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In the cloud-based vehicular ad-hoc network (VANET), massive vehicle information is stored on the cloud, and a large amount of
data query, calculation, monitoring, and management are carried out at all times. (e secure spatial query methods in VANET
allow authorized users to convert the original spatial query to encrypted spatial query, which is called query token and will be
processed in ciphertextmode by the service provider.(us, the service provider learns which encrypted records are returned as the
result of a query, which is defined as the access pattern. Since only the correct query results that match the query tokens are
returned, the service provider can observe which encrypted data are accessed and returned to the client when a query is launched
clearly, and it leads to the leakage of data access pattern. In this paper, a reconstruction attack scheme is proposed, which utilizes
the access patterns in the secure query processes, and then it reconstructs the index of outsourced spatial data that are collected
from the vehicles. (e proposed scheme proves the security threats in the VANET. Extensive experiments on real-world datasets
demonstrate that our attack scheme can achieve quite a high reconstruction rate.

1. Introduction

At present, the vehicular ad-hoc network (VANET) has
gained a lot of attention in the field of intelligent trans-
portation. (e VANET can be used to intelligently control
the traffic process, such as real-time traffic information
systems to ensure traffic efficiency, and vehicle safety sys-
tems, such as rear-end collision warning systems, to improve
vehicle safety. However, the powerful function of the
VANET is supported by information sharing between ve-
hicle users, which will introduce serious data security threats
[1, 2]. For example, exploiting the weakness of lacking
physical proximity authentication, malicious attackers may
infer the location of the vehicle during a specific period of
time [2]. Due to the openness and mobility of VANET, the
content delivery of VANETposes serious security threats, for
which some countermeasures have been proposed, such as
confidentiality, integrity, and authentication [3, 4].

As the data generated by users of VANET continue to
grow and beyond the processing capacity of the data owners,

the data need to be outsourced and stored in the cloud server
to reduce data management overhead. To ensure the security
of user data on the untrustworthy server, cryptographic
techniques are employed, while still allowing efficient query
processing on the cloud server. However, the privacy pro-
vided by the existing secure outsourced dataset systems is
poorly considered. In the searchable encryption mechanism,
the search process for encrypted files is as follows: First, the
authorized user will submit the query token to the service
provider, who will process the query through a series of
calculations and return the query result to the user in the
form of ciphertext. (en, the user decrypts the query result
locally. It seems very safe because the entire query process is
carried out in the ciphertext state, including query sub-
mission, query process calculations, and query results
feedback.

Nonetheless, this process leaks access patterns. In other
words, the service provider can observe which encrypted
files in the dataset are accessed and returned to the au-
thorized users. (erefore, the honest but curious service
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provider clearly knows the matching relationship between
encrypted files and queries.

Existing studies [5–8] have shown that attackers can use
leaked access patterns to recover user privacy information.
Li et al. [5] demonstrated the hidden security threats caused
by leaked access patterns with an encrypted patient medical
dataset stored in a third-party server. Series of examples are
given sequentially to illustrate how the patient’s sensitive
information is gradually inferred with the leakage of access
patterns. With leaked access patterns, Quan et al. [6]
implemented a range injection attack on the one-dimen-
sional and discrete dataset. Exploiting the collusion of the
service provider and the secondary user, a set of selected
range queries are injected into the dataset, and through the
access patterns of these queries, the dataset index is com-
pletely reconstructed. (e attack method proposed by Islam
et al. [7] does not require collusion, which is designed for
text data. Considering the collected keyword co-occurrence
matrix as prior knowledge, the service provider realizes an
assignment of keywords to each query. Kallaris et al. [8]
reconstructed the discrete one-dimensional data and com-
pletely restored the data index stored on the server, in which
neither collusion nor prior knowledge is required.

Researchers have explored various types of attack
methods for different types of datasets to prove the security
threats caused by the leakage of access patterns, but there is
no research to prove the potential security threats caused by
the leakage of spatial data access patterns.

In this paper, we propose a reconstruction attack scheme
on outsourced spatial dataset using access pattern leakage in
VANET systems. (e threat model considered is as follows.
We take the honest but curious service provider as the at-
tacker, who will process the query correctly and honestly, but
will be curious about the dataset stored on the server. Our
attack aims to completely reconstruct the dataset stored on
the server without any deciphering, that is, to determine the
spatial index of each record on the server.

Assuming that the service provider only has a little prior
knowledge of the spatial dataset and the users will issue
enough one-dimensional and uniform queries to the server,
our reconstruction attack will be processed as the following
four steps. Firstly, the data space will be discretized in ac-
cordance with the granularity that the attacker aims to
achieve. Secondly, to improve the efficiency of attack, the
collected access patterns will be simplified. (irdly, we will
determine the relative order for each row/column of records.
Finally, the spatial index of each record will be recovered.

(e contributions of this paper are summarized as
follows:

(i) A reconstruction attack against secure outsourced
spatial dataset in VANET systems is proposed,
proving that the security threats caused by access
pattern leakage are universal.

(ii) With spatial discretization, our scheme can support
the attack for optional spatial granularity. Mean-
while, utilizing the statistic of the record co-oc-
currence, access patterns are simplified, which
guarantees the attack efficiency.

(iii) Extensive experiments on real-world datasets
demonstrate that our attack scheme can achieve
quite a high reconstruction rate.

2. Related Work

2.1. Location Privacy Protection of VANET. (e existing
location privacy protection technologies of VANET mainly
include three categories. (e first category is a rule-based
privacy protection method [9, 10], which restricts service
providers from a legal perspective and prohibits the data and
user information abused through privacy protection rules,
standards, and detailed specifications acting on the server
side. For example, IETF’s GeoPriv [9] and W3C’s P3P [10]
stipulate that the authorization, integrity, and privacy re-
quirements must be met when data are used. However, the
security of such methods depends on legal supervision and
public opinion, and the reliability of privacy protection
depends on the implementation degree of the service
provider.

(e second category is based on generalization and
obfuscation [11–17]. Spatial concealment technology
[11, 12] forms a hidden area containing k real users for each
user, making it difficult for service providers to determine
the real identity and accurate spatial of the user from the
hidden area. But in this type of method, it is difficult to
achieve a balance between privacy protection and service
quality in data-sparse areas. Spatial offset and obfuscation
technology [13–16] protect user’s privacy by moving the real
spatial in a small area or replacing the real spatial with a
certain area. For example, Andrés et al. [16] achieved the
geo-indistinguishability by adding controlled random noise
to user’s spatial, which corresponds to differential privacy.
Nevertheless, this kind of method reduces the spatial ac-
curacy [17], so the returned service data may be
untrustworthy.

(e third type of privacy protection method is based on
cryptography [18–22], through the processing of crypto-
graphic technology to achieve the requirements of privacy
protection. (e general process is as follows: Authorized
client encrypts the spatial information and sends it to the
service provider, who processes the corresponding query in
the ciphertext and returns matching encrypted result. Fi-
nally, authorized client decrypts locally to obtain the
plaintext information. After encryption processing, the data
sent by the client can meet stricter privacy protection re-
quirements, but encryption and decryption bring huge
computational overhead. In addition, although the data are
encrypted before outsourcing, search process is also per-
formed in ciphertext on the server; this method still has the
problem of access pattern leakage (except for the ORAM
scheme [23–25]); that is, the attacker can observe the cor-
respondence between the encrypted query and the accessed
encrypted documents. Furthermore, the ORAM solution
protects the access pattern by shuffling and re-encrypting
after each access of data, but its huge communication
overhead makes using ORAM to protect the access pattern
too expensive.
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(erefore, in location privacy protection technology, the
privacy security threats caused by leaked access patterns
need to be further studied.

2.2. Attack with Access Patterns. In recent years, researchers
have made arguments for the privacy security threats caused
by the leakage of access patterns from the perspective of
attacks, which are mainly divided into two categories.

One is active attacks [6, 26], including injection, tam-
pering, and forgery, by which the attacker attacks server
information actively. By injecting files that added selected
keywords into the dataset on the server and observing the
access patterns of the injected files, Zhang et al. [26] inferred
the user’s query information successfully. With the collusion
of the service provider and secondary users, Quan et al. [6]
injected a set of selected range queries and observed access
patterns to infer the user’s precise information. However,
because the active attacks destroy the authenticity and in-
tegrity of the information, it is easy to be detected.

(e other is passive attack [5, 7, 8, 27]. (e attacker can
infer the user’s sensitive information through the monitored
access pattern without affecting normal data communica-
tion, thereby undermining the confidentiality of data
transmission. Islam et al. [7] proposed that by utilizing the
statistical keyword co-occurrence matrix as prior knowledge
and collecting access patterns, the attacker realizes an as-
signment of keywords to each query that achieves maximum
matching from background knowledge. Assuming that the
attacker has more prior knowledge (including the number of
files corresponding to each keyword), Cash et al. [27]
proposed an improved passive attack method based on IKK,
and utilized the access pattern leakage to recover the query
keywords. Without any prior knowledge, utilizing the
continuity of range query, Kellaris et al. [8] assigned index to
each file on the server and completely reconstructed the
dataset.(is type of attack is not easy to detect, because there
is no direct impact on data transmission.

In summary, existing researches have proved the security
threats caused by the access pattern leakage from different
angles. However, the problem of spatial data access pattern
leakage has not been studied in detail. And, most of the
existing attack methods are active attacks, including injec-
tion or passive attacks, requiring much prior knowledge, so
the attack conditions are subject to certain restrictions.

3. System Model

3.1. Spatial Data Outsourcing System. (e system model of
the outsourcing dataset system is shown in Figure 1, in-
cluding three entities, namely, the data owner, the server,
and the authorized user.

As the data generated by users of VANET continue to
grow and beyond the processing capacity of the data owners
(DO), the data need to be outsourced to the cloud server. For
security concerns, encryption is usually performed before
outsourcing. In order to facilitate user query, the encrypted
index is also generated and uploaded to the cloud server at
the same time.

Authorized users (AU) have secret keys, KI and KD.
Encrypted query tokens will be generated by KI and
uploaded to the cloud server. Ciphertext query results ob-
tained from the server will be decrypted by the secret key
KD.

(e server stores the data and their corresponding query
index for the data owner, and has powerful computing
capabilities as well as searchable encryption algorithm so
that it supports queries under ciphertext.

As shown in Figure 1, when an authorized user generates
a query Q and encrypts and sends it to the cloud server, the
service provider will perform the query operation and return
the matching set of records R to the authorized user.

3.2. Access Pattern Leakage. In the data outsourcing system,
authorized users usually generate spatial query tokens,
which are processed in ciphertext mode on the server, and
finally only the matching results are accessed and returned.
So, the service provider learns which encrypted records
match a query, which is defined as access pattern. Since only
the correct query results that match the query tokens are
accessed and returned, the service provider can observe the
access pattern clearly when a query is launched. So, the
process leads to the leakage of data access pattern. Such
leakage is typical for current VANET systems based on
symmetric searchable encryption. (e queries on the server
are continuous, so the service provider can sniff out a large
number of access patterns quietly, which provides tre-
mendous amount of data to the attacker.

In this paper, we define the access pattern leakage Laccess
as: the correspondence between the ciphertext query q and
the matching ciphertext query result R.

Laccess � q1,R1( 􏼁, . . . , qn,Rn( 􏼁􏼈 􏼉, (1)

Rn � rj|qn Ij􏼐 􏼑 � 1, Ij ∈ I􏽮 􏽯. (2)

As shown in equation (1), the leaked access pattern
contains multiple queries and their matching query records
sets, where qn represents a query token, and Rn represents
the matching records set of query qn. As shown in equation
(2), the index corresponding to each record on the dataset is
calculated with query token qn, and the matching records are
returned as set Rn.

3.3. Attack Model. In this section, we describe the attack
model of reconstruction attack with access pattern leakage.
Here, the attacker has access to the communication channel,
and thus observes a set of access patterns
Laccess � (q1,R1), . . . , (qn,Rn)􏼈 􏼉. Let us define a week at-
tacker as follows:

(1) (e attacker is passive. (e attacker follows the
predefined storage and query rules and provides
users with correct query results. (e attacker will not
perform illegal access, injection, or tampering to the
dataset, but will process information stealing and
collecting. Since the attack process does not involve
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data destruction, the legitimate users will not realize
the attacker’s activities at all.

(2) (e attacker cannot decipher the query submitted by
the authorized user through the secret key.

(3) (e attacker has a very high probability of suc-
ceeding if it has a small amount of background
knowledge. We assume that the attacker knows the
underlying indexes for k of records in the dataset.
(at is, the attacker has access to the map
Mknow � (Ij, rj)|Ij ∈ I& rj ∈ R􏽮 􏽯, where R includes
all records stored on the server and I includes all
Index corresponding to R. Taking that k � |Mknow|

and l � |R|, then k≪ l.

What we need to be clear is that the attacker can observe
the distribution of all records stored in the cloud. Although
these records are usually encrypted before being uploaded to
the server and the attacker cannot obtain the plaintext in-
formation of any record, the records can be distinguished
easily.

Now, we assume that the attacker knows the encrypted
dataset R, the access patterns Laccess, and the prior knowledge
Mknow, and that the user will issue enough one-dimensional
and uniform queries to the server. (en, the goal of the
attack is to reconstruct the index of all records such that the
statistical results as seen by access patterns fit the uniform
query rule. In the following sections, we will describe how
the attacker uses access pattern leakage to carry out re-
construction attacks on the two-dimensional spatial out-
sourcing dataset system.

4. Reconstruction Attack with Access Patterns

We propose a reconstruction attack on outsourced spatial
dataset that exploits access pattern leakage, that is, the
correspondence between encrypted queries and matching
query results, which is very common in searchable sym-
metric encryption.

Assume that the dataset contains n records r1, r2, . . . , rn,
which are, respectively, pointed to by spatial indexes
I1, I2, . . . , In. On the spatial dataset, the index is actually the
spatial coordinate of each record, that is, Ii � xi, yi􏼈 􏼉, which,
respectively, represent the horizontal and vertical coordi-
nates of the record. (e ultimate goal of the reconstruction
attack is to restore the corresponding position coordinates
for each record r1 in the dataset. Ideally, a complete plaintext
index can be established. Assuming that the service provider
only has little prior knowledge of the spatial dataset and the
user will issue enough one-dimensional and uniform queries
to the server, the service provider can utilize the observed
access patterns to determine the index of each record.

In this section, we will describe the reconstruction attack
process in detail, including spatial discretization, access
pattern simplification, and determination of row and col-
umn indexes.

4.1. SpatialDiscretization. In this section, we will discuss the
problem of attack granularity. (e ultimate goal of the re-
construction attack is to recover the index of each record on
the two-dimensional spatial dataset. But for different ap-
plication scenarios, the attacker hopes that the granularity of
the spatial obtained by the attack is different.

As shown in Figure 2, we discretize the data space into
Δ22,Δ

2
4,Δ

2
8, which means that both dimensions of space is

divided into 2, 4, or 8 index spaces, respectively. Under
different attack granularities, the attacker recovers the index
of records in Figure 2, and the obtained index coordinates
are (0,1), (1,2), (2,5), respectively. Combined with the size of
the dataset known to the attacker, under different attack
granularities, the index spatial of the record has different
degrees of privacy leakage. It is undeniable that regardless of
the granularity, reconstruction attacks will expose data
privacy to a certain extent.

(erefore, we first need to determine the granularity of
the data index that the attacker wants to achieve before
formally attacking, which determines the granularity of the
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Figure 1: Spatial data outsourcing system.
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space division. Discretize the data space according to the
granularity to obtain a two-dimensional discrete data space.
We assume that the data space is divided into Tx scales
horizontally and Ty scales vertically, and the size of the data
space is TxTy.

For each record in the dataset, it is pointed to by a certain
position index Ii � xi, yi􏼈 􏼉, where xi ∈ [0, Tx] and
yi ∈ [0, Ty]. (e ultimate goal of our reconstruction attack is
to recover the corresponding position coordinate
Ii
′ � xi
′, yi
′􏼈 􏼉 for each record r1 in the dataset.

4.2. Access Pattern Simplification. In section 4.1, we have
introduced the process of spatial discretization. Assuming
that the space has been discretized into n pieces of index
space, the goal of reconstruction attack is to assign one piece
of index space to each record stored on the server.

After a period of sniffing, the attacker (honest but cu-
rious service provider) collects enough access patterns to
perform the attack. In order to improve the efficiency of our
attack, we want to simplify these access patterns in this step.
We will classify the records where the records belonging to
the same piece of space are classified into one category and a
representative record will be selected. By observing the
access patterns and counting the co-occurrence of encrypted
records, the records with co-occurrence rate of 100% are
classified into the same category, and for each category, one
record is taken as the representative.(en, the access pattern
is simplified by replacing all records with the representative
record of corresponding category in the collection of access
patterns.

For example, with the attack granularity of 10×10, space
is divided into 100 regions, and each region will be pointed
to by the same index coordinate. (erefore, for the records
that belong to the same region, we only take one record as
the representive. If each region has records, we will get 100
representative records at most. (en, we simplify the ob-
served access patterns. Because records belonging to the
same category are pointed to by the same spatial index, we
can simplify the collection of access patterns by keeping only
representative records.

4.3. Determination of Row and Column Indexes. In this
section, the row and column indexes will be determined,

respectively, and we will introduce the process with 3
algorithms.

(e Algorithm 1 is the main method, reconstructing the
index of the dataset from the x-dimension and the y-di-
mension, respectively. Each dimension includes 2 steps.
Firstly, the attacker utilizes the continuity of the range query
to determine the relative position of records on a single
dimension (Algorithm 2). Secondly, leveraging the unifor-
mity of query and the rate of document co-occurrence in the
access patterns, the attacker determines the specific index of
each record (Algorithm 3). -

For the discretized two-dimensional space, we determine
the x coordinate of each record line by line. Firstly, the
attacker classifies the records according to the results of a
single-row query. Encrypted records belonging to the same
row query are grouped together. For this row of records, the
attacker uses the collected access patterns set Laccess1 (these
access patterns are generated by uniform query) to deter-
mine the relative order of these records in the row through
Algorithm 2 (line 5). Next, the attacker uses Algorithm 3 to
get the index of these records in the x-direction (line 6).
After the line-by-line process is over, the x-coordinates of
each record are saved through the Map collection, the ID of
the encrypted record is used as the key, and the X-coordinate
as the value (line 7–9). (en, the attacker uses the same
method to determine the Y coordinate of each record in the
dataset (line 13–14), and saves it through theMap collection,
with the ID of the encrypted record as the key, and the Y
coordinate as the value (line 15–17).

4.3.1. Determination of Relative Order. In this section, we
will introduce the procession of the relative order deter-
mination for a row/column of records. As a weak attacker
defined in Section 3.3, the service provider can only con-
tinuously observe the user’s query process and calculate
access patterns. Assume that the attacker counts a lot of
uniform one-dimensional spatial queries, which is enough to
perform our reconstruction attack. (e two-dimensional
spatial dataset reconstruction attack can be converted into
multiple one-dimensional attacks and the latter can adopt
Generic Attack introduced in [8].

Given that the attacker collects only one-dimensional
queries, it is easy to categorize each record stored in a two-
dimensional space by row or column. For each row of
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Figure 2: (e record index obtained by the attack at different granularities.
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records, we first utilize the continuity of spatial query to
determine the relative order of the records, through a
process known as GetOrder, the details of which are as
follows:

(1) Find the maximum set U of the row query in the
access patterns

(2) Find the largest true subset S1 of U, then the dif-
ference set between U and S1 is the first record r1

(3) Find the minimum superset S1 of the set Ri−1, where
Ri−1is formed by the confirmed records
Ri−1 � rj |j ∈[1, i − 1]􏽮 􏽯. And, the difference set be-
tween Si and Ri−1 is the next record.

Input:attack granularity Tx, Ty, dataset, access patterns
Output: x index and y index of all records in the dataset

(1) Map map IndexX

(2) Map map IndexY

(3) FOR each row
(4) get Laccess1
(5) ordered Record X←Get ordered(Laccess1)

(6) Guess Index X←Get Index(Laccess1,Ordered Record X)

(7) For each record in ordered Record
(8) map index(recordI D, X Index)

(9) END FOR
(10) END FOR
(11) FOR each column
(12) get Laccess2
(13) ordered Record Y←Get ordered(Laccess2)

(14) Guess Index Y←Get Index(Laccess2,Ordered Record Y)

(15) For each record in ordered Record
(16) map index(recordI D, Y Index)

(17) END FOR
(18) END FOR
(19) RETURN map IndexX,map IndexY

ALGORITHM 1: Reconstruction of the spatial dataset index.

Input: the collection of access patterns for a row/column Laccess1
Laccess1 � (q1,R1), . . . , (qn,Rn)􏼈 􏼉

Output: the ordered set of records in the row/columnOrderedRecord
OrderedRecord � (r1, r2, . . . rm)

(1) m � 0, R � { }

(2) FOR each Li in Laccess1 DO
(3) IF |R|>m THEN
(4) m � |Ri|, R � Ri

(5) END IF
(6) END FOR
(7) FOR each Li in Laccess1 DO
(8) IF |R| � m − 1 THEN
(9) orderedRecord add(R/Ri)

(10) BREAK
(11) END IF
(12) END FOR
(13) FOR j � 2 to m DO
(14) FOR each Li in Laccess1

������
a2 + b2

√
DO

(15) IF |Ri| � |orderedRecord| + 1 and RiContainsAll(orderedRecord) THEN
(16) orderedRecord add(Ri/orderedRecord)

(17) BREAK
(18) END IF
(19) END FOR
(20) END FOR
(21) RETURN orderedRecord

ALGORITHM 2: GetOrder: Determination of the relative order for row/column records.
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To explain the process of GetOrder, let us consider that
the user makes a one-dimensional range query for the single-
row record distribution, as shown in Figure 3.

(en, the maximum set of query results is {r7, r12, r17,
r20}. (e largest true subsets are {r17, r7, r12} and {r7, r12, r20}.
Without the distribution figure, only according to the set
relation, we can easily know that the first record of this row is
either r17 or r20, which is consistent with actual distribution.
Assuming that the first record is r17, the minimum
superset of {r17} in the access pattern set is {r17,r7}. (us,
the second record is determined as r7. (e superset of the
confirmed records is deduced accordingly and the third
and fourth records are r12 and r20, respectively. If we
assume that the first entry is r20, what we will get is the
reverse order of the records. According to the prior
knowledge, we can determine whether to reverse this
sequence. Finally, as shown in Figure 4, we know that this
row stores 4 records, and the relative order of storage is
{r17, r7, r12, r20}, and the next step is to match each record
with the correct index.

(e process of GetOrder has been summarized in Al-
gorithm 2.(e input of the algorithm is the access pattern set
Laccess1 � (q1,R1), . . . , (qn,Rn)􏼈 􏼉 of a certain line of query
observed by the attacker. First traverse all access patterns to
find the most number of record sets. Assuming that the
attacker samples enough queries, Laccess1 contains the access
pattern accessing all the records in the row. From this, we get
the row record set R and the record number m of this row
(line: 1–6). After that, we determine the first item of the row’s
records (line: 7–12). Utilizing the continuity of range query,

we find the largest proper subset R1 of the complete set R of
the row’s records in the access pattern set, and then the
difference between R1 and R is the first/last item of the row of
records. We assume that it is the first item, and then judge
the row record after the row order is fully determined. If it is
proved to be the last item, the row record only needs to be
reversed. Finally, we sort the other encrypted records in this
row one by one (lines: 13–20). Utilizing the continuity of
range query, we find the minimum superset of the deter-
mined record in the access pattern set, and the difference
between the minimum superset and the record set in the

Input: (e set of access patterns of uniform query for a row/columnLaccess2
Laccess2 � (q1, R1), . . . , (qn, Rn)􏼈 􏼉

(e row/column ordered record collection OrderedRecord
OrderedRecord � (r1, r2, . . . rm)

Output: the index of the row record/the column record I

(1) sumFirst � 0
(2) FOR eachLi in Laccess2 DO
(3) IF orderedRecord[1] � inRiTHEN
(4) sumFirst + +

(5) END IF
(6) END FOR
(7) I[1] � argminX(SumFirst/Laccess2length2x(T − x + I)/T(T + 1))

(8) Sum � 0, 0{ }

(9) Sum[1] � SumFirst
(10) FOR each Li in Laccess2 DO
(11) FOR j � 2 to m DO
(12) R′ � orderedRecord[m]{ }|0<m< j + 1
(13) IF R′ in Ri THEN
(14) Sum[j] + +

(15) END IF
(16) END FOR
(17) END FOR
(18) FOR j � 2 to m DO
(19) I[j] � argminx(Sumj/Laccess2length − 2I[I](T − x + 1)/T(T + I))

(20) END FOR
(21) RETURM I

ALGORITHM 3: GetIndex: Determination of indexes for row/column records.

r17 r7 r20r12

1 2 3 4 5 6 7 8

Figure 3: Records distribution of one row.

1 2 3 4 5 6 7 8

r17 r7 r12 r20

Figure 4: Relative order for the row of records.
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determined order is the next record. Determine the relative
order of these m records one by one and store them in the
queue orderedRecord, which is the order/reverse order of
the row of records and the algorithm finally returns.

4.3.2. Determination of Indexes. (en, we utilize the uni-
formity of the query to determine the one-dimensional
index value of each record, denoted as GetIndex. Assume
that the index space of the row is N and the index coordinate
of the i-th record is Zi. By observing the access patterns of Q
uniform queries and counting the number of access patterns
containing record r1 as q1, we present the calculation of the
first record index as an optimization problem by equation
(3), and the calculation of the i-th record Index as an op-
timization problem by equation (4), where Qi represents the
number of access patterns including the previous i records.

(e result of this equation satisfying the optimization
problem is an assignment of index Zi to the record that
achieves a minimum distance from the uniformity of query.

argmin 􏽘
Z1

Q1

Q
−

2Z1 N − Z1 + 1( 􏼁

N(N + 1)
􏼠 􏼡􏼠 􏼡

2

, (3)

argmin 􏽘
Z1

Qi

Q
−

2Z1 N − Zi + 1( 􏼁

N(N + 1)
􏼠 􏼡􏼠 􏼡

2

. (4)

To explain the model described in equation (3), let us
consider the following example. Assume that the index space
of a row is [1, N], the record ri is the i-th record of the row,
and the x coordinate of ri is Zi. (e row is uniformly queried,
according to the permutation and combination, and the
number of unique queries that can be generated is
N(N + 1)/2, the number of unique queries containing the
first records is Z1(N − Z1 + 1), and the number of unique
queries containing the previous i records is Z1(N − Z1 + 1).
Now, for the first record r1, an attacker can calculate the
probability of the r1 appearing in the uniform query by
α1 � 2Z1(N − Z1 + 1)/N(N + 1).

For any given record ri, i> 1, the attacker can calculate
the probability of the previous i records rj|j ∈[1, i]􏽮 􏽯

appearing together in the uniform query by
α1 � 2Z1(N − Z1 + 1)/N(N + 1). (erefore, by observing
access patterns, the attacker can calculate the probability of
the previous i records rj|j ∈[1, i]􏽮 􏽯 appearing together in
the uniform query by β � Qi/Q , whereQ represents the total
number of access patterns of uniform query and Qi repre-
sents the number of access patterns including the previous i
records. Naturally, the attacker will assign coordinate Zi to
the record ri, if the calculated probability α is close to the
observed probability β from the access pattern. (is close-
ness can be measured by the arithmetic distance function
(α − β)2, where a lower value of this function is preferred
over a higher value. So, the goal of the attacker will be to
assign an index to records such that this distance function is
minimized.

A specific example is shown as follows to explain the
process of GetIndex in detail. Assuming that the attack has

determined the record order as shown in Figure 4, and the
access pattern collected by the service provider is the
smallest set that satisfies the attack conditions as shown in
Figure 5, the attacker obtains the relative order {r17, r7, r12,
r20} and Q access patterns, where Q� 36.

Since the query is uniform, assuming that the x coor-
dinate of r17 is Z1 ∈ [1, N], theoretically, the proportion of
uniform queries including the first record r17 is
α1 � 2Z1(N − Z1 + 1)/N(N + 1). Observing sampled access
patterns, according to the statistics, the proportion of access
patterns including the first record r17 is q1/Q (i.e.14/36).
(en, the difference between the actual value and the the-
oretical value is q1/Q − 2Z1(N − Z1 + 1)/N(N + 1). We
could find Z1 that minimizes the absolute value of the
difference and infer the value of Z1 should be 2, so the x-
coordinate of r17 is 2.

Determine the number of q2 queries with S2 � r17, r7􏼈 􏼉

included in the access patterns of the uniform query, where
S2 is the union of the records including records’ determined
position and the record of the position to be determined in
this step.(en, in this example, q2 is 10 and the proportion is
q2/Q. Since the query is uniform, assuming that the x co-
ordinate of the second record r7 is Z2 ∈ [1,N] , theoretically,
the proportion of uniform queries including S2 � r17, r7􏼈 􏼉 is
2Z1(N − Z2 + 1)/N(N + 1), then the difference between the
actual value and the theoretical value is
q1/Q − 2Z1(N − Z1 + 1)/N(N + 1), find Z2 minimizes the
absolute value of the difference and get Z2 is 4, so the x
coordinate of r7 is 4. And, we can adopt the same measures
for other records for their index values, and get the x co-
ordinate of r12 and r20 as 7 and 8, respectively.

At this point, the attacker knows that there are four
records r17, r7, r12, r20 in this row of the data space, and their
x-coordinates are 2, 4, 7, and 8, respectively (Figure 6).

(e process of GetIndex has been summarized in Algo-
rithm 3. (e input of the algorithm is the access pattern set
Laccess2 � (q1, R1), . . . , (qn, Rn)􏼈 􏼉 of a uniform single-row
query observed by the attacker, and the relative order queue of
the row orderedRecord determined by algorithm GetOrder.

First, we count the number of access patterns including
the first record and store in sumFirst (line: 1–6). Second, we
determine the index number of the first record (line: 7).
Utilizing the continuity of range query, assuming that a
uniform query set is generated for the row of records, and
the index number in the x-direction of the first record is x,
theoretically, the probability that the query result contains
the first record is 2x(T − x + 1)/T(T + 1), where T is the
data space size of the row. (en, traverse the access pattern
set Laccess2, and according to statistics, the ratio of the access
pattern including the first record is sumFirst/Laccess2.length.
Find the x value that minimizes the difference between the
theoretical value and the actual statistical value, which is the
index number of the first item.

Finally, we determine the index of other records one by
one (lines: 8–20). Utilizing the continuity of range query,
assuming that a uniform query set is generated for the row of
records, and the index number in the x-direction of the
record orderedRecord [j] is x, theoretically, the probability
that the query result contains the first j records is
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2x(T − x + 1)/T(T + 1), where i1 is the index number of the
first item and T is the data space size of the row. (en, we
determine the statistical value of the probability. Traverse the
access pattern set Laccess2, and count the number of the
access patterns including the first j records (orderedRecord
[1], ... ,orderedRecord [j]) as sum[j] (lines: 8–17).(erefore,
the ratio of each record is sum [j]/Laccess2.length. Find the x
value that minimizes the difference between the theoretical
value and the actual statistical value, which is the index
number of the orderedRecord [j] (lines: 18–20). At last, the
index set I corresponding to the records in orderedRecord
will be returned by the algorithm.

5. Experimental Results

(e experiments are conducted on a laptop with limited
resources (Intel Core i5 2.5GHz CPU and 8GB RAM).

We simulate three entities in this experiment, namely,
DO, AU, and server. As shown in Figure 7, the AU stores a
dataset to the server through the DO, and selects the spatial
attribute as the data index. DO encrypts each record before
storing it on the server. (en, the AU asks for a series of
range queries on the spatial index, and DO retrieves the
required encrypted records from the server, decrypts, and
sends them to the user. In addition, we simulated a sniffer in
Java on the server to observe data packets between the server
and the DO for access pattern statistics. Finally, utilizing the
observed access patterns, we performed the reconstruction
attacks on the server side.

To evaluate the performance of our attack, we leverage a
real-world spatial dataset, the distribution of North America
Post Office including 175811 tuples [28]. We preprocess the
raw dataset and normalize it to [0, 1]2 before applying it to
our experiment. (e detailed distribution of this test dataset
is shown in Figure 8. We encrypted and uploaded these
tuples to the server and took spatial coordinates as their
index.

According to the granularity that the attacker wants to
achieve, we first discretize the dataset with different gran-
ularities. As shown in Table 1, column Attack Granularity
describes the granularity of space discretization, and space is
discretized into 10 × 10 · · · · · · 100 × 100, while Index
Number depicts the number of indexes in the different
discretization conditions. And, Records Per Index represents
the average number of records per position Index. Under
different granularities, we will recover the index of each
record through our attack.
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Figure 5: Access pattern samples of uniform query.
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Figure 6: Index for the row of records.
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Figure 7: System implementation.
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After that, we gathered enough access patterns in order
to run our attacks. (e AU generates uniform range queries
and issues to the DO. For each query, the DO retrieves
encrypted matching records, decrypts them, and sends them
back to the AU.

Due to the size of the query range, the network speed, and
the number of users, the time of access patterns collection for
our dataset will be very long. (erefore, in this experiment, we
used a single user to simulate the process of query retrieval, and
generate the minimum number of queries required for exper-
imental conditions (Number of corresponding access patterns
shown in Table 2). However, in the actual application scenario,
when different users issue queries, the sniffer will sniff the access
patterns from different users at the same time, and the collection
speed will multiply.

(en, we preprocess the observed access patterns. By
counting the co-occurrence of encrypted records in the
access patterns, the records with co-occurrence rate of 100%
are classified into categories, and for each category, one
record is taken as the representative. (e column Represent
Number collects the number of representative records in the
dataset under different attack granularities. For example,
with the attack granularity of 10×10, the space is divided
into 100 regions, each of which is pointed to by an index
coordinate. By observing the access patterns, we classified
175,811 records, resulting in 68 representative records of 68
classes. (erefore, there are 32 regions with no record
distribution under this attack granularity.

Finally, we preprocess the observed access patterns.
Because records belonging to the same category are pointed
to by the same position index, we can simplify the collection
of access patterns by keeping only representative records.

Our reconstruction attack was performed on the pre-
processed set of access patterns; Figure 9 summarizes our attack
results. As shown in Figure 9, with the increase of attack
granularity, our attack reconstruction rate showed a slight trend
of decline, but it does not change much and the overall effect of
the attack is good. Assuming that the data space is divided into
Tx × Ty, the higher granularity indicates that we divide the
space more finely and that Tx × Ty is larger. As the granularity
increases, the size of the index set increases, and it becomesmore
difficult for the attacker to assign indexes to records, so the
reconstruction rate tends to decline.

(e result curve looks a little wobbly because there are
two main reasons that may affect the reconstruction rate of
attack.

One is when some rows/columns do not conform to the
prior knowledge, which will result in the reconstructed order
being reversed during the process of GetOrder (Algo-
rithm 2). In our reconstruction attack, we first determine the
relative order of each row of records utilizing statistics on
leaked access patterns. However, due to the symmetry of row
query, we cannot determine whether the order we recover is
in the positive or reverse order. If this is uncertain, the
reconstruction rate of our attack will be very low. (erefore,
we utilize prior knowledge Mknow to help us choose the
correct option between the positive and reverse orders. If
Mknow has no prior knowledge about any record of this row,
the reconstruction rate of this row will be affected.

(e other is when the first record in a row is in the
second half of this row (I1>T/2), which will cause a recovery
error during the process of GetIndex (Algorithm 3), and
further lead to the error of other records in the same row. In
the process of GetIndex, we determine the indexes for the
records of each row/column. Similarly, due to the uniformity
of row queries, when calculating the index of the first term of
each row with equation (3), the optimal solution will be two
indexes A and B, which are symmetric in the row. Assuming
that A<B, then A is in the first half of the index, and B is in
the second half. For dense datasets, the first record is nat-
urally placed in the first half, so A is usually taken as the
index of the first record.(erefore, when the first record in a
row is in the second half of this row (I1>T/2), the recon-
struction rate of this row will be affected.

Our attack includes four steps and Table 3 summarizes
the running time of each step in our attack using access
patterns.

(1) getRepresent: Count the co-occurrence probability
of the encrypted records by the access patterns.
Classify all records through co-occurrence proba-
bility and get a representative record for each
category;

(2) Simplify access patterns: Simplify the access patterns,
and keep only representative records;

(3) getRowIndex: Process simplified column access
patterns and reconstruct the row index of records
through the algorithm of GetOrder and GetIndex;

(4) getColIndex: Process simplified row access patterns
and reconstruct the column index of records through
the algorithm of GetOrder and GetIndex.

Table 1: Space discretization.

Attack granularity Index number Records per index
10×10 100 1758.11
20× 20 400 439.53
30× 30 900 195.35
40× 40 1600 109.88
50× 50 2500 70.32
60× 60 3600 48.84
70× 70 4900 35.88
80× 80 6400 27.47
90× 90 8100 21.70
100×100 10000 17.58
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As shown in Table 3, GetRepresent represents the av-
erage time of finding representative records among 175811
records, while Simplification represents the average time of
simplification for access patterns. GetRowIndex represents
the average time to reconstruct the row index using these
access patterns, while GetColIndex represents the average
time to reconstruct the column index.

Table 3 shows that the time consumed for each step is up
to only 11 seconds. Taking the most fine-grained granularity
in this experiment as an example, when the space is dis-
cretized into 100×100 regions, we achieve that on average
only 18 records are pointed to by the same position index,
and the reconstruction rate of the record index reaches
91.45%. Under such fine-grained granularity and recon-
struction rate, our attack time only needs a second level.

6. Conclusion

In this paper, a reconstruction attack on secure outsourced
spatial dataset is proposed, proving that access pattern leakage

will lead to security threats in VANET. With spatial dis-
cretization, our scheme can support the attack for optional
spatial granularity. Meanwhile, utilizing the statistic of the
record co-occurrence, access patterns are simplified, which
improves the attack efficiency. Using the continuity and uni-
formity of the range query, the attacker determines the index
for each record in the dataset. Extensive experiments on a real-
world dataset demonstrate that our attack scheme can achieve a
reconstruction rate of more than 90 percent even at a relatively
fine-grained granularity. In future work, we will investigate the
defense mechanism to address these security threats.
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Table 2: (e number of access patterns and represent records.

Attack granularity Access pattern number Represent record number
10×10 550× 2 68
20× 20 4200× 2 224
30× 30 13950× 2 454
40× 40 32800× 2 756
50× 50 63750× 2 1105
60× 60 109800× 2 1488
70× 70 173950× 2 1931
80× 80 259200× 2 2433
90× 90 368550× 2 2927
100×100 505000× 2 3474
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Figure 9: Attack reconstruction rate under different attack granularities.

Table 3: Attack time per step.

Attack granularity GetRepresent (ms) Simplification (ms) GetRowIndex (ms) GetColIndex (ms)
10×10 5 4 3 3
20× 20 20 21 18 28
30× 30 69 63 79 99
40× 40 128 131 172 217
50× 50 321 342 424 484
60× 60 788 740 842 996
70× 70 1708 1653 1379 1613
80× 80 3358 3300 2535 2839
90× 90 6086 6210 4336 4685
100×100 11229 10445 6987 7317
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