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With the advancement of the multimedia technology, the extensive accessibility of image editing applications makes it easier to
tamper the contents of digital images. Furthermore, the distribution of digital images over the open channel using information
and communication technology (ICT) makes it more vulnerable to forgery. +e vulnerabilities in telecommunication infra-
structure open the doors for intruders to introduce deceiving changes in image data, which is hard to detect.+e forged images can
create severe social and legal troubles if altered with malicious purpose. Image forgery detection necessitates the development of
sophisticated techniques that can efficiently detect the alterations in the digital image. Splicing forgery is commonly used to
conceal the reality in images. Splicing introduces high contrast in the corners, smooth regions, and edges. We proposed a novel
image forgery detection technique based on image splicing using Discrete Wavelet Transform and histograms of discriminative
robust local binary patterns. First, a given color image is transformed in YCbCr color space and then Discrete Wavelet Transform
(DWT) is applied on Cb and Cr components of the digital image. Texture variation in each subband of DWTis described using the
dominant rotated local binary patterns (DRLBP). +e DRLBP from each subband are concatenated to produce the final feature
vector. Finally, a support vector machine is used to develop image forgery detectionmodel.+e performance and generalization of
the proposed technique were evaluated on publicly available benchmark datasets.+e proposed technique outperformed the state-
of-the-art forgery detection techniques with 98.95% detection accuracy.

1. Introduction

Digital imaging is applicable in many fields such as World
Wide Web (WWW), print media, insurance industry, and
surveillance security [1]. All these applications leverage in-
formation and communication technology (ICT) to dis-
seminate the digital contents including digital images [2].
+e vulnerabilities in telecommunication infrastructure open
the doors for intruders to access or change the transmitted
data. +e change in image data is hard to detect because
contents of an image can be easily manipulated with the help
of sophisticated image editing tools. +e society is facing
problems like false propaganda, fraud, counterfeiting, black

mailing, etc., due to image tampering. Image authentication
is required to use images as source of information or evi-
dence in real life. In most of the cases, especially with
malicious designs, image forgery is performed using copy-
move and splicing procedures. During forgery process,
images can be altered with the help of the same image
contents or by combining contents of different images. If the
tampering procedure involves the copy and paste operation
of image content/s within the image, then this forgery is
called copy-move; otherwise, it is referred to as splicing.
Different types of postprocessing operations such as scaling,
blurring, noise adding, compression, and rotation are applied
on the forged regions to hide the cues of forgery [3].
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Forensic analysis of images was initiated in 2000. Many
techniques [4–8] were developed to detect splicing forgery
and can be categorized as active and passive (or blind) on the
basis of splicing detection mechanism. Active techniques
work on the phenomena that given image contains the
information such as watermark or signature at the time of
acquisition to ensure its authenticity. Active techniques
extract this watermark or signature with the original to
ensure its authenticity. +e use of these techniques is very
limited due the nonavailability of information about the
watermark or signature in most of the cases. Due to this
limitation passive techniques for splicing forgery detection
are being developed, which do not depend on prior infor-
mation. In image splicing the contents of host images are
modified by copying and pasting the contents from other
images. Splicing is a fundamental and famous image forgery
technique. To gain the public trust in digital image au-
thentication, image splicing detection has become an im-
portant research area for digital image forgery detection.+e
image splicing operation disturbs the contents consistency,
smoothness, and regularity. +ese factors play a very im-
portant role in detecting the forgery regions in the host
image. +e state-of-the-art image splicing techniques con-
sider the variations in global statistical characteristics in-
troduced by sudden inconsistency in spliced images [6–9].
Example of splicing image forgery is shown in Figure 1.

To detect the discontinuities that occurred in image due
to splicing, first a given image is partitioned into subbands
using DWT. +e strong decorrelation ability of DWT rep-
resents the coefficients of four wavelet subbands at the same
level. Our proposed technique measures the discontinuities
that occurred in images due to splicing using the DWT
subbands coefficients. +e proposed scheme uses a robust
technique for coding, which encodes the DWT subbands
coefficients. Based on the proposed scheme which measures
discontinuities and their coding, we introduce a new
technique to detect splicing forgery by decomposing chroma
components of a test image using DWT into subbands for
measuring local discontinuities. For coding, we applied the
DRLBP to determine the local discontinuities. We call the
descriptor based on these methods as the DWT-DRLBP,
which represents an image and is used for detecting splicing
forgery as shown in Figure 2. Finally, the SVM is used to
detect the image forgery in digital images.

2. Related Work

Most of the splicing forgery detection techniques are blind/
passive [7]. Alahmadi et al. [9] andMin and Dong [10] used
DCT coefficients and minimum and maximum filters to
extract features from image blocks to detect splicing
forgery. Multiresolution approaches, like DWT, are used in
many algorithms [5, 11]. SIFT features are used as an al-
ternative to block matching for detecting splicing forgery
[12]. Most of the splicing forgery detection methods are
evaluated on Columbia Color DVMM [13] and CASIA v1.0
and CASIA v2.0 [14] datasets. Ng et al. [15] proposed image
splicing detection approach based on 3D moments of
image spectrum, while features based on camera response

function were passed to SVM in [16] to detect splicing
forgery. Shi et al. [17] used 1D and 2D moments, Markov
chain probabilities, and DCTcoefficients for image splicing
detection. +e algorithm was evaluated on CASIA v2.0
dataset and reported accuracy is 84.86%. Xunyu et al. [5]
enhanced the accuracy to 89.76% of Wang et al. method by
concatenating Markov chain moments and DCTand DWT
coefficients together with SVM. Markov probabilities were
extracted from Cb channel in [18], for image splicing
detection. +e algorithm achieved 89.23% and 95.5% ac-
curacy, respectively, when evaluated on Columbia Color
DVMM and a subset of CASIA v2.0 datasets. Zaho et al. in
[19] designed a chrominance channel to detect splicing
forgery and improved the performance of the Wang et al.
scheme proposed in [18].

With the recent development in ubiquitous computing
and digital media, especially digital images, the image
forgery detection has become most essential task for secure
and authentic multimedia contents transmission. Alahmadi
et al. [20] used DCT and LBP features for image splicing
detection. Pham et al. [21] extracted Markov features to
identify irregularities in images due to splicing. SVM was
used for classification. Jalab et al. [22] extracted fractional
entropy from DWT [23] coefficients and SVM was used for
classification. Xunyu in [5] developed an efficient technique
to detect the duplicate regions from forged image. +e
proposed technique detects the key points using geometric
transforms to find the identical transformed regions. Sim-
ilarly, Mahmoud andHongli in [6] developed a two-level key
point detection technique to highlight the image tampering
effects in smooth regions. At first level the combination of
scale invariant feature operator and Harris corner detector
was applied to detect the key point features from smooth
regions. Finally, the gradient histogram of multisupport
region order descriptor was computed to efficiently detect
the tampers regions in a forged image.

Min and Dong in [10] developed a novel forgery de-
tection technique based on minimum and maximum filter.
+e combination of minimum filter and maximum filter
highlights the pixel wise minimum and maximum variations
between authentic and forged images. +e investigation of
interpolation and noninterpolation improved the perfor-
mance of forgery detection technique in composite regions.
Recently, Jinwei et al. in [11] proposed a novel deep learning
technique for image splicing detection. +e proposed con-
volutional neural network learns the weighted combination
of three types of featured extraction techniques. Convolu-
tional neural network model learns the optimal combination
of parameters for feature extraction techniques. Figure 3
demonstrates that sample image is transformed to YCbCr
color space, where Cb and Cr are the chroma components
and Y is the luminance component. Actually, the contents of
image are described by luminance channel, which is capable
of hiding the content tampering traces.

In [24], authors proposed a solution to localize image
splicing using Multitask Fully Convolutional Network
(MFCN).+e proposed scheme achieves better performance
than the single task FCN scheme. In the proposed scheme,
authors used FCN VGG-16 with skip connection as the base
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network, in order to improve the learning way of CNN
through recall and consolidation mechanism of human
brain. Bi et al. in [25] proposed a CNN-based method called
Ringed Residual U-Net (RRU-Net). +e proposed scheme is
end-to-end image segmentation network for image splicing
detection. In this scheme, residual propagation is used to
recall the input feature information to solve the degradation
problem in the deeper network. +e RRU-Net was tested on
CASIA and Columbia datasets which were also used by
Wang et al. in [26] to detect and locate image forgeries. In
order to detect copy-move forgery, a two-branch DNN

based architecture called BusterNet is proposed in [27]. In
the proposed scheme, one layer is used for the detection of
cloned regions which takes input image and uses CNN to
extract features, self-correlation module to compute feature
similarity, percentile pooling to collect useful statistics, mask
decoder for upsampling of feature map, and binary classifier
to generate binary copy-move mask, while the other layer is
used for detection of tampered regions which takes input
image, extracts features using CNN, upsamples feature map
using mask decoder, and generates mask using binary
classifier.

RGBImage YCbCr ExtractCbCr

Block DivisionApply 2D DWTApply DRLBP on Each Block

Concatenate DRLBP Histograms
of CbCr fv Training

Testing

Train SVM with fv

Trained SVM

Decision

Authentic/Forged

Figure 2: Proposed splicing image forgery detection approach.

RGB Luminance (Y) Chromiance (Cb) Chromiance (Cr)

Figure 3: YCbCr components of an RGB image.

(a) (b)

Figure 1: (a) Original image and (b) spliced image.

Security and Communication Networks 3



3. Proposed Image Forgery Detection Scheme
Using the DWT-DRLBP Descriptor

In this section, we will discuss our proposed image forgery
detection scheme using the DWTand the DRLBP descriptors.
Splicing distorts the texture patterns that define the sharp
changes such as corners, lines, and edges. Such inconsistencies
in image texture can be easily detected with chroma com-
ponents, because the chroma components describe the weak
signals (corners, lines, and edges) [7, 18, 19]. Splicing high-
lights the discontinuities in the form of edges in images which
change the local structure of spliced images and are well
exposed using DWT coefficients, because the changes that
occurred due to splicing are present in high frequency wavelet
bands. To analyze these changes we propose an efficient,
simple, and robust descriptor, called DWT-DRLBP de-
scriptor, which first decomposes chroma components of a
given image into subbands using Discrete Wavelet Transform
(DWT) and then encodes these subbands using DRLBP [28]
texture descriptor, which is a robust texture descriptor. +e
DWT-DRLBP descriptor of an image is passed to SVM for
taking the decision whether it is authentic or spliced. We
applied SVM two-class classifier to classify a sample image as
forged or authentic [29]. Support vector machine is linear
classifier, but the samples of image forgery dataset used in this
research are not linearly separable. To overcome this issue a
kernel trick is applied.+e experiments were performed using
LIBSVM kernel as presented in [30].

3.1. DWT-DRLBP Descriptor. Discrete wavelet transfor-
mation decomposed the sample image into four frequency
bands (LL, LH, HL, and HH]. +ese frequency bands are
called chroma components, which highlights the local in-
consistencies in the forged. +e proposed image splicing
technique is the combination of DWT based chroma
components and DRLBP features. For this purpose, first
one-level DWT was applied in the image and then DRLBP
descriptor was applied to highlight the splicing effects.

3.2. Wavelet Decomposition of Chroma Components. +e
DWTprovides unique and discriminatory representation to
quantify image texture efficiently with high resolution and
few numbers of wavelet coefficients. +e wavelet coefficients
effectively highlight the structural variations in image
splicing. +e low frequency coefficients provide high con-
trast that occurs due to image splicing. +e low frequency
features are directly used to represent the sample image. Due
to describing energy compaction in few wavelet coefficients,
the procedure of image representation becomes very simple.

+e low frequency components image approximations
are done by highlighting the inconsistencies introduced in
the forged image. +e low frequency is the most suitable for
localization of variations in image contents as illustrated in
Figure 4. +e introduction of wavelet transformation in
image splicing detection allows analyzing the image at
frequency domain with the help of low-pass filter and high-
pass filter. +e splicing forgery produces high contrast in
terms of corners, edges, and lines, which are better described

with high frequency. +e wavelet transformation describes
these transitions with the help of local sharpness and
smoothness in high frequency coefficients. Based on these
assumptions, each chroma channel of a given image is
partitioned into four frequency bands (LL, LH, HL, and HH)
using 1-level wavelet transform to characterize the changes
that occurred due to splicing (see Figure 5).

3.3. DRLBP Histograms. After extracting the chroma
channels from sample image, the next step is to extract the
discriminate patterns and estimate their distribution. For
this purpose, we adopt DRLBP descriptor, which extracts the
histogram of local binary patterns such as edges, corners,
spots, and lines in the form of LBP codes. +en we ap-
proximate the distribution of these patterns while consid-
ering the local gradient magnitude at subsequent locations.
DRLBP descriptor highlights the changes in local regions
while considering the amount of change. +e overview of
DRLBP descriptor is given in equations (1) to (4), whereas
the detailed description of DRLBP is presented in [19]. +e
binary patterns of each pixel from a 3× 3 window with 8
neighbors are computed from sample image; then the
weighted histogram of binary patterns is computed from
each region as defined in equation (3).

WLBP(i) � 
M− 1

x�0


N− 1

y�0
Gx,yδ LBPx,y, i ,

δ(j, i) �
1, j � i,

0, 0 otherwise.


(1)

Here n� 28 the number of bins to represent the sample
image in the form of histograms of 256 distinct patterns.
Gx, y is the gradient magnitude of central pixel (x, y) which
demonstrates the contribution of the corresponding binary
pattern with respect to the intensity of pixel wise local
change. M×N represents resolution of each specific fre-
quency band. To eliminate the reverse effect both in back-
ground and in foreground, we computed the weighted
histogram WRLBP as follows:

WRLBP(i) � WLBP(i) + 28 − 1 − i, 0≤ i≤ 27 . (2)

After calculating the RLBP, the histogram of weighted
discriminative LBP was computed to enhance the dis-
criminative effect of binary patterns as follows:

WDLBP(i) � WLBP − (i)WLBP 28 − 1 − i 


, 0≤ i≤ 27.

(3)

Finally, DRLBP descriptor is computed by concatenating
the histogram of weighted RLBP and weighted DLBP of each
local region as follows:

DRLBP � WRLBP, WDLBP . (4)

3.4. Computation of the DWT-DRLBP Descriptor. After
computing the local DRLBP patterns of each channel
Ch ∈ Cb , Cr{ } from all subbands sb ∈ LL, LH,HL,HH{ },
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the histogram of all subbands is concatenated to form the
DRLBP descriptor (fv). +e whole process of the compu-
tation of fv is given in Algorithm 1. +e descriptor fv

computes the overall structural changes without considering
the spatial locations of image contents.+e integration of the
discriminative information and localized spatial changes
into fv further enhances its discriminative potential. For
this purpose, each channel of sample image is partitioned
into K blocks (subblocks), B1, B2, . . . , BK, each subblock
with l × m dimension such that K(l × m) � M × N. +e
descriptor fvBi of each subblock Bi is computed.

At the end, the fvBi of all subblocks is concatenated to
represent the fvCh of a channel with respect to each subband
Sb ∈ LL, LH,HL,HH{ } as represented in equation (6). Fi-
nally, the DWT-DRLBP descriptor is obtained to represent
the sample image as described in

fv
ch

� fv
LL

,fv
LH

,fv
HL

,fv
HH

 , (5)

fv � fv
Cb

,fv
Cr

 . (6)

4. Performance Measures and
Evaluation Methodology

To evaluate the performance of proposed image forgery
detection technique three image databases were used. +e
performance evaluation techniques and datasets are de-
scribed in this section.

4.1. Dataset Description. +e performance of image forgery
technique was evaluated using three datasets Columbia
Color DVMM (DVMM) [11] and CASIA v1.0 and CASIA
v2.0 benchmark datasets available publicly. Initially, we
performed experiments on DVMM to evaluate the proposed
method. CASIA v1.0 and CASIA v2.0 datasets were then
used for further experiments and evaluation. DVMMdataset
contains 183 authentic and 180 tampered images in TIFF
format.+e CASIA v1.0 dataset comprises 800 authentic and
921 spliced images. All tampered images are postprocessed
using different geometric transformations. +e CASIA v2.0
dataset contains 7,491 authentic and 5,123 forged images.
We also evaluated the performance of proposed technique

Feature Vector (fv)

DRLBP

LL

LH

HL

HH

. . .

. . .

. . .

. . .

. .
 .

. .
 .

. .
 .

. .
 .

Figure 5: Encoding of spatially localized changes that occurred due to splicing using the DWT-DRLBP descriptor.

Spliced Image

Level-1 Wavelet Transform

LL

HL

LH

HH

Figure 4: Decomposition of a given image into LL, LH, HL, and HH subbands using single level 2D DWT.

Security and Communication Networks 5



on the combined dataset (the collection of abovementioned
three datasets) to represent the generalization of proposed
image forgery detection technique.

4.2. Evaluation Policy. +e parameters of SVM were tuned
with respect the training dataset. We achieved the best per-
formance with RBF kernel. +e RBF filter depends on further
two parameters which are regularized coefficient and gamma.
+e performance of RBF filter entirely depends on the optimal
combination of these two parameters. +e regularized coef-
ficient performs an important role in balancing the com-
plexity of the model by achieving highest forgery detection
accuracy, whereas the gamma parameter in RBF kernel is used
to define the nonlinear mapping between two points; in case
of lower gamma value the far away points are considered as
closest points. For image splicing detection we tuned the RBF
kernel with 25 and 2− 5 for regularized coefficient and gamma,
respectively, using grid-search method [31, 32]. We employed
10-fold cross validation in which the forged and authentic
images are randomly divided into 10 folds of equal size. Ten
performance measure values corresponding to the 10-folds
are calculated and their average along with standard deviation
(std) is reported as the performance of the system. +e same
procedure is repeated for each dataset.

4.3. Performance Measures. For evaluation, the forged im-
ages are considered as positive class while the authentic
images are considered as negative class. We adopted the
following performance evaluation techniques: accuracy,
sensitivity, specificity, and false positive rate. Accuracy is the
percentage of samples accurately predicted as forged or
authentic to the total number test images, computed as
follows:

ACC �
(TP + TN)

TP + TN + FN + FP
× 100% . (7)

Here the symbol TP characterizes the number of samples
that are forged, and the classifier also predicted them as
forged.+e symbol TN represents the number of images that
are authentic, and the classifier also predicted them as au-
thentic. Moreover, the symbol FP represents the number of
images that were authentic and classifier predicted them as
forged, and FN represents the number of images that were
forged and the classifier predicted them as authentic.

True Positive Rate. +e true positive rate is also called
sensitivity, which represents the percentage of predicting a
forged image as forged, calculated as

TPR � SN

�
TP

TP + FN
× 100.

(8)

True Negative Rate. +e true negative rate is also called
specificity, which represents the percentage of predicting a
genuine image as genuine, computed as

TNR � SP

�
TN

TN + FP
× 100.

(9)

False Positive Rate. +e false positive rate represents the
percentage of predicting the sample images as forged which
are actually misclassified as authentic.

FPR � (1 − TNR) × 100%. (10)

Parameter Tuning. +e proposed system involves many
parameters. Figure 5 illustrates the participating parameters.
Tuning the parameters in a thorough manner to find the
optimal set is not an easy task, which is considered as an
optimization problem. From a practical point of view pa-
rameter setting is important. We determined empirically
various parameter settings in this paper. After parameters
tuning, the best parameters values used by proposed method
are shown in Table 1.

5. Experimental Results and Discussion

+e performance of proposed method on different bench-
mark datasets is given in Table 2. +e ROC curves are shown
in Figure 6. To evaluate the performance of image splicing
techniques developed in this research, we applied the pro-
posed technique on DVMM dataset. +e DVMM dataset
contains 180 normal images and 183 forged color images.
+e forged images are produced by tampering the authentic
images by applying the crop-paste method of the vertical and
horizontal strips.

5.1. Robustness on Geometric Transformations. Geometric
transformations such as scaling (resizing), rotation, and
deforming are applied normally in combination or indi-
vidually on spliced regions to hide the cues of forgery. +ese
transformations are applied on spliced region(s) in CASIA
v1.0 and CASIA v2.0 datasets. Figure 7 shows the accuracy of
the method against these transformations. When geometric
transformations are applied on spliced region(s), the
changes along the boundary turn into sharp edges (splicing
artifacts), which are needed to be modeled properly. In
general, the method performs well with respect to different
geometric transformation, because splicing artifacts are
modeled properly by DWT-DRLBP descriptor.

5.2. Robustness on SplicedRegion(s) Size. Splicing regions are
detected by exploring variations of intrinsic features, which
are usually consistent in unaltered images. +e method is
explored on small, medium, and large spliced region(s).
Figure 8 shows the results with these sizes. It is fact that local
inconsistencies of spliced region(s) are useful in exposing
forgery, which is exposed effectively using DTW-DRLBP
descriptor.
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(1) RGB image I, the number K of blocks

a) Convert I to YCbCr
b) DWT-DRLBP descriptor fv

(2) for each channel Ch ∈ Cb,Cr{ } of image I
(3) a) Apply 2D-DWT on Ch, Sb ∈ [LL, LH, HL, HH]
(4) end for
(5) S b � HH
(6) Divide S b into K blocks: B1,B2, . . . ,BK
(7) for each block Bk, k � 1, 2, . . . , k
(8) Compute DRLBP histogram fvsbk
(9) fvSb � [fvSb

1 , fvSb
2 , . . . , fvSb

K ]

(10) fvCh � [fvLL, fvLH, fvHL, fvHH

(11) fv � [fvCb, fvCr]

(12) end for

ALGORITHM 1: Computation of DWT-DRLBP.

Table 1: +e optimal parameters set of the proposed method.

Preprocessing Color channel/s Cb and Cr
Block division Nonoverlapped

DRLBP
P 8
R 1

Mapping type u2
Classification SVM kernel RBF
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Figure 6: ROC curves on datasets: (a) DVMM, (b) CASIA v1.0, (c) CASIA v2.0, and (d) combined.
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5.3. Robustness on Spliced Region(s) Shape. Splicing of dif-
ferent types of shapes is very common to gain illegal benefits.
+is section explores the effect of spliced region shapes on
the performance. CASIA v1.0 and CASIA v2.0 datasets
contain the four region shapes of the spliced part(s) that are
circular (CR), rectangular (RECT), triangular (TRI), and
arbitrary (ARB). Figure 8 shows the results with theses
shapes. +e method is robust on different shapes of spliced
region(s).

5.4. Robustness on JPEG Images. +e performance of pro-
posed technique was evaluated on the JPEG images taken
fromCASIA v1.0 and CASIA v2.0 datasets and achieved 98%
accuracy. JPEG compression is performed by applying DCT
quantization. When splicing is performed in JPEG images
the forgery occurs in the form of block mismatching and
blocks are not aligned with their neighbors which causes
extraneous edges. +e proposed techniques achieved high
forgery detection accuracy because it properly explored the
inconsistencies in the spliced image using DWT-DRLBP
descriptor.

5.5. Comparison with State-of-the-Art Methods. In this
section we compared the results achieved in this research
with the state-of-the-art image splicing technique for image
forgery detection. Table 3 demonstrates the performance of
state-of-the-art methods only on the corresponding data-
sets, because they achieved best results either on CASIA
v1.0 or CASIA v2.0 or DVMM. It demonstrates that the
proposed technique outperforms the state-of-the-art
techniques with respect to every performance evaluation
criterion. It can also be noted that the proposed approach
performed significantly on combined dataset, which wit-
nessed the generalization of the proposed technique.
Overall, the method has high accuracy and true positive
rate, while maintaining low false positive rate as compared
to other state-of-the-art methods.

6. Conclusion

To represent a test image for authentication, we employed
DWT-DRLBP descriptor for feature extraction. Chroma
components of a test image are decomposed into subbands
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transformations.
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Table 2: Performance of image forgery detection.

Dataset used ACC TPR FPR AUC
DVMM 97.21 97.87 3.88 0.98
CASIA v1.0 98.59 99.34 1.24 0.99
CASIA v2.0 98.88 99.32 0.96 0.99
Combined 98.95 99.91 2.05 0.99

Table 3: Comparison with recent state-of-the-art image splicing
detection methods.

Approaches Dataset used ACC TPR FPR AUC

Proposed

DVMM 97.21 97.87 3.88 0.98
CASIA v1.0 98.59 99.34 1.24 0.99
CASIA v2.0 98.33 97.32 0.96 0.99
Combined 98.95 99.91 2.05 0.99

[5]
DVMM 96.39 97.92 4.46 0.97

CASIA v1.0 94.89 92.30 2.77 0.94
CASIA v2.0 97.33 98.50 3.47 0.97

[31]
DVMM 91.14 93.07 16.14 —

CASIA v1.0 96.17 97.65 6.84 —
CASIA v2.0 97.86 98.82 2.79 —

[32] Composite 93.21 — — —

[6]
CASIA v1.0 90.18 93.00 2.11 —
CASIA v2.0 96.21 93.00 2.90 —
Composite 94.64 93.00 7.20 —

[33] CISE 93.36 92.99 1.89 —

[34]
CASIA v1.0 94.29 — — 0.93
CASIA v2.0 96.52 — — 0.97
DVMM 94.17 — — 0.93

CASIA v1.0 95.4 — — —
[18] CASIA v2.0 95.6 — — —

DVMM 94.8 — — —

[19]
CASIA v1.0 95.4 — — —
CASIA v2.0 95.6 — — —
DVMM 94.8 — — —

[35] CASIA v2.0
[20] CASIA v2.0 99.54 95
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using single level DWT to exploit splicing inconsistencies. A
robust texture descriptor DRLBP is employed to capture the
detailed statistics from these subbands. DWT-DRLBP de-
scriptormakes the proposedmethod capable enough to detect
splicing image forgery even in the presence of postprocessing
operations. Performance of DWT-DRLBP descriptor is ob-
tained and examined by employing SVM classifier with 10-
fold cross validation. +ree publicly available benchmark
datasets were used for experiments and evaluation. Our
proposed method achieved 98.95% accuracy on combined
dataset and is robust as compared to other state-of-the-art
methods. +ese results also endorsed the success and ro-
bustness of DWT-DRLBP descriptor, used to model incon-
sistencies in images caused by splicing forgery. Furthermore,
SVM with RBF kernel classified any given image as authentic
or spliced and finally ensured the excellent accuracy of results.
+e future work is to localize the spliced region(s) to boost the
trust on results and to measure the degree of splicing.
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