
Research Article
Randomization-Based Dynamic Programming Offloading
Algorithm for Mobile Fog Computing

Wenle Bai,1 Zhongjun Yang ,2 Jianhong Zhang,3 and Rajiv Kumar4

1Information Science and Technology, North China University of Technology, Shijingshan District, Beijing 100043, China
2School of Information Science and Technology, North China University of Technology, Shijingshan District,
Beijing 100043, China
3North China University of Technology, Beijjing, China
4Department of Electronics and Communication As a Professor, Jaypee University of Information Technology, Waknaghat, India

Correspondence should be addressed to Zhongjun Yang; 1076943446@qq.com

Received 22 July 2021; Accepted 10 August 2021; Published 31 August 2021

Academic Editor: Xin Liu

Copyright © 2021 Wenle Bai et al. .is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Offloading to fog servers makes it possible to process heavy computational load tasks in local devices. However, since the
generation problem of offloading decisions is an N-P problem, it cannot be solved optimally or traditionally, especially in
multitask offloading scenarios. Hence, this paper has proposed a randomization-based dynamic programming offloading al-
gorithm, based on genetic optimization theory, to solve the offloading decision generation problem in mobile fog computing. .e
algorithm innovatively designs a dynamic programming table-filling approach, i.e., iteratively generates a set of randomized
offloading decisions. If some in these sets improve the decisions in the DP table, then they will be merged into the table. .e
iterated DP table is also used to improve the set of decisions generated in the iteration to obtain the optimal offloading ap-
proximate solution. Extensive simulations show that the proposed DPOA can generate decisions within 3ms and the benefit is
especially significant when users are in multitask offloading scenarios.

1. Introduction

With the increasing popularity of smart devices, smart
applications provide a rich user experience while placing
stringent demands on computing power. Due to the limi-
tations of mobile devices, it becomes a challenge to maintain
the quality of service when traditional devices are faced with
heavy computational demands. To solve this problem,
mobile fog computing (MFC) [1] has been proposed to
compensate for the lack of computing power in local devices.
And, it alleviates the computing congestion of cloud by
offloading tasks to fog nodes at the edge of the network, as
well.

In MFC, there are two major problems to be solved. .e
first is how to determine whether a task should be offloaded
or not. .e other is how to balance the delay performance
and energy consumption as much as possible, while off-
loading tasks. In order to solve the above problems, some

offloading algorithms have been proposed in the literature.
In [2], by modeling task generation as a Poisson process, the
processing in the server is modeled as an M/M/1 model. A
closed-form expression for the offloading delay is derived to
find the global optimal solution with the lowest latency
performance. Subdividing a task into the offloadable and
non-offloadable part, the study in [3] constructs an op-
portunistic offloading model. A delayed offloading model is
introduced in [4], in which tasks will wait as long as possible
until the WIFI link is available to offload before the dead
time arrives. Aiming at minimizing the energy consumption,
the work in [5] develops an offloading interaction model
based on the auction mechanism, while the authors of [6]
propose an incentive propagation mechanism (IPM)
algorithm.

In the traditional MFC network, a key research point is
the joint design of the offloading decision and system
resource allocation to optimize system effectiveness. .e

Hindawi
Security and Communication Networks
Volume 2021, Article ID 4348511, 9 pages
https://doi.org/10.1155/2021/4348511

mailto:1076943446@qq.com
https://orcid.org/0000-0002-4541-0316
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/4348511

study in [7] proposes a fair and energy-minimized task
offloading (FEMTO) algorithm, which considers three
important characteristics: the energy consumption of the
offloading, the historical average energy of the F-AP, and
the priority of the F-AP. .e offloading decision problem
and the uplink channel assignment problem are designed as
a quadratic constrained quadratic programming (QCQP)
problem in [8]. .en, the proposed matrix algorithm is
used to solve the QCQP problem to obtain the suboptimal
solution. .e offloading problem in [9] is solved by
transforming it into a nonconvex QCQP problem and then
solving that with the proposed semidefinite relaxation
algorithm.

With the boon of deep learning in recent years, some
studies have combined deep learning with the MFC. .e
study in [10] proposes a joint computational offloading and
resource allocation algorithm based on deep reinforcement
learning (DRL), which is used for deriving a suboptimal
solution for the optimization problem. A deep learning-
based offloading algorithm is proposed in [11], which uses
the trained DNN to generate offloading decisions for each
task. .e work in [12] introduces an empirical replay
technique based on the reinforcement learning, which im-
proves the convergence rate of the offloading algorithm.
Similarly, the study in [13] adds a layer of the LSTM network
to the deep Q network, which is used for predicting the
amount of tasks to be received by the fog node at the next
moment. Compared to the deep Q algorithm, the algorithm
with the LSTM network can arrive at the optimal decision
faster. Although these intelligent algorithms have very high
offloading accuracy, the training of the network requires a
long time. Meanwhile, these excessively complex algorithms
will additionally increase the computational burden of IoT
(Internet of .ings) devices. Hence, they are not applicable
for real-time computational offloading of MFC networks in
time-varying environments.

In this work, attention is paid to the task offloading
problem in an MFC network and a dynamic programming
offloading algorithm (DPOA) based on randomization is
proposed to solve the offloading decision generation
problem. .e achievements obtained in this paper are as
follows:

(1) Randomization is introduced in the DPOA, where
the system periodically generates a random set of
offloading decisions of 1 or 0. And, these randomized
decisions are used to construct a two-dimensional
dynamic programming (DP) table, as well.

(2) .e DP table is populated in a novel way, which
avoids the double computation of the common
decision cells in the generated random set. After
enough iterations of the algorithm, the optimal
approximate solution can be obtained from a query
of the populated DP table.

(3) Extensive simulations show that the algorithm is
highly responsive. And, the algorithm maintains
optimal approximate decision generation within
3ms for a wide range of system parameter settings.

.e rest of this paper is as follows: the model of the MFC
network and the closed-form expressions for latency and
energy consumption are presented in Section 2, as well as the
construction of an energy-latency weighted sum minimi-
zation problem..e DPOA is referred in Section 3. Section 4
mainly provides the analysis of simulations. And, the
conclusions are given in the last section.

2. Network Model and Problem Formulation

2.1. Network Model. As shown in Figure 1, the network
model investigates an MFC network consisting of multiple
users, a single fog access point (F-AP), and a remote cloud
server, where users interact with the F-AP through a wireless
channel for data interaction. .e F-AP and the cloud server
are interconnected with an optical fiber. Assume that each
user has Nmutually independent tasks to compute, denoted
as N � 1, 2, . . . , N{ }. Each task is indivisible to the user and
can be processed either locally, offloaded to a F-AP for
processing or further to the cloud server.

.e offloading decision of the n-th task at the local side is
represented by the binary variable Xn

F ∈ 0, 1{ }. .en, Xn
F � 0

(Xn
F � 1) represents the task that will be processed at the

local side (offloaded to the fog). Similarly, let Xn
C ∈ 0, 1{ }

represent the n-th task’s decision that is on the fog side.Xn
C �

0 denotes the task that will remain on the fog side for
computation, and, conversely, Xn

C � 1 represents the task
being further offloaded to the cloud.

2.2. Problem Formulation. In the local computing mode, as
the task is computed only in the local processor without
involving data upload, the total energy and total time
consumed are equal to those of the processor. .e size of n-
th task is denoted by Mn. Let κ and fL represent the energy
consumption per bit of task computed and the computation
rate (cycle/s) at the local device, respectively. .e energy
consumption and latency of Mn computed locally are

E
n
L � κMn, (1)

T
n
L �

Mnϕ
fL

, (2)

where ϕ indicates the number of CPU revolutions required
that processes per bit of data (cycle/bit), which is determined
by the CPU process. Without loss of generality, it is pre-
sumed that the all covered ϕ of the devices in this paper are
all equal.

When Xn
F � 1 is in place, the task will be offloaded to the

nearest F-AP over the wireless network..e task offloaded to
the fog will be redistributed by the algorithm, and some will
be further offloaded to the cloud server. According to
[9, 11, 14, 15], it is known that the offloading backhaul data is
extremely small, much smaller than of the offloaded, so the
return cost is chosen to be ignored. Let the transmission rate
between users and F-AP be BF; then, the transmission time
to the fog is

2 Security and Communication Networks

T
n
tF �

Mn

BF

. (3)

With fF denoting the processing rate of the fog server,
the computation time consumed in the fog is

T
n
F �

Mnϕ
fF

. (4)

About the cloud computing model, F-APs are inter-
connected with the cloud server through the fiber and the
transfer rate between both is expressed in terms of BC. .en,
the total time cost from the local side to the cloud can be
recorded as

T
n
tC �

Mn

BF

+
Mn

BC

. (5)

Representing the processing rate of the cloud server by
fC, the cloud computing time cost for the n-th task is

T
n
C �

Mnϕ
fC

. (6)

For energy consumption, as the essence of offloading is
to handle complex or large tasks, which is difficult for the
local side, this paper only considers the transmission and
standby energy consumption in the local device while ig-
noring the energy cost at the server. Hence, the transmission
energy consumption of the n-th task offloading to the fog is
shown in

E
n
t � αMn, (7)

where α is the energy consumption of the local device that
transmits per bit of data.

In addition, the output of the local device is modeled as
an M/M/1 queue and the system distributes the n+1th task
only when the n-th has been processed. Meanwhile, if task n
is offloaded, the local device will remain in the standby
mode. Using P to present the standby power of the device,
the standby energy consumption during offloading Mn can
be expressed as En

w:

E
n
w � P · X

n
F T

n
tF + T

n
F(+ X

n
FX

n
C T

n
tC + T

n
C(. (8)

For any user in the MFC network, the total latency and
energy consumption of processing all tasks can be expressed,
respectively, as follows:

T �
N

n�1
1 − X

n
F(T

n
L + X

n
F 1 − X

n
C(T

n
tF + T

n
F(+ X

n
FX

n
C T

n
tC + T

n
C(,

(9)

E �
N

n�1
X

n
FE

n
t + 1 − X

n
F(E

n
L + E

n
w . (10)

In order to minimize the total energy and time con-
sumption to complete all tasks, this paper introduces a
system utility Θ defined as a weighted sum of energy and
latency, as shown in

Θ(X) � E + cT, (11)

where X � Xn
F, Xn

C | n ∈ N and c ∈ [0, +∞); (J/s) is the
weight variable. When c � 0, the system will focus only on
the energy performance, and if a balance between energy and
latency is to be maintained, then c � 1 is required. For c> 1,
the system focuses more on the rapidity of the offloading.

After that, an optimization problem (P) is constructed to
minimize the overall utility of the systemΘ(X) with the help
of optimizing the offloading decision X for each task. .e
optimization problem is as follows:

P: Θ∗(X) � minimize
XF,XC

(E + cT), (12a)

subject to XF ∈ 0, 1{ }, (12b)

XC ∈ 0, 1{ }, (12c)

T≤Tlimit, (12d)

gamma≥ 0. (12e)

1

2
3

N
Tasks

IM

UE

ITO

F-AP
(Fog server) Cloud server

Cloud processor

Cloud computation

Local processor Fog processor

Fog computationLocal computation

Scheduler

Transmission
queue

Transmission
queue

Wireless
link

Wireless linkScheduler

Wired

Wireless

F-AP: (Fog
Access Point)

UE: (User
Equipment)

ITO: (Internet
of �ings)

IM: (Inrelligent
Machine)

Mn

XF = 0

XF = 1
XC = 0

XC = 1

Figure 1: Network scenarios and offloading computation models for mobile fog computing.

Security and Communication Networks 3

where (12b) and (12c) constrain the binary nature of the
offloading decision. Besides, (12d) is the offloading time
limit. If the latency is greater than the time limit, then the
decision will not be adopted. Moreover, the algorithm will
add an extremely large penalty value, such as
Θ∗ (X) � Θ∗ (X) + σ where σ � 109, to the system utility at
this point to force the decision to be eliminated in subse-
quent comparisons.

Generally speaking, a binary decision problem of this
kind belongs to the N-P problem, which has no exact so-
lution by default. In the next section, we will propose a
dynamic programming offloading algorithm, which is based
on randomized decision, to find the optimal approximate
solution of such problems. Furthermore, the definitions of
the symbols used in this paper are shown in Table 1.

3. DPOA

In this section, a dynamic programming offloading algo-
rithm for the MFC network, the DPOA, is proposed, in
which the two-dimensional DP table is constructed to pick
the current optimal binary decision for each task.

Because of the similarity of the decision algorithms for
the fog decision and the cloud decision, the algorithm is
mainly used as an example at the fog server in this section.
Since cloud-side decisions and fog-side decisions do not
affect each other, when calculating fog-side decisions, we
assume that all the decisions of the tasks in the cloud are 0,
for example, Xn

C ≡ 0 (XC � Xn
C ≡ 0|n ∈ N).

To store and display the offloading decisions corre-
sponding to each task, as shown in Figure 2, a DP table of
size N∗N is constructed. Particularly, N is the total number
of tasks. After the algorithm begins with H round-robin
operations and a set of N randomly offloaded decision el-
ements, denoted as Λh, h ∈ 1, 2, . . . , H{ } is generated in each
cycle. In particular, there is no connection between the set of
random decisions and the offloading task. While obtaining
the generated set of offloading decisions for the current
cycle, the system assigns the decisions to the previously
constructed DP table according to a specific law. For ex-
ample, 0 is assigned to the next horizontal cell while 1 is to
the next vertical cell. Exceptionally, the starting position is
(1, 2) if the first decision is 0 and (2, 1) is for 1. In addition,
the construction of the DP table is based on the randomi-
zation theory in [9].

As an example, assumingN� 6, the algorithm constructs
a 6 ∗ 6 DP table. Let all the decision sets generated by the
first cycle be Λ1 � 010010 and suppose the decision during
the second cycle is Λ2 � 110101 (as shown in Figure 2(a)
with blue numbers) or Λ2 � 100110 (in Figure 2(b) with red
numbers) with two examples. As the first place of Λ1 is 0, the
starting cell is (1, 2). Since the second place of Λ1 is 1, the
next vertical cell of the previous cell (1, 2) will be assigned to
1, such as (2, 2)� 1. Similarly, with the third place being 0,
the next horizontal cell of cell (2, 2) will be assigned to 0, i.e.,
(2, 3)� 0..e table is filled according to the above rules so as
to get the table in Figure 2.

Once the decision set Λh is generated, it is first filled into
the table according to the rules and the overall system utility

Θ(Xh) is calculated at the same time, in which
XF � Λh andXC ≡ 0. Obviously, if the number of iterations
is large enough, there will be cases that theΛh has a common
subset with the previous cells in the table with different
decisions, as in (2, 2) in Figure 2(b). We will consider the
utility values Θ(0, 0) and Θ(1, 0) for the cell under different
offloading decisions, respectively, and select the decision
corresponding to the lowest value to replace the original one.
.en, the updated set is noted as Λ∗h , followed by updating
the overall system utility at this point as Θ(X∗h), specifically
XF � Λ∗h .

When all the elements in Λh are filled, the final Θ(X∗h) is
compared with the system utilityΘ(X∗h−1) of the h-1th cycle.
In the special case, when h is equal to 1, then the Θ(X0) for
the 0-th time is equal to the system utility corresponding to
the full 0 set as Λ0. If the utility value of the current loop is
greater than of the previous one, the new set is replaced with
the old like Λ∗h � Λ∗h−1. Furthermore, the utility value of the
current loop is replaced with the old value as
Θ(X∗h) � Θ(X∗h−1), as well. Conversely, if the existing utility
value is less than the value of the previous loop, the existing
offloading decision is held without change.

Table 1: Symbols used in the paper.

Symbol Meaning
Mn Data size of users n-th task
Xn

F Local-to-fog offloading decision of users n-th task

Xn
F �

1 offloading
0 local

Xn
C Fog-to-cloud offloading decision of users n-th task

Xn
C �

1 cloud
0 fog

fL Local computing rate
fF Fog computing rate
fC Cloud computing rate
BF Bandwidth between the local and fog
BC Bandwidth between the fog and cloud
Tn

L Local processing time of users n-th task
k Energy cost of the device computed per bit of data
Tn

F Fog processing time of users n-th task

α Energy consumption per bit of data in local-to-fog
transmission

Tn
C Cloud processing time of users n-th task

P Device standby power
Tn

tF Transmission delay of n-th task from the local to fog

ϕ Number of CPU revolutions required to process per bit
of data

Tn
tC Transmission delay of n-th task from the fog to cloud

T Total delay of the user
En

L Local energy consumption of users n-th task
c .e relative importance of delay and energy
En

t Uploaded energy cost of users n-th task
σ System-set penalty value
En

w Standby energy cost of the device when it offloads task n
E Total energy cost of the user
H Number of algorithm iterations

Λh

.e set of random offloading decisions produced at the
h-th iteration

Λ∗h .e h-th offloading decision set after updating
η Relative offloading accuracy rate

4 Security and Communication Networks

Having completed all the cycles, the decision setΛ∗H after
the H-th cycle is the optimal offloading decision XF in the
local-to-fog stage, i.e., XF � Λ∗H. Obviously, if the number of
cycles is sufficient, the constructed DP table will be filled up.
Once the arbitrary set of offloading decisions generated at
this point is filled into the table, the resulting updated set Λ∗h
is set as the corresponding optimal solution of the algorithm.
And, the code of the DPOA is detailed in Algorithm 1.

For the decision algorithm on the cloud server, it is
approximately the same as on the fog. Furthermore, if the
fog decision for task n satisfies Xn

F � 0, then its cloud de-
cision is also 0 (Xn

C � 0 | Xn
F � 0, n ∈ N). In the next sec-

tion, a large amount of simulations will be used to verify the
speed and accuracy of the DPOA.

4. Evaluation and Simulation

In this section, extensive simulation is provided to evaluate
the offloading performance of the DPOA. Specifically, it is
assumed that the number of tasks to be offloaded by the user is
20, whose size is randomly distributed in the range of 2MB to
20MB. Furthermore, the computational energy consumption
of the tasks is 3.25 × 10− 7J/bit [9] when being processed in the
local device and 1.42 × 10− 7J/bit [9] is for the transmit energy
per bit of the device. And, the standby power of the device is
constant at 40mw. Moreover, the processing speed of the
local device, the fog server, and the cloud server is set to
fL � 2.1 × 108cycle/s, fF � 5 × 109 cycle/s, and fC � 10×

109cycle/s [9], respectively. .e wireless transmission rate
between the local and F-AP is 15Mbps and from the fog to
cloud is 40Mbps [15]. Besides, ϕ � 100cycle/s,
Tlimit � 1200ms, H � 500, and c � 1J/s are further set.

.e proposed DPOA is compared with the existing SRA
(semidefinite relaxation approach) algorithm in the litera-
ture [9] and the Greedy algorithm, as shown in Figure 3.
Besides, the data when the tasks are computed all locally and
all in the cloud are added for reference. Figure 3 illustrates
that offloading tasks can significantly reduce the processing

latency and energy consumption compared to local com-
putation. .e addition of fog computation (DPOA, SRA,
and Greedy) to the system can further reduce the utility
compared to only cloud computation. From the data in
Figure 3, it can be seen that the DPOA is able to find a better
solution compared to the mentioned benchmark algorithm
(SRA [9] and Greedy).

Here, we define the relative offloading accuracy rate of
the DPOA, denoted by η:

η �
Θ(SRA)

Θ(DPOA)
. (13)

where Θ(SRA) denotes the system utility value corre-
sponding to the decision generation by the SRA algorithm,
while Θ(DPOA) represents the value of the DPOA under
the same parameters.

Figure 4 analyzes the performance of the algorithm at
different numbers of iterations. In Figure 4(a), the relative
accuracy rate increases gradually as the number of iterations
continues to increase. When the number of H is higher than
500, the value of the rate tends to be smooth, i.e., the al-
gorithm reaches the convergence state. As the number of
iterations increases, the system utility value of the DPOA is
decreasing, such as the line graph in Figure 4(b). And, when
H is greater than 500, the system utility value tends to be
stable. However, from the histogram in Figure 4(b), higherH
values correspond to higher decision time points for the
system, so that a single increase in the number of iterations
may weaken the rapidity of the algorithm.

In Figure 5, we consider the offloading when the user is
in a wireless transmission rate variation scenario with a
transmission rate BF range of 5Mbps to 25Mbps. As can be
seen in Figure 5(a), the energy under the DPOA is much
lower than that of the full cloud computing and outperforms
that of the benchmark algorithm. In a poor communication
scenario, such as BF � 5Mbps, all-local computation is more
cost-effective than offloading in terms of energy con-
sumption because of the relatively heavy energy

0

0 0

01

11

1 0

01

1

1 2 3 4 5 6

1
2

3
4

5
6

(a)

0

0

01

1

1

1

00/1

0

(b)

Figure 2: Two examples of filling out the DP table.

Security and Communication Networks 5

Input: number of tasks N; size of tasks Mn, n ∈ N;
Output: optimal offloading decision set Λ∗H;
(1) Initialization: initialize the DP table and set the Tlimit;
(2) for h� 1, 2, . . ., H do
(3) Generate random offloading decision sets Λh;
(4) Fill in the DP table according to the rules and calculate the system utility Θ(Xh) for Λh;
(5) if (the filled decisions have a common set and not the same as the cells in the previous table) then
(6) Calculate the system utility corresponding to this decision and the original decision, respectively;
(7) Select the decision corresponding to the lower value to replace the original decision;
(8) Renew Λ∗h and Θ(X∗h);
(9) else
(10) Execute the following: Λ∗h � Λh and Θ(X∗h) � Θ(Xh);
(11) if (Θ(X∗h)>Θ(X∗h−1)) or (T>Tlimit) then
(12) Execute the following: Λ∗h � Λ∗h−1 and Θ(X∗h) � Θ(X∗h−1);

ALGORITHM 1: DPOA.

3000
2800
2600
2400
2200
2000
1800
1600
1400
1200
1000

800
600

Local Cloud DPOA SRA Greedy

1289.8
1178.21096.8

1584.6

2861.4

Sy
ste

m
 u

til
ity

 (J
)

DPOA Algorithm

Local Computing
Cloud Computing

SRA Algorithm
Greedy Algorithm

Figure 3: Comparison of the system utility for different algorithms.

1.10
1.08
1.06
1.04
1.02
1.00
0.98
0.96
0.94
0.92
0.90
0.88

0 200 400 600 800 1000

Re
lat

iv
e a

cc
ur

ac
y

ra
te

 (η
)

Convergence complete

The number of iterations ‘H’

DPOA Algorithm

(a)

2.1 6.6 11.8
21.3

51.1

79.1

99.9

8.2668.2678.2669.022
9.463

11.304

16.534

10 50 100 200 500 800 1000

8

10

12

14

16

18110
100

90
80
70
60
50
40
30
20
10

0

Ti
m

e c
os

t (
m

s)

Sy
ste

m
 u

til
ity

 (k
J)

Total time
System utility

The number of iterations ‘H’

(b)

Figure 4: Performance under different number of iterations “H”: (a) convergence of the DPOA; (b) total time cost and system utility.

6 Security and Communication Networks

consumption required to offload. However, it is noticed in
Figure 5(b) that the all-local computation exceeds the time
limit, so the optimal solution is the DPOA in comparison.

.e relationship between the time cost and the wireless
transmission rate is exhibited in Figure 5(b). As the
transmission rate increases, the advantage of offloading
computation over non-offloading becomes gradually obvi-
ous and the latency of the system to perform offloading
computation decreases.

As illustrated in Figure 6, the performance of the al-
gorithm for different c has been investigated. It can be seen
from the figure that as the value of c increases, the system
utility also increases gradually. However, the utility of the
DPOA is always lower than that of the SRA and the Greedy,
which means that the DPOA gives a superior approximate
solution in comparison. Based on Figures 3, 5, and 6, it can
be concluded that the DPOA consistently outperforms the

mentioned benchmark algorithm in terms of comprehensive
offloading performance.

More specifically, the time cost of this algorithm in
generating offloading decisions under different numbers of
tasks is also analyzed, as shown in Figure 7. Not surprisingly,
it can be noticed that the decision-elapsed time of the DPOA
increases almost linearly as the number of tasks increases
from 10 to 35. At the same time, the average decision time
curve shows that with the changing number of tasks, the
algorithm can steadily maintain the optimal offloading
decision within 3ms. .e above experiments illustrate that
the algorithm can handle the massive task offloading
problem without reducing its own efficiency and is suitable
for multitask offloading scenarios.

In Figure 8, we further investigate the impact of the time
limit (Tlimit) on the energy efficiency of the algorithm.
Adopting the energy consumption in the case of all-local

1350
1300
1250
1200
1150
1100
1050
1000

5 10 15 20 25

En
er

gy
 co

ns
um

pt
io

n
(J

)

DPOA Algorithm

Local Computing
Cloud Computing

SRA Algorithm
Greedy Algorithm

Wireless transmission rate (Mbps)

(a)

5 10 15 20 25

Ti
m

e c
os

t (
m

s)

1800
1600
1400
1200
1000

800
600
400
200

0

Time limit
Local Computing
Cloud Computing

DPOA Algorithm

Greedy Algorithm
SRA Algorithm

Wireless transmission rate (Mbps)

(b)

Figure 5: Comparison of the DPOA and the benchmark algorithms (SRA [5] and Greedy), when time limit� 1200: (a) energy consumption;
(b) time cost.

6000

5000

4000

3000

2000

1000

0.5 1 1.5 2 2.5
γ (J/s)

Sy
ste

m
 u

til
ity

 (J
)

DPOA Algorithm

Local Computing
Cloud Computing

SRA Algorithm
Greedy Algorithm

Figure 6: System utility values of different offloading algorithms under different c.

Security and Communication Networks 7

computing as the benchmark, Figure 8 shows the percentage
energy savings of Tlimit relative to the benchmark. It can be
seen from the figure that as the time limit is gradually re-
laxed, more tasks can be offloaded to the server and thus
more energy can be saved. Compared with the all-local
computing model, the DPOA can reduce the energy con-
sumption of the local device processing tasks by about 9% to
32% while meeting the time constraints.

5. Conclusion

Aiming at the offloading decision generation problem in
MFC, this paper proposes a randomization-based dynamic
programming offloading algorithm, DPOA, to solve this
problem. .e algorithm uses randomization to cyclically
generate a random set of offloading decisions while

constructing an overall system utility Θ(X), including the
total energy and time cost, to dynamically populate the DP
table by minimizing the system utility. .e simulation re-
sults verify that the proposed algorithm is accurate and
outperforms the existing benchmark algorithm. Further-
more, the DPOA can better adapt to scenarios with changing
transmission rates. However, at higher network rates, it will
offload as many tasks as possible to the server, thus con-
verging quickly to the optimal solution. Besides, the algo-
rithm can generate near-optimal offloading decisions in 3ms
and its time cost does not increase drastically with the
number of tasks. In conclusion, we hope that this DPOA can
be applied in decision time-sensitive MFC scenarios, such as
smart IoT in 6G, to improve the efficiency of real-time
system offloading.

Data Availability

.e underlying data supporting the results of this study can
be found at the official website of Beijing Natural Science
Foundation.

Conflicts of Interest

.e authors declare that they have no conflicts of interest.

Acknowledgments

.is work was supported by Beijing Natural Science
Foundation, Haidian Original Innovation Joint Fund Project
(No. L182039).

References

[1] P. Habibi, M. Farhoudi, S. Kazemian, S. Khorsandi, and
A. Leon-Garcia, “Fog computing: a comprehensive archi-
tectural survey,” IEEE Access, vol. 8, Article ID 69105, 2020.

[2] M. Xu, Z. Zhao, M. Peng, Z. Ding, T. Q. S. Quek, and W. Bai,
“Performance analysis of computation offloading in fog-radio
access networks,” in Proceedings of the 2019 IEEE Interna-
tional Conference on Communications (ICC), pp. 1–6,
Shanghai, China, May 2019.

[3] J. Wang, T. Lv, P. Huang, and P. T. Mathiopoulos, “Mobility-
aware partial computation offloading in vehicular networks: a
deep reinforcement learning based scheme,” China Com-
munications, vol. 17, no. 10, pp. 31–49, Oct. 2020.

[4] H. Wu and K. Wolter, “Stochastic analysis of delayed mobile
offloading in heterogeneous networks,” IEEE Transactions on
Mobile Computing, vol. 17, no. 2, pp. 461–474, 1 Feb. 2018.

[5] R. Besharati and M. H. Rezvani, “A prototype auction-based
mechanism for computation offloading in fog-cloud envi-
ronments,” in Proceedings of the 2019 5th Conference on
Knowledge Based Engineering and Innovation (KBEI),
pp. 542–547, Tehran, Iran, March 2019.

[6] L. Yang, H. Zhu, H. Wang, H. Qian, and Y. Yang, “Incentive
propagation mechanism of computation offloading in fog-
enabled D2D networks,” in Proceedings of the 2018 IEEE 23rd
International Conference on Digital Signal Processing (DSP),
pp. 1–4, Shanghai, China, November 2018.

[7] G. Zhang, F. Shen, Z. Liu, Y. Yang, K. Wang, and M. Zhou,
“FEMTO: fair and energy-minimized task offloading for fog-

90

80

70

60

50

40

30

20

10
10 15 20 25 30 35

Ti
m

e c
os

t (
m

s)

Ti
m

e c
os

t (
m

s)

Number of tasks

2.2

2.4

2.6

2.8

3.085.95

73.95

61.96

50.97

2.598

2.698

38.98

26.98

2.548

2.478 2.465 2.456

Total Offloading Time
Mean Offloading Time

Figure 7: Time cost for generating decision under different
number of tasks using the DPOA.

9.08
10.85

13.69 14.61
17.46

23.07

31.71

1200 1300 1400 1500 1600 1700 1800
Time limit (ms)

36

32

28

24

20

16

12

8

4

0

Th
e e

ne
rg

y
of

 sa
ve

d
(%

)

Figure 8: Percentage of energy saved by using the DPOA com-
pared to the all-local computing method, under different time
limits.

8 Security and Communication Networks

enabled IoTnetworks,” IEEE Internet of =ings Journal, vol. 6,
no. 3, June 2019.

[8] M. Mukherjee, S. Kumar, Q. Zhang et al., “Task data off-
loading and resource allocation in fog computing with multi-
task delay guarantee,” IEEE Access, vol. 7, Article ID 152911,
2019.

[9] M. Chen, B. Liang, and M. Dong, “A semidefinite relaxation
approach to mobile cloud offloading with computing access
point,” in Proceedings of the 2015 IEEE 16th International
Workshop on Signal Processing Advances in Wireless Com-
munications (SPAWC), pp. 186–190, Stockholm, Sweden, July
2015.

[10] G. M. S. Rahman, T. Dang, and M. Ahmed, “Deep rein-
forcement learning based computation offloading and re-
source allocation for low-latency fog radio access networks,”
Intelligent and Converged Networks, vol. 1, no. 3, pp. 243–257,
Dec. 2020.

[11] X. Zhu, S. Chen, S. Chen, and G. Yang, “Energy and delay co-
aware computation offloading with deep learning in fog
computing networks,” in Proceedings of the 2019 IEEE 38th
International Performance Computing and Communications
Conference (IPCCC), pp. 1–6, London, UK, October 2019.

[12] X. Wang, X. Wei, and L. Wang, “A deep learning based
energy-efficient computational offloading method in Internet
of vehicles,” China Communications, vol. 16, no. 3, pp. 81–91,
March 2019.

[13] F. Jiang, R. Ma, C. Sun, and Z. Gu, “Dueling deep Q-network
learning based computing offloading scheme for F-ran,” in
Proceedings of the 2020 IEEE 31st Annual International
Symposium on Personal, pp. 1–6, London, UK, September
2020.

[14] M. A. Sharkh and M. Kalil, “A dynamic algorithm for fog
computing data processing decision optimization,” in Pro-
ceedings of the 2020 IEEE International Conference on Com-
munications Workshops (ICC Workshops), pp. 1–6, Dublin,
Ireland, June 2020.

[15] W. Bai, Z. Ma, Y. Han et al., “Joint optimization of com-
putation offloading, data compression, energy harvesting, and
application scenarios in fog computing,” IEEE Access, vol. 9,
Article ID 45462, 2021.

Security and Communication Networks 9

