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Using fake audio to spoof the audio devices in the Internet of *ings has become an important problem in modern network
security. Aiming at the problem of lack of robust features in fake audio detection, an audio streams’ hidden feature extraction
method based on a heuristic mask for empirical mode decomposition (HM-EMD) is proposed in this paper. First, using HM-
EMD, each signal is decomposed into several monotonic intrinsic mode functions (IMFs). *en, on the basis of IMFs, basic
features and hidden information features HCFs of audio streams are constructed, respectively. Finally, a machine learningmethod
is used to classify audio streams based on these features. *e experimental results show that hidden information features of audio
streams based onHM-EMD can effectively supplement the nonlinear and nonstationary information that traditional features such
as mel cepstrum features cannot express and can better realize the representation of hidden acoustic events, which provide a new
research idea for fake audio detection.

1. Introduction

With the development of the Internet of *ings (IoT)
technology, an increasing number of audio and video
acquisition devices are now connected to the Internet. Fake
audio becomes an increased new threat on voice interfaces
due to the recent breakthroughs in speech synthesis and
voice conversion technologies. *erefore, the detection of
fake audio has become a new hot issue of network security
[1, 2]. *ere are mainly two methods of audio forgery. One
is to generate spoofed utterances using text-to-speech
(TTS) and voice conversion (VC) algorithms, which is also
called logic access (LA) [3] and the other is the use of
professional replay devices to get spoof attack, which is also
known as physical access (PA) [4]. *ere are more diversity
of audio forgery means and more difficulty in fake audio
detection [5]. In this paper, an audio streams hidden
feature extraction method based on HM-EMD is proposed
and used to extract features of audio streams to detect fake
audio.

At present, the fake audio detection is mainly based on
acoustic features to build classification model. Linear

frequency cepstral coefficients (LFCC) [6], constant-Q
cepstral coefficients (CQCC) [7], and mel frequency cepstral
coefficients (MFCC) [8] are commonly used in fake audio
detection. However, these features are based on fixed filter
banks; none of these acoustic features are able to generalize
well on unknown spoofing technologies. Subsequently, the
end-to-end deep learning method to detect the fake audio is
gradually concerned by researchers. Alejandro et al. pro-
posed a cyclic neural network based on optical convolution
gate to extract the shallow features at the frame level and the
deep features of sequence dependence at the same time [9].
Zeinali et al. used VGg and light CNN to detect fake audio
[10]. However, this end-to-end deep learning approach
requires large, evenly distributed datasets and relies on
certain types of fake audio.

*rough the analysis of forged audio, it is found that the
AI-based fake audio technology focuses more on speech
content and ignores the background sound in an audio
stream [11]. *e background sound will also change during
the replay spoofing. *erefore, the construction of features
representing the hidden information in audio scenes can be
used to detect the fake audio [12].
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In order to focus on local level details of the signal in
terms of specific regions (which may be highly discrimi-
native), empirical-mode-decomposition- (EMD-) based
approach is explored. EMD has superior time-frequency
resolution performance in nonlinear unsteady signal pro-
cessing and has been applied in counterfeit audio detection
[13].

However, the traditional EMD method has a few dis-
advantages, including mode aliasing and the inconsistency
of IMF dimensions after signal decomposition. Hence, ac-
curately estimating the IMF range of a certain frequency
distribution is difficult. In 2005, Deering and Kaiser pro-
posed the ensemble empirical mode decomposition (EEMD)
decision method [14], which attempts to solve the problem
of mode aliasing by introducing Gaussian white noise into
the signal to be decomposed. In EEMD, the attributes of
Gaussian white noise should be adjusted artificially. How-
ever, the Gaussian white noise leaves traces in the IMF
decomposed from the signal, thereby resulting in low signal
restoration accuracy and extensive calculations. Time-
varying filtering-based empirical mode decomposition
(TVF-EMD) uses the b-spline time-varying filter for mode
selection and thus solves the problem of mode aliasing to a
certain extent. However, TVF-EMD must calculate the
cutoff frequency first, thus leaving the problem of dimension
inconsistency unsolved [15].

To sum up, in order to make full use of the time-fre-
quency analysis advantages of EMD, it is necessary to solve
the modal aliasing and frequency inconsistency problems
existing in EMD itself. In this paper, a heuristic empirical
mode decomposition (HM-EMD) method is proposed to
improve the purity of IMFS and solve the problem of in-
consistency between mode mixing and IMF dimension.
*en, the acoustic hidden component features (AHCF) of
the audio stream were constructed and used to locate the
acoustic events in audio stream in the acoustic stream
classification dataset A of DCASE [16]. Fake audio detection
is implemented on ASVSpoof2019 dataset [17]. *e ex-
perimental results show that the basic features and AHCFs of
the audio streams based on HM-EMD can represent the
audio background which help to verify the types of the fake
audio.

*e paper consists of five parts. *e first part is an in-
troduction of audio streams. *e second part mainly in-
troduces the principle of HM-EMD.*e third part describes
the mining of hidden information in audio streams based on
the proposed HM-EMD.*e fourth part presents the results
of classification of audio streams on the basis of HM-EMD.
*e fifth part summarizes the characteristics of the proposed
method and presents future research directions.

2. Heuristic Mask for Empirical Mode
Decomposition (HM-EMD)

In this section, the classical empirical mode decomposition
(EMD) method is first introduced and then follows the
analysis of mode aliasing in EMD; finally, the solution of
mode aliasing based on heuristic mask signal is proposed in
detail.

2.1. Empirical Mode Decomposition Method

2.1.1. Empirical Mode Decomposition. EMD can decompose
the original signal x (t) (t ∈ N, N � 0, 1, . . . n{ }) into a series
of IMFs whose upper and lower envelopes have a mean value
of 0. *is decomposition method does not need to preset
basis functions (such as Fourier transform or wavelet
analysis), but the IMFs should satisfy the following formulas:

Numextream − Numcross


≤ 1, (1)


t∈N

Bmax(t) + 
t∈N

Bmin(t) � 0, (2)

where Numextream is the number of extreme points of the
data sequence and Numcross is the number of zero crossings;
Bmax(t), Bmin(t) are the upper and lower envelopes by cubic
spline interpolation with the maximum and minimum
points as the control points, respectively. Formula (1) rep-
resents the narrow-band constraint condition of the IMF,
and formula (2) represents the local symmetry constraint
condition. *e process of EMD decomposition to obtain an
IMF can be expressed as follows (Algorithm 1).

2.1.2. Modal Aliasing of EMD. However, the most signifi-
cant drawback of EMD is modal aliasing, as shown in
Figure 1. Figure 1(b) shows the FFTspectrum corresponding
to each IMF in Figure 1(a). It can be seen from the figure that
each FFT spectrum contains multiple signals of different
frequencies, which means a single IMF contains signals of
different frequencies or signals of the same frequency that
appear in different IMF components. *ese are modal ali-
asing. *e main reason for modal aliasing is the absence of
extreme value or the inconsistent distribution of extreme
value, which makes the variation trend error between the
spectral envelope obtained by interpolation and the real
signal is too large. At this time, the time-domain signal does
not meet the narrow-band requirements of IMF decom-
position, resulting in mode aliasing.

In order to solve this problem, mask signal s(t) is usually
created to compensate the missing extreme value, and then
the values are given, respectively:

x+(t) � xt + st, (3)

x−(t) � xt − st. (4)

For x−(t) and x+(t), EMD is performed to obtain the
natural mode functions rIMF−(t), respectively. *e final IMF
is defined as follows:

rIMF(t) �
rIMF+(t) + rIMF−(t)

2
. (5)

It can be seen from the above that the extreme value
distribution of mask signal s(t) is very important to solve the
modal aliasing problem. White noise is usually used as mask
signal s(t), but this method does not make full use of the
properties of the signal itself and cannot adapt to a variety of
signal contents. *erefore, this paper proposes a heuristic
mask for empirical mode decomposition method. *is
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method makes full use of the structural attributes of the
signal itself to construct variable analysis window and mask
signals. *e specific principle and implementation process
are as follows.

2.2. Heuristic Mask Signals

2.2.1. Basic Principle Analysis. *e signal properties need to
be established prior to EMD. A time-varying FM/AMmodel
can be used to express any nonstationary signal; that is,

x(t) � At sin(ω(t)), (6)

where a (T) is the envelope function and ω (T) is the phase
function. *e analytical signal is

z(t) � xt + jH[x(t)]. (7)

Here, H[·] denotes the Hilbert transform. We calculate
the instantaneous phase ω(t) � arctan(H[x(t)]/x(t)) and
instantaneous frequency fIFt � (1/2π)(d[ω(t)]/dt). Using
Hilbert transform, we can separate the AM and FM com-
ponents of the IMF to achieve the purpose of modal
separation.

For the single component mode, the instantaneous
frequency fIFt should be nearly linear, while the variation
range of ω(t) should be considerably small. When mode
aliasing occurs, fIFt should clearly change without con-
sideration of the end points. Especially, for hidden com-
ponents, a jump of fIFt occurs at the time point of
concealment. We constructed a variable analysis window
according to the time-frequency characteristics of instan-
taneous frequency. *en, we divided the signal into several
parts.

If fIFt of the segmented signal is still unstable; then, the
modal separation problem can be transformed into the
(d[ω(t)]/dt) minimisation problem, in which the band-
width of sin(ω(t)) is minimised. *e bandwidth calculation
method for nonstationary signals can be obtained by the
Carson rule:

BWAM−FM � 2Δf + fFM + fAM, (8)

where Δf is the deviation of the instantaneous frequency
from its mean value and fAM and fFM denote the fre-
quencies of the AM and FM signals, respectively. We can
make Δf � 0 to minimise the bandwidth. In other words,
the decomposition frequency of each IMF is expected to be
equal to the centre frequency of the instantaneous frequency,

Input: original signal x (t), supposed IMF number i
Output: intrinsic mode functions, IMF

(1) i� 1, x1(t) � x (t).
(2) Get the extremum points umax

1 , umin
1 , umax

2 , . . .  of signal xi(t), calculate the upper and lower envelope Bmax(t), Bmin(t) by cubic
spline interpolation with the maximum and minimum points as control points, and get the average value of upper and lower
envelope Bmean(t) at every points.

(3) r(t) � xi(t) − Bmean(t). If r(t) satisfies formulas (1) and (2), then r(t) is taken as the ith IMF signal ri
IMF(t), i� i+ 1; if not, repeat

step 2 and 3 for signal r(t).
(4) xi(t) � xi− 1(t) − ri−1

IMF(t). Return to step 1 until the termination condition is satisfied.

ALGORITHM 1: Empirical mode decomposition.
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Figure 1: EMD results for signal x1(t) � sin 2 π ∗ 2.4t + sin 2 π ∗ 3.5t + sin 2 π ∗ 7t: (a) IMFs; (b) FFT spectrum.
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that is, equal to the mean value of the instantaneous fre-
quency fIFt. *en, a mask signal with the same frequency as
fIFt can be selected and the number of IMFs required can be
determined.

2.2.2. Algorithm Description. *e HM-EMD algorithm
comprises the following steps: variable analysis window
construction and mask signal construction.

(1) Variable Analysis Window Construction. *e jump point
ti should be picked such that formula (9) is satisfied:

fIFti − fIFti+1


 + fIFti−1 − fIFti


> μΔfIFt + ρεΔfIFt, (9)

where ΔfIFt is the difference in instantaneous frequencies at
ti, μΔfIFt is the mean value of ΔfIFt at all time points, εΔfIFt is
the variance, and ρ is the variable parameter. *e original
signal is divided into two parts by the time division points ti

and decomposed by EMD independently.

(2) Mask Signal Construction. *e sine signal is a common
form of a mask signal, and its amplitude and frequency
should be determined. As analysed in Section 2.1, the fre-
quency is determined as the average instantaneous fre-
quency fIF. Hence, the amplitude is also determined as the
mean value AIF of the instantaneous amplitude. *en, the
mask signal s t is defined as

st � AIF sin 2 πfIFt, (10)

where AIF � (1/n) 
n
t�1

�����������������

rIF(t)2 + H(rIF(t)2)



and
fIF � (1/n) 

n
t�1(d/dk)(arctan(H(rIF(t))/rIF(t))).

*en, IMFs can be refreshed by formulas (3)–(5), in
which the number of IMFs is determined by fIF and fc is
the sampling frequency. *e algorithm flow is as follows
(Algorithm 2):

3. HM-EMD-Based Acoustic
Scene Classification

*e audio stream contains the hidden acoustic events that
can represent the acoustic scene. In this section, HM-EMD is
first used to decompose the acoustic scene signals, and the
IMF of hidden acoustic events in these acoustic scene signals
is analysed. According to the analysis results, a full-band
IMF hidden component feature is proposed to represent the
hidden acoustic events. Finally, the process of acoustic scene
classification using these features is given in detail.

3.1. Acoustic Scene Signal Analysis by HM-EMD. When
processing the original signal with HM-EMD, the variable
analysis window and mask signal are used to intervene the
decomposition of the original signal. *e frame length is
selected according to the frequency structure of the signal
itself, while the frequency domain components corre-
sponding to each IMF are relatively independent, which
provides higher interpretability of the features. *e in-
stantaneous frequency and amplitude of each IMF also
contain all information of IMF components, which means

that the instantaneous frequency and amplitude of all IMF
components contain most of the information of the signal
to be analysed and can be directly used as the basic
characteristics of the signal. Figure 2 shows the time-
domain waveforms of some typical IMFs with hiding
acoustic events in the ambient audio stream, in which only
the most significant one of all IMF waveforms is shown. It
can be seen that the time-domain waveform character-
istics of these events are very obvious, the extreme value
and over-average rate are very different, and they are
distributed in low, medium, and high frequency bands.
*erefore, this paper proposes a full-band IMF hiding
component features, which can distinguish them well, to
effectively improve the effect of ambient audio stream
recognition algorithm. *e feature calculation method is
shown in Section 3.2.

3.2. Mutagenic Component Features. Figure 2 shows vari-
ous hidden components in the acoustic scene data. On the
one hand, the hidden components cause a significant
interference to the signal spectrum, thereby greatly af-
fecting the ambient audio stream recognition effect based
on traditional spectrum features (such as MFCC). On the
other hand, the types and characteristics of hidden
components corresponding to different ambient audio
streams also exhibit significant differences. *ese hidden
components are closely related to the types of acoustic
events. *e features constructed on the basis of hidden
components can help to distinguish ambient audio
streams. For a hidden component, its frequency, ampli-
tude, and change mode information can effectively reflect
its essential attributes. Almost all of such information can
be reflected by the envelope shape of the IMF obtained by
decomposition. *erefore, we design a set of HACFs.
Based on the IMF decomposed by HM-EMD, the features
extract the relevant information of hidden components,
including the shock intensity feature SH and over-average
feature average crossing rate (ACR).

3.2.1. Shock Intensity Feature (SH).

SHmax j � max r
up
IMFj(t) ,

SHmin j � min r
up
IMFj(t) ,

(11)

where max (rupIMFj (t)) is the upper limit of the signal am-
plitude in the jth IMF and min (rupIMFj (t)) is the lower limit.
Both limits represent the change intensities of the hidden
components relative to the steady components for mea-
suring the changes in signal amplitude. As the sum of the
mean values of the upper and lower envelopes of the IMF is
0, the signal is symmetrical along the time axis, and the
information carried by the upper and lower envelopes is
almost the same. *erefore, a one-sided envelope is enough
to ensure the consistency of the symbols of the two values.
*e superscript means that the upper envelope is used for
calculation.
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3.2.2. ACR Feature.

ACRi �
1
2T



T

i�2
sgn r

up
IMFj(t) − r

up
IMFj(t)  − sgn r

up
IMFj(t − 1) − r

up
IMFj(t) 




. (12)

Input: signal x (t), supposed IMF number i
Output: intrinsic mode function, IMF

(1) x1(t) � x (t), i� 1.
(2) Get the first IMF of the signal residual xi(t), calculate the mean and variance of ΔfIFt, and use formula (8) to determine whether

there is a hiding jump point. Variable analysis window is constructed according to the hiding jump point and xi(t) is segmented.
(3) Construct mask signal for each IMFi: sit � AIFi

sin 2 πfIFi
t.

(4) Do EMD on xi+t � xi(t) + sit and xi−t � xi(t) − sit; get the first IMF rIMFi+
(t) and rIMFi−

(t).
(5) Let rIMFi

(t) � (rIMFi+
(t)+ rIMFi−

(t))/2, and splice all the divided pieces.
(6) i� i+ 1, xi(t) � xi−1(t) – rIMFi

(t), return to step 2, until fIFi
t< (fc/2i), or no new IMF is required.

ALGORITHM 2: Heuristic empirical mode decomposition with a masking signal.
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Figure 2: IMF waveforms with significant hidden components in different environments of the audio stream. (a) Airport luggage roller:
IMF16, low freq. (b)Metro rail joint collision: IMF14, low freq. (c) Chirm: IMF1, high freq. (d) Steps: IMF10, medium freq. (e) Vehicles from
far to near: IMF1, high freq. (f ) Tram acceleration: IMF4, medium and high freq.
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ACR features can express the number of times the upper
envelope of an IMF passes through its mean point, that is,
the number of times the IMF’s upper envelope (time domain
amplitude) fluctuates significantly. If the value is large, the
IMF amplitude frequently fluctuates near the mean value.
For ambient audio stream recognition application scenarios,
if the value is greater than a certain threshold (10Hz or
above), the data may not have obvious and meaningful
hidden components and the change of the upper envelope
near the mean value is only the normal fluctuation of the
acoustic signal itself. If the value is less than the threshold,
the data may contain significant hidden components, and
one-half of the zero-crossing frequency is the frequency of
the hidden components.

3.3. Ambient Audio Stream Classification. *e process of
audio streams classification based on heuristic mask em-
pirical mode decomposition is shown in Figure 3. Firstly, the
HM-EMD method is used to decompose the signal into the
IMFS set. *en, the basic features are extracted based on the
IMFS: the instantaneous frequency, instantaneous ampli-
tude, and the hidden features of AHCFs are all composed of
the feature matrix, and the feature matrix is input into the
classifier to get the final recognition result. In order to verify
the validity of the feature, two kinds of classifiers are selected
in this paper. One is a three-layer perceptron model, whose
specific structure is shown in Figure 3. *e model has a
three-layer structure. Sigmoid function is used as activation
function for the first two layers; each layer has 500 and 250
neurons, respectively. *e output layer uses a SoftMax
classifier and has 10 neurons. *e second is the Triden-
tRestNet model, which consists of three branches, each of
which is ResNet101. *e different branches have different
convolutional kernels for bottleneck modules, which use
3∗ 3, 5∗ 5, and 7∗ 7, respectively, in order to obtain fea-
tures at different scales. Finally, all the features are fused
together to give the recognition result. *e experimental
results show that under the two model systems, the system
based on HM-EMD features still shows satisfactory results.
*e specific experimental results and analysis are as follows:

4. Experiments and Results

In this section, we evaluate the performance of the proposed
HM-EMD method for the validity of modal separation and
the audio stream classification. First, we provide details on
the experimental setup which include both evaluation cri-
teria and datasets. Second, the indexes, the results of ef-
fectiveness analysis for modal separation and acoustic scene
classification methods whose performance are compared
with the proposedmethod are provided. Finally, we compare
the performance of HM-EMD with that of the baseline
methods based on the experiments which are conducted on
the DCASE datasets and ASVSpoof2019 and analyse the
experimental results in detail.

4.1. Experimental Setup. We verify the results of this work
from two aspects: the validity of modal separation and the

validity of the HM-EMD features for environmental audio
stream classification.

4.1.1. Validation of Modal Separation. A nonlinearity index
is defined in formula (13), and it measures the stability of the
decomposition results. *e larger the DN is, the greater the
nonlinear degree is, indicating the more unstable compo-
nents; the verification data are the mixed signals of the three
modes in Figure 1:

DN �
1
n



n

t�1

fIFt − fIFt

fIFt
 

2
⎡⎢⎣ ⎤⎥⎦

1/2

. (13)

4.1.2. Validation of the Features of HM-EMD for the Clas-
sification of Audio Streams. To verify the effectiveness of
designing a series of features based on HM-EMD, we use a
basic HM-EMD feature matrix and a basic features +HACF
matrix as the input parameters of the classifier. Specifically,
the number of mask EMD reference IMFs is 20, the number
of HM-EMD basic feature’s dimension is 20, and HACFs is
3D, whose number of dimension is 20 × 3. *e audio frame
length is 0.5 s, the interframe overlap is 0.25 s, and the total
number of dimensions is 39 × 20 × 3 � 2340. *e classical
mel frequency cepstral coefficients are selected as the con-
trast features; they include 13 dimensional MFCCs and delta
features.*e total number of dimensions is 39, and the audio
frame length is 40ms.

After setting the characteristic parameters, we conducted
the test according to the process designed in Figure 3. *ere
are two datasets used in our experiment:

(1) TASK1A dataset of DCASE [16]: the dataset contains
data on ten cities and nine devices, that is, three real
devices (A, B, C) and six simulated devices (S1–S6).
*e dataset has good annotation, including three
different types of indoor, outdoor, and traffic. It also
has ten different ambient audio streams, namely,
airport, shopping mall, metro, metro station, pe-
destrian, street traffic, tram, park and public square,
and bus. *e acoustic data span a total of 64 h, with
40 h used in dataset training and with 24 h used in
verification. Each audio segment is 10 s long, and the
sampling rate is 44.1 kHz.

(2) ASVSpoof 2019 dataset [17], which is a dataset
aiming to foster the research on countermeasure to
detect voice spoofing in automatic speaker verifi-
cation. *e dataset contains synthesized and
replayed speech attacks, which are classified as
logical access and physical access respectively. *ere
are three subsets under these two tracks, namely,
training set, development set, and evaluation set.
Actual voice data for both tracks were collected from
107 speakers collected from the VCTK2 database, 46
male speakers, and 61 female speakers. A subset of
training and development of physical access was
created by simulating room acoustics, including 3
room sizes, 3 reverberation levels, and 3 speaker
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distances from the ASV microphone. In addition,
there are nine recording configurations, with three
recording distances to the speakers and three
speakers of different qualities. Since this paper fo-
cuses on testing the feature of HM-EMD in the
recognition of fake audio, the 10 neurons in the
output layer of the two classifiers in Figure 3 are
replaced with 2 neurons and the training the model
again. At this time, the output result of the model is
the detection results of fake audio. *e results are
evaluated by EER (equal error rate). Specific ex-
perimental results are shown in Section 4.2.

4.2. Results and Analysis

4.2.1. Effectiveness Analysis for Modal Separation. By
comparing the traditional EMD results, we can see DNHM-

EMD /DNEMD< 1 for any given case. Hence, the IMF pro-
cessed by the HM-EMDmethod has the lowest nonlinearity;
that is, the IMF has a high purity and is close to the blind
separation result under an ideal state.*e separation result is
shown in Figure 4. *e features based on this high-purity
IMF signal can effectively characterize the subtle changes in
the signal components in the time and frequency domains.
Hence, the method is suitable for all types of acoustic
correlation analyses and recognition, especially for the
recognition of ambient audio streams with hidden acoustic
events.

4.2.2. Based on HM Feature Validity of EMD

(1) Ambient Audio Stream Classification. HACFs can be used
to identify the hidden components in IMFs and are thus of
great significance for ambient audio stream recognition. We
verified the discrimination ability of HACFs in different
scenarios (Figure 5). *e figure shows the scatter projection
of some hidden component features in the three-dimen-
sional space. Even the three-dimensional features in a single
IMF have a strong scene discrimination ability. HACFs show
good discrimination ability among different ambient audio
stream categories and thus provide technical support for
subsequent ambient audio stream classification.

Figures 6 and 7, respectively, show the acoustic streams
classification and recognition results of MFCC features,
HM-EMD basic features and HM-EMD basic featur-
es +AHCFS features based on simple classifier and complex
classifier. *e simple classifier is a simple three-layer per-
ceptron, while the complex classifier adopts the optimal
classifier in the DCASE competition [18]. As can be seen
from the figures, basic environmental features based onHM-
EMD in the simple classifier are better than MFCC features
in most scenes, and AHCFS features can effectively capture
hidden information in the environment, which is improving
the accuracy of audio streams classification. In the complex
classification model, the improvement of model classifica-
tion ability can make up the deficiency of feature repre-
sentation, and the overall recognition rate has increased.

Tables 1 shows the results of acoustic streams classifi-
cation. It can be seen that the HM-EMD feature is superior
to theMFCC feature with different classifiers: given the basic
classifier, fIF + AIF is 6.7 percentage points higher than that
in the MFCC series. After the addition of HACFs, the
recognition rate increases by 17.4 percentage points. *is
result is close to the classification accuracy of the RESNET
network with a 32M model size in the DCASE competition
[19], while the simple model used in this paper is only 225K.
In a complex classification model, the improvement of
model classification can make up for the lack of features to
some extent. However, in this case, fIF + AIF + HACFs still
improves the accuracy by 1.3%, and the recognition result
reaches 75.7%. *e fIF + AIF feature can provide instan-
taneous characteristics in time-frequency domain and
HACFs represent the statistical characteristics in time-fre-
quency domain. *e combination of the two can help im-
prove the accuracy of the classification of environmental
audio streams.

(2) Fake Audio Detection. Table 2 presents the fake audio
detection results based on HM-EMD features. It can be
seen that the forged audio based on LA is easier to be
identified than the forged audio based on PA, and the HM-
EMD feature has a more effect on the fake audio of LA
attack. After adding the hidden information feature AHCF,
the detection error rate of forged audio was reduced by
5.61% and 6.11%, respectively. *is is because the LA

Classification
2. TridentResNet

Feature vector

Recognition result

Feature
of frame

f_if + A_if + AHCFs
1. Base model

Acoustic signal
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· · ·

· ·
 ·

Figure 3: *e process of audio streams classification based on heuristic mask empirical mode decomposition.
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Figure 5: Continued.
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ignores background sound in the process of synthesizing
the fake audio. In this case, the addition of captured audio
background features greatly reduces the detection error
rate. It can also be seen from the table that the HM-EMD

feature can reduce the error rate of fake audio detection in
both simple and complex models, which also proves the
effectiveness of the feature extraction method proposed in
this paper.
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Figure 5: HACFS feature distribution in 3D space. (a) IMF1 of bus and airport. (b) IMF1 of metro and pedestrian. (c) IMF1 of park and
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5. Conclusions

Aiming at the problem of audio fraud existing in the
network, this paper proposes a method of feature extrac-
tion of hidden information in audio streams based on HM-
EMD. Because the audio background information is dif-
ficult to be forged, the basic features of audio streams and
the characteristic HCFS of hidden information are con-
structed for fake audio streams based on stable IMFs
decomposed by the HM-EMD method. *e experimental
results show that the HM-EMD-based features have richer
characterization ability for hidden acoustic events than
MEL cepstrum features and can improve the accuracy of
scene classification and fake audio detection. However,
since the HM-EMD decomposition process needs to cal-
culate the mask signal according to the structure of the
signal itself and use the mask signal to separate the aliasing
signal, the algorithm complexity is increased compared
with the classical EMD algorithm. *erefore, in the sub-
sequent work, we will consider the idea of coevolutionary
framework to optimize the algorithm [20]. At same time,
the relationship between the HM-EMD feature system and
different hidden acoustic events will be the further ex-
ploration point, so as to achieve accurate hidden acoustic
event markers in audio streams of different levels and time
scales. In general, the feature extraction of audio streams
based on HM-EMD is helpful to detect fake audio and
provides a new research idea for solving network audio
spoofing.
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