme is se-
mantically secure in the selective model assuming that the
DLIN assumption holds in group G.

Proof. Assume there exists a PPTadversaryA that can break
the selective semantic security. We then build an algorithm
B that uses A to solve the DLIN problem in G.

Here, the challenger selects a bilinear group G of prime
order q and a generator g ∈ G, as well as the group GT and a
bilinear map e: G × G⟶ GT. *en, the challenger ran-
domly chooses five values a, b, c, d, r ∈ Z∗q and computes
Z0 � gb(c+d) and Z1 � gr. *e challenger randomly chooses
β ∈ 0, 1{ } and sends the tuple (g, ga, gb, gac, gd, Zβ) to B.
Note that the goal of B is to guess β with a probability
greater than 1/2. To generate a guess, B interacts with A in
the following selective semantic security experiment.

Init:A chooses two challenge attribute vectorsW0 ∈ ΣL∗
and W1 ∈ ΣL∗. Here, the wildcard position sets are

denoted as J0 and J1, respectively. *en, B randomly
chooses c � 0, 1{ }, where Wc � (w1, . . . , wL).
Setup: B chooses N≤ L, which is the upper bound
number of wildcards. *en, B chooses
v0, u1, . . . , uL ∈ Zq uniformly at random and sets the
following:

xj �
􏽐

L
i�1 i

jui

􏽐
L
i�1 ui

for j � 0, . . . , N,

Vj � g
b
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xjv0

g
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L

i�1
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Ui � g
ui

wi

for i � 1, . . . , L.

(15)

Here, B randomly chooses σ1, σ2, σ3 ∈ Zq and com-
putes Ω1 � e(ga, V0)

σ1− σ2 and Ω2 � e(gσ3 · (ga)− σ2 ,

V0).
*e public key is expressed as follows:

PK � e,G,GT, g, q,Ω1,Ω2, g
α
, V0, x1, . . . , xN( 􏼁, H, U1, . . . , UL( 􏼁( 􏼁. (16)

Additionally, the master secret key is expressed as
follows:

MSK � α � a, t1 � σ1 − σ2, t2 �
σ3
a

− σ2, V1, . . . , VN( 􏼁􏼒 􏼓. (17)
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Query phase 1: in this phase,B will respond to the key
query of A. Each time, A will commit an attribute
vector W � (w1, . . . , wL) and set s � σ2, s1 � t1 + σ2,

and s2 � σ2 + σ3/a − σ2 � σ3/a. *en, B responds by
computing
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Finally, B sends SK � (K, K1, K1′) to A.
Challenge: when query phase 1 is over, A sends two
messages M0, M1 ∈ GT, (|M0| � |M1|), to B. *en,B

randomly chooses and outputs its guess and selects a
message Mc to encrypt under Wc. *en, B creates

C0 � Mc · e g
ac
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(19)

B sends the challenge ciphertext
CT � (C0, C1, C2, C3, GBF) to A.
Query phase 2: query phase 2 is the same as query
phase 1.

Guess: A outputs its guess c′ ∈ 0, 1{ } for c.

Finally, if c′ � c, B outputs 1; otherwise, B outputs 0.
In the following, we analyze the probability of success for

B. Here, if β � 0, then B will behave correctly as a
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challenger toA. Furthermore,A will have the probability of
1/2 + ϵ of guessing c. If β � 1,A will have the probability of
1/2 of guessing c.

To conclude this proof, we obtain the following:
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which is nonnegligible, thereby contradicting the DLIN
assumption. □

6.3. Performance Evaluation

6.3.1. Data Storage Efficiency. We conduct an experiment to
verify the efficiency of two storage schemes, i.e., cloud-based
server storage and IPFS-based distributed storage. Here, we
set up a local server and an IPFS cluster in the same local area
network.*e cluster comprises five local devices, all of which
are Ubuntu 18.04 systems with an Intel Core i5 CPU at
2.4GHz with 4GB RAM. We compare the performance of
the two storage schemes based on the time required for
uploading and downloading files. Figure 7 shows the
transmission time required by the two schemes. Note that all
experimental results are the average of 30 trials. As shown in
Figure 7, the upload and download time of files in the IPFS-
based scheme are less than those of the files in the cloud-
based scheme. Moreover, the time required for uploading
and downloading the files in the cloud-based scheme ex-
hibits a faster growth trend than the IPFS-based scheme
when the file size increased. *erefore, the IPFS-based
scheme can improve storage efficiency and system
scalability.

6.3.2. GBF Efficiency. We conduct another experiment to
verify the storage and query efficiency of the GBF. Here, we
use double hashing technology, and the k hash functions of
the GBF are constructed using the 128-bit SpookyHash and
MurmurHash. *e length of the GBF is set to m � 1024, and
λ � 8 in this experiment. Furthermore, the number of at-
tributes in the access policy is 5–35, the number of wildcards
is 2–14, and the number of hash functions is k � 6, 8, and 10.
Note that all reported experimental results are the average
values obtained over 30 trials. As shown in Figure 8, for
k � 8, the time required to add 10 wildcards to the GBF is
approximately 4.5ms, and the query time is approximately

3.5ms.*erefore, introducing the GBF does not increase the
computational overhead of the system.

6.3.3. Performance Evaluation. We also analyze the per-
formance of our scheme and five existing CP-ABE schemes
with AND gates in terms of the ciphertext size, decryption
consumption, whether access policies are hidden, and so on.
*e results are presented in Table 2, where p represents the
pairing operation, e represents the exponentiation opera-
tion, l represents the number of attributes in the access
structure, m represents the number of possible values for an
attribute, and n represents the number of wildcards in the
access structure. From Table 2, among all schemes that
support wildcards and the hidden access policy, our scheme
exhibits the smallest ciphertext size. Furthermore, the ci-
phertext size of our scheme is constant. Note that the de-
cryption consumption of our scheme is related to the
number of wildcards n, where n≪ l; thus, our scheme has the
advantage in terms of decryption consumption.

To evaluate the actual performance of our scheme, we
compare it to schemes proposed in [10, 31]. Here, we im-
plement our scheme on a desktop PC (3.4GHz Intel Core i7
CPUwith 16GB RAM) based on Ubuntu 18.04 LTS and Java
Pairing-Based Cryptography Library (JPBC) 2.0.0. *is
implementation uses a 160-bit elliptic curve group based on
the supersingular curve y2 � x3 + x over a 512-bit finite
field. *e number of attributes in the access policy is 5–35,
and the number of wildcards is 2–14. To ensure accuracy in
our experiments, all reported experimental results are the
averages obtained over 30 trials.

Figure 9(a) shows the size of the public parameters in
the setup phase. *e size of public parameters in all
schemes increases linearly with the increase in the
number of attributes. Nishide et al. [10] defined all
possible values for each attribute in the public parameter;
thus, the size of the public parameters is larger than other
schemes. Figure 9(b) presents the execution time of the
key generation phase. In our scheme, the key is generated
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by the AA with high computational power; therefore,
although the time required in our scheme is greater than
other schemes, it will not affect the efficiency of our
scheme. Figure 9(c) presents the execution time of the
encryption operation. Here, the number of exponentia-
tion operations in the encryption algorithm is related to
the attribute; thus, the required time increases with the
increase in the number of attributes. *e scheme in [10]

exhibits more exponentiation operations in the encryp-
tion phase than our scheme and the scheme in [31]; thus,
the required time is greater than the other two schemes.
Figure 9(d) shows the execution time of the decryption
operation. Note that the existing scheme [31] does not
hide the access policy; thus, its decryption time is fixed.
*e decryption time of our scheme is less than that of the
scheme in [10].
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Table 2: Performance comparison of CP-ABE schemes.

Scheme Group order Access structures Ciphertext size Decryption cost Wildcard Hidden policy
[10] Prime AND gates on multivalued attributes |GT| + (2ml + 1)|G| (3l + 1)p √ √
[12] Prime AND gates on ± |GT| + (4n + 2)|G| (4n + 2)p √ √
[31] Prime AND gates on multivalued attributes |GT| + 2|G| 2p × ×

[32] Composite AND gates on multivalued attributes |GT| + (2ml + 2)|G| (l + 1)p √ √
[33] Prime AND gates on ± |GT| + (l + 1)|G| (l + 1)p √ ×

Ours Prime AND gates on multivalued attributes |GT| + 3|G| 3p + 2ne √ √
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Figure 9: Performance analysis and comparisons. (a) Public key. (b) Key generation. (c) Encryption data. (d) Decryption data.
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In summary, our scheme has advantages in terms of data
encryption and decryption when implementing the hidden
access policy.

7. Conclusion

In this paper, we propose a BCP-ABE-PHAS scheme to
achieve trustworthy access while ensuring user privacy.
Traditional centralized storage architectures are vulnerable
to various network attacks, e.g., single point of attack, man-
in-the-middle attack, and distributed denial-of-service at-
tack. *erefore, we adopt a data storage scheme that
combines blockchain technology and the IPFS; this ap-
proach relieves the storage pressure on the blockchain and
guarantees data integrity. *e experimental results dem-
onstrate that our scheme is efficient and maintains a con-
stant ciphertext size. Furthermore, to assist data decryption,
we design a GBF to help users quickly locate the position of
wildcards in the access policy. *e proposed scheme uses
smart contracts to guarantee that the entire data storage and
sharing process is transparent, dynamic, and automated.*e
results of security analysis and performance evaluations
demonstrate that our scheme is secure and efficient.
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