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Evolutionary game theory is widely applied in network attack and defense. +e existing network attack and defense analysis
methods based on evolutionary games adopt the bounded rationality hypothesis. However, the existing research ignores that both
sides of the game get more information about each other with the deepening of the network attack and defense game, which may
cause the attacker to crack a certain type of defense strategy, resulting in an invalid defense strategy. +e failure of the defense
strategy reduces the accuracy and guidance value of existing methods. To solve the above problem, we propose a reward value
learning mechanism (RLM). By analyzing previous game information, RLM automatically incentives or punishes the attack and
defense reward values for the next stage, which reduces the probability of defense strategy failure. RLM is introduced into the
dynamic network attack and defense process under incomplete information, and a multistage evolutionary game model with a
learning mechanism is constructed. Based on the above model, we design the optimal defense strategy selection algorithm.
Experimental results demonstrate that the evolutionary game model with RLM has better results in the value of reward and
defense success rate than the evolutionary game model without RLM.

1. Introduction

+e rapid development of IT infrastructures, such as
cyber-physical systems and Internet of +ings, has
brought convenience to individuals and enterprises. But it
also brings unprecedented security problems [1, 2]. Data
management and communication layers in cyber-physical
systems and the Internet of +ings are vulnerable to
cyberattacks such as DDoS attacks, APT, and vulnerability
attacks, which seriously threaten network security [3].
According to the Crystal Market Research (CMR) report,
to resist the increasingly severe attacks, the investment in
the network security market is expected to increase from $
58.13 billion to $ 173.57 billion from 2012 to 2022 [4].
+us, it can be seen that the network attack and defense
are increasingly severe, and network security defense has
become an important problem to be solved in the field of
network information [5]. Unfortunately, much research
[6, 7] shows that improving information security tech-
nology alone cannot provide enough protection against

persistent attacks. A new method is needed to guide the
implementation of the defense strategy.

Network attack and defense have the characteristics of
opposite objectives and noncooperation relationships, which
are consistent with the characteristics of the game.+e game
theory [8] applied to the network attack and defense process,
from the perspective of the defender exploring how to get the
best defense strategy, has become an important research
direction of network security defense [9–12]. Traditional
game theory assumes that both sides of the game are in a
complete information game scene and are required to be
rational completely [13, 14]. Complete information requires
the game players to know the information of the entire
environment [15]. Complete rationality assumes that game
players can choose their own best game strategy after
obtaining the other’s strategy and its revenue [16]. Evolu-
tionary game theory [17, 18] starts from the condition of
opaque information of players, takes the learning mecha-
nism as the core, and influences the selection behavior of
players through factors such as previous experience,
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learning, and imitating the behavior of others. Evolutionary
game theory can better express the process of the mutual
game between the attackers and defenders. It is widely used
in the research work of the network attack and defense game
[19–21].

However, there are still some problems and challenges in
applying evolutionary games in network attack and defense.
(1) Existing studies using evolutionary game theory have
introduced some relevant parameters to express evolu-
tionary game ideas under incomplete information and
bounded rationality [22, 23]. +e use of these parameters is
feasible in certain application scenes and shows a certain
application value. However, the introduced parameters are
calculated manually and need to be quantified by experts.
+ere is currently no automatic calculation method. (2) In
the multistage network attack and defense game, network
attacks develop over time using new methods and targets
[24], and the defense strategy may partially or completely
fail. +e existing evolutionary game model cannot effectively
feed the failure information back to the next game stage,
which leads to the shortcomings of the best defense strategy
selection algorithm in terms of timeliness, accuracy, and
efficiency. (3) Network attack and defense are a dynamic,
multistage process [25]. +e confrontation between attack
and defense is not limited to one round or a certain stage.

To address the above problems, we propose a reward
value learning mechanism (RLM), a novel method for
updating the reward value based on the game information in
the previous stage. Inspired by machine learning, we use
RLM to learn the attacker’s strategy and the change of its
reward to predict the return value in the next stage. Fur-
thermore, RLM is introduced to the evolutionary game
model to select the best defense strategy for each stage. +e
main research work and contributions are as follows:

(1) Aiming at the multistage network attack and defense
game scene, a reward value learning mechanism is
designed. By updating the reward value of each stage,
the mechanism improves the active defense ability
when the defense strategy fails.

(2) Construct a new multistage evolutionary game
model with a reward value learning mechanism, and
solve the Nash equilibrium of each stage of the attack
and defense game by constructing the replication
dynamic equations (RD) of each stage.

(3) Based on the proposed multistage evolutionary game
model, an optimal defense strategy selection algo-
rithm is proposed. Experiments show that the al-
gorithm can effectively improve the effective strategy
selection probability, defense revenue, and defense
success rate in a single defense strategy failure scene
and multiple defense strategy failure scene.

+e remainder of this paper is organized as follows.
Section 2 briefly reviews evolutionary game theory and the
related literature in network attack and defense. Section 3
describes the evolutionary game model based on Q-learning
replication dynamic equations (QRD). Section 4 designs
RLM and gives a new evolutionary game model based on

RLM-QRD. Section 5 proposes the optimal defense strategy
selection algorithm. Section 6 presents the experimental
results for evaluating our model and compares it to the
model without RLM. Finally, Section 7 concludes this paper
and discusses the future works.

2. Related Works

+e existing network defense works based on evolutionary
games mainly include network defense based on the static
evolutionary game and network defense based on the dy-
namic evolutionary game. +e following are two aspects.

2.1. Static Network Defense Evolutionary Game. +e static
game assumes that the information of both sides of the game
remains unchanged, and it is a one-shot game [26].

Ruan et al. [27] established the attack and defense
evolutionary game model using the lightweight broadcast
authentication protocol to achieve security assurance and
minimum resource cost. Abdalzaher et al. [28] used the
scalability and low complexity of wireless sensor networks to
propose a trust model that uses evolutionary game theory to
make decisions to resist network attacks. Bouhaddi et al. [29]
established a Bayesian gamemodel to analyze the interaction
between defenders and potential malicious nodes in the
network. Aimed at the problems of free service users and
users breaking system rules in peer-to-peer networks, Shareh
et al. [30] established an evolutionary game model to resist
network attacks from these two types of users. To explore
and calculate more revenue of existing defense strategies, Jin
et al. [31] combined Q-learning with replication dynamics
equation to obtain Q-learning replication dynamics equa-
tion and proposed an evolutionary game model based on
QRD. Aiming at the problem of the limited learning ability
of players in the static network attack and defense, Liu et al.
[32] established a network attack-defense evolutionary game
model and designed an optimal defense strategy selection
algorithm. Shi et al. [33] proposed an evolutionary game
model based on honeypot technology to improve the se-
curity of the honeypot system.

2.2. Dynamic Network Defense Evolutionary Game.
Compared with the static network attack and defense
evolutionary game, the dynamic network attack and defense
evolutionary game divides the game into multistage of attack
and defense confrontation between the players, which is
more in line with the network attack and defense.

To realize the optimal defense decision in network attack
and defense, Huang et al. proposed two dynamic evolu-
tionary game models. One of the game models is the
Markov-based time game model. +is model selects the best
defense strategy by constructing a revenue discount factor
and all possible network system states [34]. Another game
model used the best-response dynamic learning mechanism
to study the evolutionary law of network defense strategy
selection [35].

To resist the invasion of the virus code, Hayel and Zhu
[36] established an evolutionary Poisson game model by
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defining the number of players participating in the inter-
action to follow a Poisson process at a specific rate. Aiming
at the security issues in radio networks, Fang et al. [37]
established an evolutionary game model, using evolutionary
stable strategy algorithms to defend dynamically against
internal attacks. Mengibaev et al. [22] introduced parameters
used to measure the dependence of game players on op-
ponents into the evolutionary game model and applied them
to the privacy protection of network users. Wang et al. [38]
designed three evolutionary gamemodels for different attack
scenes in the dynamic network and introduced parameters
that denote the degree of sensitivity of the players to the
difference in revenue in these models.

Hu et al. proposed different dynamic evolutionary game
models for the problems in network attack and defense. In
[39], a multistage Bayesian attack and defense evolutionary
game model is proposed for the difficulty of selecting the
optimal defense strategy in a dynamic confrontation net-
work. At the same time, the selection intensity factor was
introduced to improve the replication dynamic equation and
enhance the randomness of the evolution process. More
recently, to improve the timeliness and predictability of
network attack and defense game, Hu et al. [40] proposed a
dynamic evolutionary game model based on Logit Quantal
Response Dynamics (LQRD), which introduced parameters
into the evolutionary game to describe the rationality of
attack and defense sides.

3. Preliminary

+is section first introduces Q-learning and then replication
dynamic equations. Finally, the definition of the evolu-
tionary game model is proposed.

3.1. Q-Learning. Q-learning [41] is a reinforcement learning
method, which can be regarded as an asynchronous dynamic
programming method. Q-learning is also an adaptive value
iteration method, which is based on the state-action value
Qt(s′, a′) and guides the estimation of the state-action value
Qt+1(s, a) at time t + 1. Among them, the state-action value
Qt(s, a) is the expected revenue after action a is taken by
state s at time t. State s′ is the state the learner reaches after
using action a in state s. +e Q-learning formula is given as
follows:

Qt+1(s, a)⟵ (1 − z)Qt(s, a) + z r + cmaxa′Qt s′, a′( ( .

(1)

z is the usual step size parameter, r is immediate re-
inforcement, and c is the discount factor.

+e principle of Q-learning is to move in a discrete, finite
state and select one from a finite set of actions every time,
forming a controlled Markov process. Continuously, it aims
to improve its evaluation of the quality of specific actions in a
specific state to find a strategy with the most profit, which is
consistent with the game’s goal.

3.2. ReplicationDynamic Equation. +e replication dynamic
equation is a dynamic differential equation. It describes the
frequency or probability of a certain strategy used in a
specific group of people [42] and the degree to which the
probability of the game’s main body choosing a strategy
during the game. Its basic principle is that the game players
gradually adopt more strategies with a revenue better than
the average revenue. In addition, the replication dynamic
equation can ensure that the evolutionary stable strategy is
the Nash equilibrium, thereby obtaining the strategy that
benefits the most. +e replication dynamic equations of
attackers and defenders in network attack and defense are
given as follows:

xi
′(t) �

dxi

dt
� xi QASi

− QAS . (2)

yj
′(t) �

dyj

dt
� yj QDSj

− QDS . (3)

In the previous formulas, xi
′(t) represents the change

rate of the probability of the attacker selecting the attack
strategy ASi over time, yj

′(t) represents the change rate of
the probability of the defender selecting the defense strategy
DSj over time, QASi

represents the expected revenue of the
attacker’s selection of the attack strategy ASi, QDSj

represents
the expected revenue of the defender’s selection of the de-
fense strategy DSj, QAS represents the average revenue of the
attack strategy set, and QDS represents the average revenue of
the defense strategy set.

3.3. Definition of Evolutionary Game Model Based on QRD.
To extend the evolutionary game model to the dynamic
network environment, this section introduces the stage
definition into the evolutionary game model based on QRD.
+e model is defined below.

Definition 1. +e evolutionary gamemodel based on QRD is
represented as 6 tuples, and its elements are defined as
follows:

(1) N � (NA, ND) is the space of both sides in the game,
and NA, ND are the attacker and the defender.

(2) K is the number of stages in themultistage attack and
defense game; K � 1, 2, 3, . . . , T.

(3) S � (AS,DS) is the strategy space of both sides in the
game, where AS � (AS1,AS2, . . . ,ASn) is the strat-
egy set of the attacker, ASK is the strategy set of the
attacker in stage K, DS � (DS1,DS2, . . . ,DSm) is the
strategy set of the defender, and DSK is the strategy
set of the defender in stage K. n and m represent the
number of strategies of the attacker and the defender,
respectively. +erefore, both n and m are integers
and n≥ 2, m≥ 2.

(4) θ � (PA, PD) is the belief set of attack and defense
game, PA � (x1, x2, . . . , xn) is the probability
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distribution of the attacker’s overall strategy set AS;
that is, any xi ∈ PA is the attacker’s choice of strategy
ASi with probability xi to implement network attack,
and PD � (y1, y2, . . . , ym) is the probability distri-
bution of the defender’s overall strategy set DS; that
is, any yj ∈ PD is the defender’s choice of strategy
DSj with probability yi to implement defense
strategy. In addition, the parameters satisfy the re-
lationships 1≤ i≤ n, 1≤ i≤ n, 

n
i�1 xi � 1, 

m
j yj � 1.

(5) Q � (QA, QD) is the revenue function set of the
attack-defense game, and QA and QD represent the
revenue function of the attacker and the defender,
respectively, that is, the revenue of the attacker and
the defender from the game strategy combination
(ASi,DSj).

(6) τ is the exploration factor of both sides of the game,
indicating the degree of their exploration of game
information. +e larger the τ is, the greater the
degree of exploration is and the more the attack and
defense sides explore the unknown game informa-
tion and make better decisions. +e smaller the τ is,
the smaller the degree of exploration is. +e attack
and defense sides mainly make the best decision
based on the current known game information.

4. Game Model Based on RLM-QRD

To solve the problem of invalidation of specific defense
strategies in network attack and defense scene, we put
forward RLM with incentive and punishment mechanisms.
RLM uses parameter α to calculate the attack and defense
reward value in the next stage.

4.1. Definition of GameModel. By combining RLM with the
evolutionary game based on QRD [31], this paper designs an
evolutionary game model based on RLM-QRD; that is,
RG � (N, K, S, θ, Q, τ, α). N, K, S, θ, Q, and τ have been
defined, and the definition of α is given below.

Definition 2. α is the incentive and punishment factor of
reward value, which means the reward value of the corre-
sponding strategy combination should be stimulated or
punished when RLM is triggered. +e value of α affects the
probability of multistage strategy selection.

In the first stage of the game, the incentive and pun-
ishment factor α formula of reward value is as follows:

α �
1
2

× RV. (4)

In stage K of the game, the formula of incentive and
punishment factor α is as follows:

α �
AN
SN

× RV. (5)

+e parameters in formulas (4) and (5) are defined as
follows:

(1) RV is the reward variable, which represents the
largest variable of the reward value in a single stage.
Its value is determined by the influence of the other
player’s strategy on itself. In general, RV is equal to
the minimum reward value of the strategy combi-
nation of the defender.

(2) SN is the maximum number of learning stages of
RLM, which denotes the maximum number of the
learning stages the defender can learn from the
previous game.+erefore, the maximum value of SN
is the maximum number of stages of game T.

(3) AN is the number of a specific attack strategy in the
past SN stages. If the attacker implements strategy
ASi in the previous stage, then AN is equal to the
number of ASi in the previous SN stages. +e for-
mula is as follows:

AN � num ASi( . (6)

4.2. Framework of GameModel. +e proposed framework of
the multistage evolutionary game model is based on RLM-
QRD, as shown in Figure 1. It can be seen from Figure 1 that
our model mainly includes an evolutionary game based on
QRD and RLM.

+e evolutionary game model based on QRD contains
payoff quantification and QRD. Payoff quantification uses
the information of the initial stage of the game to cal-
culate the revenue of the attack and defense strategy in
the initial stage. By QRD using the strategy revenue at the
current stage, the optimal defense strategy is obtained by
calculation.

RLM is responsible for connecting all stages of the game.
According to the known game information, it automatically
incentives or punishes the attack and defense revenue of the
next stage. Based on the above methods, the model can give a
better defense strategy in the next stage.

4.3. Payoff Quantification of Attack and Defense Strategy.
Network attack and defense strategy and its cost-reward
analysis are the basis of achieving the optimal network se-
curity defense, so reasonable attack and defense payoff
quantification affect the selection of defense strategy directly,
thus affecting the defense effect. Here, we give some related
definitions.

Attack payoff matrix AM comprises attack revenue
value aij generated by the attacker under attack and de-
fense strategy combination (ASi,DSj). According to the
definition of the game model, the formula is as follows:

aij � QA ASi,DSj  � AR − AC. (7)
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AR and AC represent attack revenue and attack cost,
respectively.

+e attack payoff matrix in stage K is as follows:

AMK
�

a
K
11 a

K
12 · · · a

K
1m

a
K
21 a

K
22 · · · a

K
2m

⋮ ⋮ ⋱ ⋮

a
K
n1 a

K
n2 · · · a

K
nm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

Defense payoff matrix DM comprises defense revenue
value dij generated by the defender under attack and defense
strategy combination (ASi,DSj). According to the definition
of the game model, the formula is as follows:

dij � QD ASi,DSj  � DR − DC. (9)

DR and DC represent defense revenue and defense cost,
respectively.

+e defense payoff matrix in stage K is as follows:

DMK
�

d
K
11 d

K
12 . . . d

K
1m

d
K
21 d

K
22 . . . d

K
2m

⋮ ⋮ ⋱ ⋮

d
K
n1 d

K
n2 . . . d

K
nm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

4.4. Q-Learning Replication Dynamic Equation. According
to the Nash equilibrium theorem [43], it can be seen that, in
a game with limited players in a limited strategy set, a mixed
strategy Nash equilibrium must exist, and strategy (x∗, y∗)

is called a mixed strategy Nash equilibrium. When the game
reaches Nash equilibrium, no player is worth changing his
strategy unilaterally. In this case, if the attacker chooses
strategy x∗ and the defender chooses strategy y∗, the attack
and defense benefits are expressed as QA(x∗, y∗) and
QD(x∗, y∗), respectively, satisfying the following conditions:

Evolutionary Game

Next
stage

Attaker

Defender

RLM

R AMK

DMK

PDK

AMK+1

DMK+1

Select a strategy

Select a strategy

Payoff 
quantificationQRD

Confrontation

Game information ASi
K

(AS1
K, AS2

K, ..., ASn
K)

(DS1
K, DS2

K, ..., DSm
K)

DSj
K

Attack strategies

Defense strategies

Figure 1: Framework of evolutionary game model based on RLM-QRD.
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QA x
∗
, y
∗

( ≥QA x, y
∗

( ,∀x ∈ PA,

QD x
∗
, y
∗

( ≥QD x
∗
, y( ,∀y ∈ PD.

(11)

+e following is the calculation of the expected revenue
QASi

of attack strategy ASi, the expected revenue QDSj
of

defense strategy DSj, the average revenue of attack strategy
set QAS, and the average revenue of defense strategy set QDS:

QASi
� 

m

j�1
aijyj,

QDSj
� 

n

i�1
dijxi,

QAS � 
n

i�1


m

j�1
aijxiyj,

QDS � 
m

j�1


n

i�1
dijxiyj.

(12)

+eBoltzmann probability distribution is used to represent
the attack and defense strategy, and theQ-learning algorithm is
introduced into the replication dynamic equation to get the
QRD equation.+e probability of strategy selection for QRD is
given as follows:

xi(k) �
exp τ · QASi

(k) 


n
l�1 exp τ · QASi

(k) 
. (13)

yj(k) �
exp τ · QDSj

(k) 


m
l�1 exp τ · QDSl

(k) 
. (14)

Here, xi(k) and yj(k) obey the Boltzmann probability
distribution. xi(k) denotes the probability that the attacker
selects the attack strategy ASi in the k-th attack and defense
confrontation at the same game stage. yj(k) denotes the
probability that the defender selects the defense strategy DSj

in the k-th attack and defense confrontation at the same
game stage. QASi

(k) denotes the expected revenue obtained
by the attacker choosing the attack strategy ASi in the k-th
attack and defense confrontation at the same game stage.
QDSj

(k) denotes the expected revenue obtained by the de-
fender choosing the defense strategy DSj in the k-th attack
and defense confrontation at the same stage. +e Q-learning
replicated dynamic equations formulas (15) and (16) are
derived from the correlation formulas (2), (3), (15), and (14):

x′(t) �
dxi

dt
� xi QASi

− QAS 
√√√√√√√√√√√√

RD

+
1
τ
xi 

n

k�1
xk ln xk/xi( 

√√√√√√√√√√√√√√√√
ME

.

(15)

y′(t) �
dyj

dt
� yj QDSj

− QDS 
√√√√√√√√√√√√

RD

+
1
τ
yj 

m

l�1
ylln yl/yj 

√√√√√√√√√√√√√√√√
ME

.

(16)

QRD consists of replication dynamic equation (RD) and
mutation equation (ME). RD selects the most profitable
strategy under current information. ME is to try different
new strategies in unknown network attack and defense
scenes, and constantly try and make error, and learn and
adjust the strategies, which better reflects the diversity and
uncertainty of network attack and defense.

From the definition of evolutionary equilibrium, when
the strategies of players reach evolutionary equilibrium,
there is

x′(t) � 0 andy′(t) � 0. (17)

Solution (x∗, y∗) of the above formula is an evolutionary
stable equilibrium point. At this time, the τ value in the
above equation needs to be large enough to make the se-
lection probability of each strategy stable.

4.5. Reward Value Learning Mechanism. As shown in Al-
gorithm 1, RLM calculates the incentive and punishment
factor α according to reward variable RV and the proportion
of the number AN of a certain type of attack strategy in the
past SN stage. According to α and the defense result R of the
last stage, RLM changes the reward value of the corre-
sponding attack and defense strategy to change the attack
and defense reward value of the next stage.

If the defense successfully resists an attack in the last
stage R � 1, RLM increases the defense reward value of the
specific strategy combination dK

ij , and decreases the attack
reward value of the specific strategy combination aK

ij . If the
defense failed in the last stage R � 0, RLM decreases the
defense reward value dK

ij of the specific strategy combination
and increases the attack reward value aK

ij of the specific
strategy combination in the last stage.

5. Optimal Defense Strategy
Selection Algorithm

In this paper, the Nash equilibrium solution of the multi-
stage evolutionary game is regarded as a set of equilibrium
solutions of a multistage evolutionary game. Each stage
learns the known game information through the reward
value learning mechanism to change the reward value of
defense strategy in the current stage. According to the
optimal defense strategy of each stage, the multistage op-
timal defense strategy set is constructed.

+e multistage network attack and defense game tree
based on our game model is shown in Figure 2. +e black
dots in Figure 2 represent the attacker at stage K, picked out
with probability PA � (x1, x2, . . . , xn) and executed the
attack strategy AS � (AS1,AS2, . . . ,ASn). +e blue dots
denote the defender at stage K, picked out with probability
PD � (y1, y2, . . . , ym) and executed the defensive strategy
DS � (DS1,DS2, . . . ,DSm).

As shown in Figure 2, the process of multistage network
attack and defense games is as follows:

(1) In the initial stage of a network attack and defense
game, the corresponding model parameters and
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reward values are calculated based on the current
information of players, and the respective optimal
decision in the current stage is reached by solving the
Nash equilibrium and conserving information such
as game results R of the current stage, the strategy
combination (ASK

i ,DSK
j ), and the attack and defense

revenue (AMK,DMK) for use in the calculation of
the attack and defense revenue at the next stage.

(2) When the network attack and defense games enter
stage K(K> 1), as K grows larger and the attacker
and defender gain more information gradually, the
players of the game tend to be completely rational,
and the revenue of the various combinations of
strategies is highly likely to change. At this time,
according to Algorithm 1, the incentive and

punishment factor α of this stage is calculated, the
attack and defense revenue (AMK,DMK) of this
stage is obtained from α and the information saved in
the previous stage. +e optimal defense strategy of
the current stage is solved through the Nash equi-
librium solution, and the defense result R, attack and
defense strategy (ASK

i ,DSK
j ) , and attack and defense

revenue (AMK,DMK) of this stage are kept.

Next, we propose an optimal defense strategy selection
algorithm based on the evolutionary game model based on
RLM-QRD.

As shown in Algorithm 2, if K is the number of stages of
the game, n and m represent the number of strategies of the
attacker and the defender, respectively; generally, there is
K> 0, n> 0, m> 0. +e time cost of Algorithm 2 in each

Input: revenue of strategy combination in the last stage (AMK01,DMK01). Current stage K attack and defense strategy in the last
stage (ASK01

i ,DSK01
j ). Defense results of the last stage R.

Output: revenue value of each strategy combination in the current stage (AMK,DMK).
(1) Initialize SN, AN, RV
(2) if K � 1 then
(3) Calculate α from equation (4)
(4) else if K> 1 then
(5) Calculate α from equation (5)
(6) end if
(7) if R � 0 //+e result of the last stage of defense was failure then
(8) aK

ij � aK−1
ij + α and dK

ij � dK−1
ij − α

(9) else
(10) aK

ij � aK−1
ij − α and dK

ij � dK−1
ij + α

(11) end if
(12) return (AMK,DMK)

ALGORITHM 1: Reward value learning mechanism.
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Figure 2: Multistage network attack and defense game tree.
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stage is mainly concentrated on Step 8 and Step 11. In Step 8,
the QRD of each defense strategy is constructed in turn, and
the computational complexity of solving the equation in Step
8 is O(m2 + nm). In Step 11, the QRD of each attack strategy
is constructed in turn, and the computational complexity of
solving the equation in Step 11 is O(n2 + nm). +e total time
complexity of the algorithm is O(K(m + n)2). +e storage
cost of the algorithm mainly focuses on the storage of the
payoff matrix. +e storage of the payoff matrix has high
complexity, which contains the total number of nmmemory
cells. +erefore, the spatial complexity is O(nm).

Table 1 shows the comprehensive comparison between
our model and other models in the literature. +e following
are some discussions:

(1) Payoff quantification: references [31, 36] have no
extra parameters for the payoff quantification. Ref-
erences [22, 23] and [40] introduce specific pa-
rameters into the game model and set those
parameters to quantify the attack and defense payoff
in their respective application scenarios. We also
introduce some parameters and calculate the pa-
rameters by the past game information, to better
quantify the attack and defense payoff under the
scenario of defense strategy failure.

(2) Equilibrium solution: the equilibrium solution rep-
resents the method used to solve the Nash equilib-
rium in the game model. References [23, 36] use RD,
and reference [22] uses fermi function. All of these
methods have had some success in their application.
References [31, 40] improve on RD by proposing
QRD and LQRD, respectively, and have been suc-
cessful in optimal defense strategy selection. For the
scenario of defense strategy failure, we propose
RLM-QRD, which aims to realize automatic calcu-
lation of revenue, maximize defense revenue, and
select the optimal defense strategy.

(3) Game type and Algorithm complexity: reference [31]
is a static game, which has the advantage of low
algorithm complexity. Although the complexity of
the dynamic game algorithm is high, the dynamic
game is more suitable for network attack and
defense.

Based on the above discussion, our model is more
suitable for failure scenarios of defense strategies in dynamic
network attack and defense.

6. Experiment and Analysis

In this section, we verify the effectiveness of our model in the
scenario of policy failure. Firstly, we give the attack strategy
set and defense strategy set. We also introduce the strategy
failure scenes. Secondly, we calculate the exploration factor
τ. +irdly, we analyze the defense strategy selection prob-
ability of our model under the single strategy failure scene
and multistrategies failure scene. Fourthly, we compare the
revenue of our model with those of the model without RLM.
Finally, we compare the defense success rate of our model
with those of the model without RLM.

6.1. Experimental Setup. In our experiment, the attack and
defense behavior database of MIT [44] and China National
Vulnerability Database of Information Security (CNNVD)
[45] are used to analyze the attack and defense atomic
strategy, as shown in Tables 2 and 3.

+e attacker makes use of the vulnerability in the net-
work information system to choose some atomic attack
strategies. +e defender selects several atomic defense
strategies to defend against network attacks [46]. +e attack
and defense strategies in this experiment are composed of
several atomic attack and defense strategies. For both sides of
network attack and defense, set attack strategies
AS1 � a1, a2, a5  and AS2 � a3, a4  and defense strategies

Input: evolutionary game model based on RLM-QRD.
Output: probability set of optimal defense strategy in K-th stage PK

D.
(1) Initialize RG � (N, K, S, θ, Q, τ, α)

(2) for i⟵ 1 to n do
(3) for j⟵ 1 to m do

Calculate AMK,DMK from equations (8) and (10)
(4) end for
(6) forK⟵ 1 to T do
(7) forj⟵ 1 to m do
(8) Construct y′(t) from equation (16)
(9) end for
(10) for i⟵ 1 to n do
(11) Construct x′(t) from equation (15)
(12) end for
(13) Calculate τ and PK

D from equation (17)
(14) Calculate (AMK+1,DMK+1) from Algorithm 1
(15) Output PK

D � (yK
1 , yK

2 , . . . , yK
M)

(16) end for

ALGORITHM 2: +e optimal defense strategy selection algorithm based on RLM-QRD evolutionary game.

8 Security and Communication Networks



DS1 � d1, d3, d5, d6  and DS2 � d2, d4, d5 . By referencing
[31, 34] and the definitions of attack and defense reward and
cost in Section 4.3, the attack and defense revenue matrix of
the first stage is given, as shown in Tables 4 and 5. +e larger
the number in the table, the greater the revenue from attack
or defense.

In summary, we set the probability that attack strategy
AS � (AS1,AS2) and defense strategy DS � (DS1,DS2) are
chosen as PA � (x, 1 − x) and PD � (y, 1 − y), respectively,
and set the reward variable RV � 10. Since there is a log-
arithm in the Q-learning replication dynamic equation, we
assume that the value of the probability of strategy selection
ranges [0.01, 0.99]. To better show the results of the ex-
periment, the maximum number of learning stages SN �

500 and the maximum number of stages T � 1000 of RLM
are set in this experiment.

+is experiment verifies the validity of the evolutionary
game model based on RLM-QRD in the scene of specific
defense strategy failure from the perspective of single de-
fense strategy failure and multiple defense strategies failure.

+is experiment assumes that the attacker has acquired a
specific defense strategy method at a certain stage and
proposes and implements a new attack strategy and its
selection probability, which results in the invalidation of the
defense strategy. As shown in Table 6, status I and status II

are single defense strategy failure scenes, and status III is
multiple defense strategies failure scene.

6.2. :e Calculation of Exploration Factor. It can be seen
from equations (5) and (6) that when the exploration factor τ
is small, both sides of the game do not fully grasp each
other’s relevant information under the condition of one
stage. +e ME in the Q-learning replication dynamic
equation has a better impact, and the probability of attack
strategies and defense strategies (AS1, AS2, DS1, DS2) se-
lection is unstable.

Figure 3 shows the influence of exploration factor τ on
the attack and defense strategy evolution. As shown in
Figure 3, with the acquisition and analysis of each other’s
information in a single stage, the exploration factor τ
gradually increases. +e effect of the mutation equation
decreases, the replication dynamic equation gradually begins
to play a bigger role. +e probability of attack and defense
strategy selection gradually tends to be stable. QRD grad-
ually degenerates into the replication dynamic equation.+e
simulation results show that the selection probability of
attack and defense strategy remains constant when τ ≥ 3.

To sum up, the larger the exploration factor τ is, the
more information the offensive and defensive sides can
finally obtain in this game stage. Usually, both sides of the

Table 1: Comprehensive comparison among our model and other models.

Ref. Payoff quantification Game type Equilibrium
solution

Algorithm
complexity Application

[31] No extra parameter Static QRD O((n + m)2) Defense strategy selection
[36] No extra parameter Dynamic RD O(K(m + n)2) Virus protection
[23] Discount factor δ Dynamic RD O(K(m + n)2) Defense strategy selection
[22] Dependent parameter μ Dynamic Fermi function O(K(m + n)2) Privacy protection
[40] Rational parameter λ Dynamic LQRD O(K(m + n)2) Defense strategy selection

Ours RLM Dynamic RLM-QRD O(K(m + n)2)
Defense strategy selection under strategy

failure

Table 2: Attack strategy and sequence atom attack strategy.

Number Name
Attack strategy

AS1 AS2
a1 Install Web √
a2 Remote attack √
a3 Obtain user privileges √
a4 Buffer overflow attack √
a5 Homepage attack √

Table 3: Defense strategy and sequence atom defense strategy.

Number Name
Defense strategy

DS1 DS2

d1 Limit packers from ports √
d2 Modify account password √
d3 Restart database server √
d4 Limit packets from ports √
d5 Reinstall listener program √ √
d6 Correct homepage √
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game will change their strategies only when they know
enough game information, and the game will enter a new
stage. +erefore, this experiment sets the exploration
factor τ � 100.

6.3. Probability of Defense Strategy Selection Experiment.
To verify that the model can reduce the selection probability of
failure strategy and increase the selection probability of effective
strategy in single strategy failure and multistrategies failure
scenes. +is section studies the selection probability of optimal
defense strategy when the status is I, II, and III, and the results
are shown in Figures 4 and 5. Each point represents a stage.+e
red points and the orange points represent the failure of defense,
which means the defender chooses the failure strategy. +e
green points and the blue points represent the success of the

defense, which means the defender chooses the effective
strategy. +e x-axis and y-axis are the selection probabilities of
game stage K and defense strategy DS1, respectively.

6.4. Single Strategy Failure Scene. Figure 4 shows the se-
lection probability of defense strategy DS1 in the number of
stages K � 30 when the status is I and II. As shown in
Figure 4, the selection probability of defense strategy DS1
converges to around 0.01 after only about K � 10 stages in
status I because defense strategy DS1 has failed. +e model
implements defense strategy DS2 with a high probability to
resist the new attack strategy. +e selection probability of
defense strategy DS1 converges after stage K � 15 in status
II. Compared with the selection probability of defense
strategy in status I, the selection probability of defense

Table 4: Attack revenue matrix of the first stage.

Attack strategy
Defense strategy

DS1 DS2

AS1 100 70
AS2 60 80

Table 5: Defense revenue matrix of the first stage.

Attack strategy
Defense strategy

DS1 DS2

AS1 70 10
AS2 50 60

Table 6: Strategy invalidation scene.

Status Description
I +e attacker selects attack strategy AS1 to make defense strategy DS1 invalid
II +e attacker randomly selects attack strategy AS to make defense strategy DS1 invalid
III +e attacker randomly selects attack strategy AS to make defense strategy DS invalid randomly
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Figure 3: +e influence of exploration factor τ on attack and defense strategy evolution.
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strategy in status II converges slowly because any strategy of
the attacker can make defense strategy DS1 invalid when the
status is II.

As can be seen from Figure 4, the probability of failed
defense strategy DS1 shows a short upward trend before
convergence and defense failure occur in the early stage in
status I and status II because RLM is still learning attack
strategies and their benefits at the beginning of the game
stage. Due to the change of attack strategy, the strategy given
by the defender is not optimal at this time. After several short
stages of learning, RLM will converge the probability of
failure strategy to 0.01. +e defender has obtained the op-
timal defense strategy through several stages of learning.+e
game defense is successful.

6.5. Multistrategies Failure Scene. In status III, the attacker
can choose any attack strategy to make any defense strategy
invalid. In this scene, the defense strategy that failed may be
DS1 in stage K, and the defense strategy that failed may
become DS2 in stage K + 1. So, the game becomes more
complex.

Figure 5 shows the defense strategy selection probability
in status III. As shown in Figure 5, the change of defense
strategy selection probability is unstable, which is caused by
the high complexity of the network state in this scene. In this
scene, the defense side tends to give a more selection
probability to the defense strategy DS1.

In status III, the failed strategies of each stage are not
necessarily the same, so we cannot judge the model from the
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Figure 4: Selection probability of defense strategy under status numbers I and II.
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Figure 5: Selection probability of defense strategy under status number III.
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probability of defense strategy selection experiment. How-
ever, the model can be verified from attack and defense
revenue experiment and defense success rate experiment in
status III.

6.6. Attack and Defense Revenue Experiment. Figures 6(a),
6(b), and 7 show the comparative diagram of attack and
defense revenue values based on our model and the evo-
lutionary game model without RLM in statuses I, II, and III.
+e x-axis and y-axis are game stage and attack and defend
revenue. +e blue line and the yellow line represent the
defense and the attack revenue of our model. +e green line
and the red line represent the defense and the attack revenue
of the evolutionary game model without RLM.

6.7. Single Strategy Failure Scene. Figures 6(a) and 6(b) show
the comparison of the attack and defense revenue values of
the game model in the number of stages K � 30 when the
status is I and II.

It can be seen from Figures 6(a) and 6(b) that the dif-
ference between the attack and defense revenues of the two
models is not obvious at the beginning of the game stage,
which indicates that RLM has not fully learned the attacker’s
information. At this time, the attack and defense revenues of
the two models are unstable. Even because of the change of
attack strategy, the revenues of the attacker may become
more, and the revenues of the defender may become less.

After several stages, the defense revenues of the two
models are positively correlated with the game stage, and the
attack revenues are negatively correlated with the game
stage. Compared with the game model without RLM, the
model in Figure 6(a) has higher defense revenue and lower
attack revenue after stage K � 10, and the model in
Figure 6(b) has lower attack revenue after stage K � 15 and
higher defense revenue after stage K � 20. Combined with

the previous analysis, we can conclude that the revenue value
in the game model with RLM changes drastically from the
probability convergence of defense strategy. +is situation
also means that after the short-term learning stages of RLM,
the defense revenue begins to rise, and the attack revenue
begins to decline.

Compared with Figure 6(a), the change of attack and
defense revenue in Figure 6(b) is relatively slow because any
attacker’s strategy may make defense strategy DS1 invalid
when the status is II. To sum up, this model can more ef-
fectively resist the attackers in the scenes of statuses I and II.

6.8. Multistrategies Failure Scene. Figure 7 shows the
comparison of attack and defense revenue between our game
model and the game model without RLM when the status is
III. From the previous description, we can conclude that the
scene is highly complex, and the attacker can adjust the
strategy at each stage to invalidate the specific defense
strategy. +erefore, with the continuous change of attack
strategy, the attack and defense revenues fluctuate. Next,
from the perspective of attack and defense revenues, we
verify that our model has better defense ability than the
model without RLM in status III.

As can be seen from Figure 7, the defense revenue of our
model and the attack revenue of the game model without
RLM rise with fluctuation, and the attack revenue of our
model and the defense revenue of the game model without
RLM decline with fluctuation. From stage K � 400, the
defense revenue of our model is always higher than that of
the game model without RLM. From stage K � 300, the
attack revenue of this model is always lower than that of the
game model without RLM.

To sum up, after learning multiple stages with RLM, the
model can make the defense revenue greater and the attack
revenue lower, to better resist network attacks.
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Figure 6: Comparison of attack and defense revenue under status I and II. (a) Status I. (b) Status II.
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6.9. Defense Success Rate Experiment. Figure 8 shows the
comparison of defense success rate between our model and
the game model without RLM in stage K � 1000. +e green
column denotes the number of successful defense stages
when the models choose defense strategy DS1. +e blue
column denotes the number of successful defense stages
when the models choose defense strategy DS2. +e red
column denotes the number of failed defense stages when
the models choose defense strategy DS1. +e yellow column
denotes the number of failed defense stages when the models
choose defense strategy DS2.

It can be seen from Figure 8 that our model under
statuses I, II, and III has a higher defense success rate than
the game model without RLM. Compared with the game
model without RLM, the defense success rate of this model is
about 22.5% higher under state I. +e defense success rate of
our model increases by about 23.5% under status II. Our

model improves by about 7.4% under status III. In con-
clusion, compared with the evolutionary game model
without RLM, our model can better select the best defense
strategy in the above three scenes.

7. Conclusion

Considering the existing problems in the application of the
evolutionary gamemodel in network attack and defense, this
paper proposes a reward value learning mechanism. +is
mechanism overcomes the problem of quantifying incen-
tives and punishments in the case of bounded rationality of
attackers and defenders, which reduces manual involve-
ment. An evolutionary game model with a multistage
learning mechanism is constructed by combining the
learning mechanism with a multistage game model. Fur-
thermore, the optimal strategy selection algorithm of the
game model is designed.

Our future work will study how to dynamically add new
feasible defense strategies and reasonably expand the model
when any defense strategy fails. In addition, we will also
consider how to apply more intelligent methods, such as
deep learning and machine learning, to the automatic cal-
culation of reward and punishment factor α at every stage so
that the model can better select the optimal defense strategy.
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