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In public-key encryption (PKE), ciphertexts received by a receiver may be possibly correlated and the security of a PKE relies on
honestly generated system parameters. Security against selective opening attacks (SOA) for PKE guarantees that even when an
attacker has broken into a subset of honestly generated ciphertexts and opened them (i.e., seeing plaintexts and random bits), the
unopened ciphertexts remain secure. While security against parameter subversion attacks (PSA) for PKE requires that even when
the public system parameters are maliciously generated, a PKE scheme should be secure. In this paper, we initiate the study of PKE
secure against both SOA and PSA. To capture SOA and PSA simultaneously, we formulate a new security notion called in-
distinguishability under selective opening attacks and parameter subversion attacks (IND-SO-PSA). Further, we define the lossy
trapdoor function and all-but-many lossy trapdoor function in the presence of PSA (LTF-PSA and ABM-LTF-PSA corre-
spondingly) and propose an instantiation with the efficiently-embeddable group (EG). Applying these new primitives, we
construct a PKE scheme that is proven to be IND-SO-PSA secure.

1. Introduction

Public-key encryption (PKE) is a fundamental cryptographic
primitive to achieve confidential communication from a
sender to a receiver [1]. Traditional security requirement of
PKE is indistinguishability under chosen plaintext/cipher-
text attack (IND-CPA/CCA) security and only considers the
single sender case, i.e., the communication is between a
single sender and a single receiver. Whereas, many appli-
cation scenarios, e.g., secure multiparty computation, secret
sharing, cloud computing, are often multisender case [1–6].
+ese scenarios usually require a set of senders to generate
their own messages (possibly correlated) encrypted with the
same receiver’s public key and may suffer from some special
attacks. One of the mostly studied attacks is selective
opening attacks (SOA) [7–18], in which an attacker may
corrupt a subset of the senders to open their ciphertexts as

well as the corresponding random bits used in the en-
cryption algorithm. Under such an attack, the requirement
to guarantee the security of the unopened ciphertexts is
beyond the capability of traditional IND-CPA/CCA security
[14, 15, 19]. SOA security [7] is a commonly secure property
to capture the above attack.

Commonly, the security of PKE schemes depends on
some honestly generated public system parameters, e.g.,
security parameter, primes, elliptic curves, and common
reference string [20–24]. In fact, public system parameters
are often specified in some standards [20, 23], e.g., NIST
FIPS 186-4 (2013) [25, 26]. It is timesaving for the imple-
mentations of PKE systems to use the public system pa-
rameters. However, recent research results show that PKE
schemes may suffer from parameter subversion attacks
(PSA) which allow adversaries to fully control the public
system parameters [20, 23, 27–31] and hence compromise
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the security of the corresponding PKE schemes. For in-
stance, the elliptic curve cryptosystem specified in NIST
FIPS 186-4 standard has been analyzed to be insecure due to
the malicious manipulation of the elliptic curves [23]. +us,
PKE schemes resistant to PSA should be developed.+at is, a
PKE scheme should provide usual security with trusted
system parameters, but retain as much security as possible
when the parameters are maliciously generated.

1.1. RelatedWork. SOA security was originally discussed by
Dwork et al. [17] and first formalized by Bellare et al. [7]. In
[7], SOA security was further classified into simulation-
based SOA security (SIM-SO security) and the indistin-
guishability-based SOA security (IND-SO security) [7]. +e
formal requires that there exists a simulator which can
compute the same output as the adversary without ever
seeing any ciphertext at all. For IND-SO security, it requires
that any adversary who is given a vector of ciphertexts and
an opened subset of these ciphertexts cannot distinguish the
unopened messages from fresh messages which are re-
sampled from a message distribution [7]. According to
whether a condition of the message distribution for the fresh
messages is needed, there are weak IND-SO security where
the message distribution is efficiently conditionally re-
samplable and full IND-SO security where the message
distribution is an arbitrary one [14]. At present, few full
IND-SO secure schemes are proposed. In the following,
when wemention IND-SO security, it refers to the weak one.
In [7], Bellare et al. showed that SIM-SO security is stronger
than the weak IND-SO security. Whereas, it is showed that
SIM-SO security is significantly harder to achieve [11, 18].
+us, in this paper, we focus on the IND-SO security.

+e existing PKE schemes which satisfy IND-SO security
are realized based on lossy trapdoor function (LTF) which is
firstly studied in [32] and originally motivated to construct
PKE schemes secure against CCA attacks. +e primal LTFs
in [32] are all-but-one LTFs (ABO-LFT) and only suite for
the settings in which there is no more than one challenge
ciphertext. PKE schemes secure against SOA usually involve
multiple challenge ciphertexts. All-but-N LTF (ABN-LTF)
[16] allows N challenge ciphertexts. However, N has to be
fixed at the construction time. In SOA security, an adversary
may observe many ciphertexts (arbitrary number of chal-
lenge ciphertexts) and may open arbitrary number of them.
All-but-many LTF (ABM-LTF) introduced by Hofheinz [33]
could be viewed as a generalization of both ABO-LFT and
ABN-LTF and may meet the above requirement.

Beside the SOA, PKE schemes also suffer from PSA. Such
an attack is initially studied in [20, 21]. In [20], the security
notion called indistinguishable encryptions under parameter
subversion attacks (IND-PSA) is introduced to capture PSA,
which guarantees that even though the public system pa-
rameter of a PKE scheme is chosen maliciously, the resulting
ciphertext should be indistinguishable [20]. Based on a
security tool referred to as an efficient embedding group
(EG), a PKE scheme satisfying IND-PSA is proposed as well.
Whereas, their scheme was only considered in the single
sender case. In other words, the construction of the PKE

scheme secure against the PSA in SOA setting is out of their
consideration.

1.2. Our Contributions. Although there are already some
research results for the SOA and PSA, so far, they are only
considered separately. Our aim is to construct a PKE scheme
secure against both of these attacks simultaneously.

To achieve this goal, we formalize a new security notion
called indistinguishability under selective opening attacks
and parameter subversion attacks (IND-SO-PSA). IND-SO-
PSA security captures indistinguishability under parameter
subversion attacks, selective opening attacks, and chosen
ciphertext attacks. It guarantees that even though the system
parameter of the PKE scheme is chosen maliciously and the
adversary is allowed to open a subset of the challenge ci-
phertexts (i.e., seeing the corresponding plaintexts and
randomness used during the encryption), the remainder of
the plaintexts should be indistinguishable from freshly re-
sampled ones.

PKE achieving IND-SO security and PKE satisfying
IND-PSA are now independently realized based on ABM-
LTFs and EGs, respectively. However, the existing ABM-
LTFs are only designed for PKE secure against SOA and not
applicable for the construction of a PKE scheme secure
against PSA. On the contrary, it seems that it is not a trivial
task to extend existing EGs to prevent SOA. +erefore, it
would be interesting if we can merge these two tools so that
the SOA and PSA can be prevented simultaneously. In order
to achieve this intention, we define the lossy trapdoor
function and all-but-many lossy trapdoor function in the
presence of PSA (LTF-PSA and ABM-LTF-PSA corre-
spondingly) and propose an instantiation with the effi-
ciently-embeddable group (EG). With these new primitives
and instantiation, we construct a novel PKE scheme that is
proven to satisfy the IND-SO-PSA security.

1.3. Paper Organization. +e rest of this paper is organized
as follows. Some preliminaries are given in Section 2. +e
definitions of LTF-PSA and ABM-LTF-PSA primitives and
security model of IND-SO-PSA are stated in Section 3. In
Section 4, we propose the instantiation of ABM-LTF-PSA
from an efficiently-embeddable group family. LTF-PSA can
be similarly instantiated. Based on the newly constructed
LTF-PSA and ABM-LTF-PSA, we construct a new PKE
scheme and prove its security in Section 5 and Section 6,
respectively. Section 7 is the conclusion.

2. Preliminary

2.1. Notions and Definitions. +roughout this paper, we use
k to denote the security parameter. Let X be a finite set and A

be an algorithm. We denote by x⟵$X the random se-
lection of an element x from X and by y⟵$A(x1, . . . ; r)

the running of algorithm A with inputs (x1, . . . ; r) and
output y. If a probabilistic algorithm’s running time is
polynomial in k, we call it probabilistic polynomial-time
(PPT). For a string α, we denote by |α| the bit length of α. For
a nonnegative integer n, we denote by [n] the set 1, . . . , n{ }.
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Assume x � (x(1), . . . , x(n)) is an n-array vector, we denote
by x(i) its ith component and by |x| its length. Define Xn×n to
be an n × n matrix, Rank(X) to be the rank ofX,XT to be the
transpose of X, and Xi,j is the element of ith row and jth
column, 1≤ i and j≤ n. For two n × n matrixes A and B, let
(A|B) (i.e., an n × 2n matrix) be the concatenation ofA and B.
Let G be an embedding cyclic group generated by generator g

with order q. Given an n × n matrix X for Xi,j ∈ Zq, the op-
eration Y � gX is defined by computing Yi,j � gXi,j and setting
the matrix Y to be (Yi,j)

n×n. For two random variables X
and Y over finite set S, their statistical distance is
Δ(X, Y) � (1/2)􏽐s∈S|Pr[X � s] − Pr[Y � s]|.

Definition 1 (universal hash function). Let l1 � l1(k), l2 �

l2(k) and l3 � l3(k). A family of functions UHFs:

0, 1{ }l1⟶ 0, 1{ }l2 is called universal hash functions with
index key s ∈ 0, 1{ }l3 , if for all X, X′ ∈ 0, 1{ }l1 , with X≠X′,
we have Pr[UHFs(X) � UHFs(X′)]≤ 1/|l1| over the ran-
dom choice of function UHFs.

Lemma 1 (adapted from [34]). Let X and Y are random
variables such that X ∈ 0, 1{ }l1 and the average min-entropy
of X given Y is at last k. Let UHFs: 0, 1{ }l1⟶ 0, 1{ }l2 be a
family of universal hash functions, where l2 ≤ k − 2 log(1/ϵ).
Let R⟵ $ 0, 1{ }l2 , and it holds that Δ((UHFs, UHFs(X),

Y), (UHFs, R, Y))≤ ϵ.

Definition 2 (pseudorandom function). Let l2 � l2(k). A
function family PRFsk: 0, 1{ }l2⟶ 0, 1{ }l with a key space
0, 1{ }∗ is called the pseudorandom function if for any PPT
adversary A, A’s advantage AdvPRFA (k) � |Pr[GPRF

A (k) �

1] − 1/2| of winning the security game GPRF
A (k) defined in

Figure 1 is negligible.

Definition 3 (efficiently re-sampling). Let n � n(k) and D

be a joint distribution over ( 0, 1{ }k)n. We say that D is
efficiently re-sampling if there is an algorithm ResampD

such that, for any I⊆ [n] and any partial vector
(m′

(i)
)i∈I ∈ ( 0, 1{ }k)|I|, ResampD((m′

(i)
)i∈I) samples

from the distributionD, conditioned on (m′
(i)

) � (m(i)) for
all i ∈ I.

2.2. Efficiently-Embeddable Group Family. An efficiently-
embeddable group family EG � (EG.P, EG.G, EG.S, EG.E,

EG.I) consists of following algorithms [20].
Parameter generation algorithm EG.P(1k) inputs the

security parameter k and returns a public system parameter
π. Group generation algorithm EG.G(1k, π) inputs k and π
and returns a tupleG � (G, q, g), where G is a cyclic group of
prime order q and g is a generator of G. Sampling algorithm
EG.S(1k, π,G) is used to sample exponents for the group
generator. It returns an exponent y ∈ Zq. Embedding al-
gorithm EG.E(1k, π,G, gy) is used to embed group elements
into EG.ES(k, π), where EG.ES(k, π) is a finite set called the
embedding space [20]. +at is, the output σ⟵$EG.E(1k,π,

G,gy) (i.e., an embedding) is in EG.ES(k,π). For such a
construction, refer to [20] for the details. Inversion

algorithm EG.I(1k,π,G,σ) is a deterministic algorithm
which is used to invert the embedding. It returns
ψ⟵EG.I(1k,π,G,σ) in G. +is algorithm should satisfy
correctness, i.e., Pr[EG.I(1k,π,G,σ) � gy]≥1− EG.ie(k), for
all π⟵EG.P (1k) and G⟵EG.G(1k,π), where the prob-
ability is over y⟵$EG.S(1k,π,G) and
σ⟵$EG.E(1k,π,G,gy). +e function EG.ie(k): N⟶R is
defined to be the inversion error of EG.

As noted in [20], EG � (EG.P, EG.G, EG.S, EG.E, EG.I)

should satisfy the embedding pseudorandomness under
parameter subversion attack (EPR-PSA). We review the
definition of it below:

Definition 4 (embedding pseudorandomness [20]). EG

holds embedding pseudorandomness under parameter
subversion attack, if for any PPT adversary A against EG,
A’s advantage

AdvEPR−PSA
EG,A (k) � Pr GEPR−PSA

EG,A (k) � 1􏽨 􏽩 −
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (1)

of winning the security game GEPR−PSA
EG,A (k) defined in Fig-

ure 2 is negligible.

We note that, in GEPR−PSA
EG,A (k), A may query the INIT

oracle for only once with a parameter π∗ chosen by himself.
For a randomly-chosen coin b⟵$ 0, 1{ } chosen by C, A
wins the game, if he can distinguish σ∗ is generated by
running algorithms EG.S and EG.E, or sampled uniformly
from the embedding space EG.ES(k, π∗). In other words,A
wins the game, if its guess b′ is equal to b.

2.3. Public-KeyEncryption. LetM be a message space,C be a
ciphertext space, PK be a public key space, SK be a secret
key space, and R be a randomness space. A public-key
encryption (PKE) scheme PKE � (PKE.P, PKE.Kg,

PKE.Enc, PKE.Dec) consists of following algorithms.
+e parameter generation algorithm PKE.P takes as

input 1k and returns a public system parameter π. +e key
generation algorithm PKE.Kg takes as input 1k, π and
returns a pair of public key and a secret key
(pk, sk) ∈ PK × SK. +e encryption algorithm PKE.Enc
takes as input (1k, π, pk, m; r) to encrypt a message m ∈ M
under pk, π and randomness r ∈ R, and outputs a ciphertext
c ∈ C. +e decryption algorithm PKE.Dec is a deterministic

Figure 1: Game-defining PRF security of a function family.

Security and Communication Networks 3



algorithm. It takes as input (1k, π, sk, c) and outputs a
message m or an error symbol ⊥ which means the ciphertext
is invalid. We require that, for all m ∈ M and
(pk, sk) ∈ PK × SK, it holds that PKE.Dec(1k, π, sk,

(PKE.Enc(1k, π, pk, m; r)) � m.
+e above definition of PKE is suitable for single user

(single message) encryption. In this paper, we consider the
public-key encryption scheme in selective opening scenar-
ios, i.e., the encryption in multiuser settings (multiple
messages). We have to use the notion of vector-valued
encryption [1, 35, 36]. +at is, for vectors m � (m(i)),
r � (r(i)), and c � (c(i)) with i ∈ [n], we denote by
c⟵$PKE.Enc(1k, π, pk,m; r) the tuple (PKE.Enc(1k, π,

pk, m(1); r(1)), PKE.Enc(1k, π, pk, m(2); r(2)), . . . , PKE. Enc
(1k, π, pk, m(n); r(n))), where n is the number of messages.
+e decryption algorithm is analogous.

To capture parameter subversion attacks, Auerbach et al.
[20] formulated a new security notion called indistin-
guishability under parameter subversion attack (IND-PSA).
IND-PSA is a different security notion from traditional
IND-CCA security and guarantees that the ciphertexts are
indistinguishable even when the system parameter is gen-
erated maliciously. We introduce the IND-PSA security
below.

Definition 5 (IND-PSA security [20]). PKE holds indis-
tinguishability under parameter subversion attack, if for any
PPT adversary A against PKE, A’s advantage

AdvIND−PSA
PKE,A (k) � Pr GIND−PSA

PKE,A (k) � 1􏽨 􏽩 −
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (2)

of winning the security game GIND−PSA
PKE,A (k) defined in Fig-

ure 3 is negligible.

In gameGIND−PSA
PKE,A (k), the challengerC will toss a coin to

determine a challenge bit b ∈ 0, 1{ }.+en,Amay query INIT
oracle with a system parameter π∗ chosen by himself to
initialize a public-private key pair, and the public key pk is
returned to A. +e ENC oracle may be queried with two
challenge plaintexts m0, m1(|m0| � |m1|) and return the

challenge ciphertext c∗ toA. If b � 0, c∗ is an encryption for
m0; otherwise, it is the encryption for m1. +e DEC oracle is
not allowed for the challenge ciphertext c∗. We note that the
INIT and ENC oracle can be queried for only once. Given
the public key and challenge ciphertext, A outputs a guess
bit b′. If b′ � b, we say A wins the game, and the game will
output 1 in this case.

+e standard IND-CCA security of the public-key en-
cryption scheme also does not generalize the security under
selective opening attacks. To capture the security of the
public-key encryption scheme under the selective opening
attacks, new security notion called indistinguishability
against selective opening attacks and chosen ciphertext at-
tack (IND-SO-CCA) is proposed [16]. IND-SO-CCA se-
curity guarantees that any adversary cannot distinguish the
messages corresponding to the unopened ciphertexts from a
freshly re-sampled one according to a re-samplable distri-
bution D conditioned on the opened messages. We intro-
duce the IND-SO-CCA security below.

Definition 6 (IND-SO-CCA security [20]). PKE holds in-
distinguishability against selective opening attacks and
chosen ciphertext attacks (IND-SO-CCA), if for any PPT
adversary A against PKE, A’s advantage

AdvIND−SO−CCA
PKE,A (k) � Pr GIND−SO−CCA

PKE,A (k) � 1􏽨 􏽩 −
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (3)

of winning the security game GIND−SO−CCA
PKE,A (k) defined in

Figure 4 is negligible.

At the beginning of the game GIND−SO−CCA
PKE,A (k), the

challengerC firstly tosses a coin to determine a challenge bit
b ∈ 0, 1{ }. +en,A firstly queries the INIT oracle.C will run
the algorithms PKE.P and PKE.Kg to generate the public
system parameter π and public-secret key pair (pk, sk)

correspondingly and returns the public key pk to A. A will
output a message distribution D as well as a re-sampling
algorithm ReSampD toC after adaptively querying the DEC
oracle. Subsequently,C uniformly samples a message vector
m0 from D and a randomness vector r � (r(i))i∈[n] from a
randomness space (R)n. C returns the challenge ciphertext
c � (c(i))i∈[n] to A. After receiving c, A adaptively queries
the DEC oracle and chooses an arbitrary subset I⊆ [n] to
indicate which ciphertexts he wants to open.I is given toC.
Notice that any element of the challenge ciphertext c is not
allowed for DEC oracle. After receivingI,C will re-sample
a message m1⟵$ResampD(mI) conditioned on the
(m(i))i∈I of m0. C will send (mb, (m(i), r(i))i∈[I]) to A.
Finally,A outputs a guess bit b′, if b′ � b, we sayA wins the
game, and the game will output 1 in this case.

2.4. Chameleon Hash Function. A chameleon hash function
CHF � (CHF.Kg, CHF.Eval, CHF.Equ) with domain
CHF.Dom consists of the following algorithms. +e key
generation algorithm CHF.Kg takes as input 1k and outputs
a public key pkchf and a trapdoor tdchf . +e evaluation al-
gorithm CHF.Eval(pkchf , x; R) takes as input a public key
pkchf , a preimage x ∈ CHF.Dom, and a randomness

Figure 2: Games-defining EPR-PSA security with respect to EG.
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R ∈Rchf where Rchf is the randomness space of CHF and
returns an image y � CHF.Eval(pkchf , x; R) ∈ CHF.Ran,
where CHF.Ran is the range of CHF. +e equivocation al-
gorithm CHF.Equ(tdchf , x, x′; R) takes a trapdoor tdchf , R,
x, and x′ as input and outputs a randomness R′ ∈Rchf such
that CHF.Eval(pkchf , x; R) � CHF.Eval (pkchf , x′; R′). We
require that, for any x, x′ ∈ CHF.Dom, if R is uniformly
distributed, then so is R′ ∈Rchf .

A secure chameleon hash function
CHF � (CHF.Kg, CHF.Eval, CHF.Equ) should satisfy the
collision resistance property, which is introduced below.

Collision Resistance. Given a public key pkchf , it is difficult for
any PPT adversary to find (x, R, x′, R′) such that CHF.

Eval(pkchf , x; R) � CHF.Eval(pkchf , x′; R′) for x≠x′ with-
out tdchf . Formally, for any PPT adversary A, for random
(pkchf , tdchf)⟵$CHF.Kg(1k), the advantageAdvCOLLCHF,A (k) �

Pr[x≠x′∧CHF.Eval(pkchf ,x;R) � CHF. Eval (pkchf ,

x′;R′)|((x,R),(x′,R′))⟵A(1k,pkchf)] is negligible.

2.5. Lossy Trapdoor Function. A lossy trapdoor function
LTF � (LTF.IKg, LTF.LKg, LTF.Eval, LTF.Inv) with do-
main LTF.Dom consists of the following algorithms
[16, 32, 33, 37, 38].

(i) LTF.IKg(1k): this is the injective key generation
algorithm. On input 1k, it outputs an injective
evaluation key ek and a inversion key ik for an
injective function.

(ii) LTF.LKg(1k): this is the lossy key generation al-
gorithm. On input 1k, it outputs a lossy evaluation
key lk for a lossy function. In this case, there is no
inversion key.

(iii) LTF.Eval(ek, x): this is the evaluation algorithm. It
takes the evaluation key ek and a preimage
x ∈ LTF.Dom as input and returns an image
y � LTF.Eval(ek, x) ∈ LTF.Ran, where LTF.Dom

and LTF.Ran denote the domain and the range of
LTF, respectively.

(iv) LTF.Inv(ik, y): this is the inversion algorithm. It
takes as input the inversion key ik and an image
y ∈ LTF.Ran and outputs x ∈ LTF.Dom.

Moreover, for any LTF, the following property re-
quirements should be satisfied.

Correctness. +e above LTF algorithm should satisfy
correctness, i.e., LTF.Inv(ik, LTF.Eval(ek, x)) � x for all
(ek, ik)⟵$LTF.IKg(1k), x ∈ LTF.Dom.

Lossiness. A lossy trapdoor function is l-lossy if for all
possible lk⟵$LTF.LKg(1k), the image set LTF.Eval(lk,

LTF.Dom) is of size at most |LTF.Dom|/2l.
Indistinguishability. Let A be any PPT adversary

against LTF. LTF holds indistinguishability if A cannot
distinguish the injective evaluation key ek from the lossy
evaluation key lk, i.e., A’s advantage

AdvINDLTF,A(k) � Pr A 1k
, ek􏼐 􏼑 � 1􏽨 􏽩 − Pr A 1k

, lk􏼐 􏼑 � 1􏽨 􏽩
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

(4)

Figure 3: Game-defining IND-PSA security of PKE.

Figure 4: Game-defining IND-SO-CCA security of PKE.
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is negligible, where (ek, ik)⟵$LTF.IKg(1k) and
lk⟵$LTF.LKg(1k).

2.6. All-but-Many Lossy Trapdoor Function. We now recall
the definition of all-but-many lossy trapdoor function
(ABM-LTF) which is originally introduced by Hofheinz
[33]. In the following definition, we keep the same mech-
anism of tags as in [33]. In other words, each tag of ABM-
LTF consists of two parts: the core part which is also called
the primary part, and the auxiliary part which is commonly a
random string. In addition, we note that we maintain the
same definition of tag space introduced in [34]. +at is, the
tag space of ABM-LTF is divided into three disjoint subsets:
a lossy tag set, an injective tag set, and an invalid tag set. We
will give the concrete definition of ABM-LTF in the
following.

An all-but-many lossy trapdoor function ABM.LTF �

(ABM.Kg, ABM.Eval, ABM.Inv, ABM.LTg) with domain
ABM.Dom consists of the following algorithms.

(i) ABM.Kg(1k): this is a key generation algorithm. On
input 1k, it outputs an injective evaluation key
ekabm, an inversion key ikabm, and a tag key tkabm.
With the evaluation key ekabm, we define a set T �

Tp × Ta which is a tag space. We note that the tag
spaceT consists of three disjoint sets: the lossy tags
Tlos, the injective tags Tinj, and the invalid tags
Tinv. It is easy to find that each of them is a subset of
T, i.e.,Tlos ⊆T,Tinj ⊆T andTinv ⊆T. Each tag is
defined in the term of t � (tp, ta), where tp ∈ Tp is
the core part and ta ∈ Ta is the auxiliary part.

(ii) ABM.Eval(ekabm, t, x): this is the evaluation algo-
rithm. It takes the evaluation key ekabm, the tag t,
and a preimage x ∈ ABM.Dom as input and returns
y � ABM.Eval(ekabm, t, x) ∈ ABM.Ran, where
ABM.Dom and ABM.Ran denote the domain and
the range of ABM.LTF, respectively.

(iii) ABM.Inv(ikabm, t, y): this is the inversion algo-
rithm. It takes an inversion key ikabm, a tag t, and an
image y as input and outputs x ∈ ABM.Dom.

(iv) ABM.LTg(tkabm): this is the lossy tag generation
algorithm. It takes the tag key tkabm as input and
outputs a lossy tag t � (tp, ta).

Moreover, for any ABM-LTF, the following property
requirements should be satisfied.

Correctness. ABM.LTF should satisfy correctness, i.e.,
ABM.Inv(ABM.Eval(ekabm, t, x), ikabm, t) � x for all
(ekabm, ikabm, tkabm)⟵$ABM.Kg(1k), tag t ∈ Tinj, and
x ∈ ABM.Dom. +is property is also referred to as
invertibility.

Lossiness. ABM.LTF is l-lossy if the size of the image set
ABM.Eval(ekabm, t, ABM.Dom) is at most |ABM.Dom|/2l,
for all possible (ekabm, ikabm, tkabm)⟵$ABM.Kg(1k) and
lossy tag t ∈ Tlos. l is called the lossiness of ABM.LTF.

Indistinguishability. Let A be any PPT adversary
against ABM.LTF. ABM.LTF holds the indistinguishability
between multiple lossy tags and random tags if A’s
advantage

AdvINDABM.LTF,A(k) � Pr A
ABM.LTg tkabm ,·( ) 1k

, ekabm􏼐 􏼑 � 1􏼔 􏼕Pr A
OT(·) 1k

, ekabm􏼐 􏼑 � 1􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (5)

is negligible, where (ekabm, tkabm)⟵$ABM.Kg(1k). +e
call to oracle ABM.LTg(tkabm, ·) returns a lossy tag, and
OT(·) is a random oracle which returns a uniform and
independent tag from T.

Evasiveness. +is property requires that it is hard to
compute noninjective tags for any adversary, even though it
has been given multiple lossy tags. Let A be any PPT ad-
versary against ABM.LTF. ABM.LTF holds the evasiveness
if A’s advantage

AdvEVAABM.LTF,A(k) � Pr A
ABM.LTg tkabm ,·( ),O(·) 1k

, ekabm􏼐 􏼑 ∈ Tlos ∪Tinv􏼔 􏼕, (6)

is negligible, where (ekabm, tkabm)⟵$ABM.Kg(1k), and the
oracle O(·) is queried by A with input t which returns the
answers “lossy/invalid” and “injective” which indicate the
type of t.

3. Definitions of New Primitives and IND-SO-
PSA Security

In this section, for both LTF and ABM-LTF, we extend their
definitions to the PSA setting. We introduce the primitive of

lossy trapdoor function in the presence of PSA (LTF-PSA)
and the primitive of all-but-many lossy trapdoor function in
the presence of PSA (ABM-LTF-PSA). Further, we intro-
duce the definition of newly-proposed IND-SO-PSA
security.

3.1. LTF-PSA Primitive. A lossy trapdoor function in the
presence of PSA LTF′ with domain LTF.Dom′ consists of
the algorithms (LTF.P′, LTF.IKg′, LTF.LKg′, LTF.

EVAL′, LTF.Inv′) specified as follows.
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(i) LTF.P′(1k): this is the system parameter generation
algorithm. On input 1k, it outputs a system pa-
rameter π.

(ii) LTF.IKg′(1k, π): this is the injective key generation
algorithm. On input 1k and π, it outputs an injective
evaluation key ek′ and a inversion key ik′ for an
injective function.

(iii) LTF.LKg′(1k, π): this is the lossy key generation
algorithm. On input 1k and π, it outputs a lossy
evaluation key lk′ for a lossy function. In this case,
there is no inversion key.

(iv) LTF.Eval′(ek′, x): this is the evaluation algorithm.
It takes the evaluation key ek′ and a preimage
x ∈ LTF.Dom′ as input and returns an image
y � LTF.Eval′(ek′, x) ∈ LTF.Ran′, where
LTF.Dom′ and LTF.Ran′ denote the domain and
range of LTF′, respectively.

(v) LTF.Inv′(ik′, y): this is the inversion algorithm. It
takes as input the inversion key ik′ and an image
y ∈ LTF.Ran′ and outputs x ∈ LTF.Dom′.

In the following, we will give the formal definitions of
security requirements for LTF′. +e correctness and lossi-
ness are almost the same as that of LTF. In particular, we
introduce the notions of indistinguishability under PSA
(IND-PSA2) for LTF′.

Correctness. +e above LTF′ should satisfy correctness,
i.e., LTF.Inv′(ik′, LTF.Eval′(ek′, x)) � x for all
π⟵$LTF.P′(1k), (ek′, ik′)⟵$LTF.IKg′(1k, π), and
x ∈ LTF.Dom′.

Indistinguishability under PSA. Let A be any PPT ad-
versary against LTF′. LTF′ holds indistinguishability under
PSA if A cannot distinguish of the injective evaluation key
ek′ from the lossy evaluation key lk′, i.e., A’s advantage

AdvIND−PSA2
LTF′ ,A (k) � Pr A 1k

, ek′􏼐 􏼑 � 1􏽨 􏽩 − Pr A 1k
, lk′􏼐 􏼑 � 1􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

(7)

is negligible, where (ek′, ik′)⟵$LTF.LKg′(1k, π∗) and
lk′⟵$LTF.IKg′(1k, π∗), where π∗ is chosen by A rather
than from the LTF.P′ algorithm.

Lossiness. A lossy trapdoor function is l-lossy if for all
possible π⟵$LTF.P′(1k) and lk′⟵$LTF.LKg′(1k, π), the
image set LTF.Eval′(lk′, LTF.Dom′) is of size at most
|LTF.Dom′|/2l.

3.2. ABM-LTF-PSA Primitive. An all-but-many lossy trap-
door function in the presence of PSA ABM.LTF′ � (ABM.

P′, ABM.Kg′, ABM. Eval′, ABM.Inv′, ABM.LTg′) with
domain ABM.Dom′ consists of the following algorithms:

(i) ABM.P′(1k): this is the system parameter genera-
tion algorithm. On input 1k, it outputs a system
parameter π.

(ii) ABM.Kg′(1k, π): on input 1k and π, it outputs an
injective evaluation key ekabm

′ , an inversion key
ikabm
′ , and a tag key tkabm

′ . We note that it has the tag
space T′ � Tinj

′ × Tlos
′ × Tinv
′ . Similar to that of

ABM.LTF, the term of each tag for ABM.LTF′ is
also as t′ � (tp

′, ta
′), where tp

′ ∈ Tp
′ is the core part

and ta
′ ∈ Ta
′ is the auxiliary part.

(iii) ABM.Eval′(ekabm
′ , t′, x′): it takes the evaluation key

ekabm
′ , the tag t′, and a preimage x′ ∈ ABM.Dom′ as

input and returns y′ ∈ ABM.Ran′, where
ABM.Dom′ and ABM.Ran′ be the domain and
range of the ABM.LTF′.

(iv) ABM.Inv′(ikabm
′ , t′, y′): it takes an inversion key

ikabm
′ , a tag t′, and an image y′ as input and outputs

x′ ∈ ABM.Dom′.
(v) ABM.LTg′(tkabm

′ ): it takes the tag key tkabm
′ as input

and outputs a lossy tag t′ � (tp
′, ta
′).

We give the formal definitions of security requirements
for the all-but-many lossy trapdoor function in the presence
of PSA in the following. +e correctness and lossiness are
almost the same as that of ABM.LTF. In particular, we
introduce the notions of indistinguishability under PSA
(IND-PSA3) and evasiveness under PSA (EVA-PSA) for
ABM.LTF′.

Correctness. ABM.LTF′ should satisfy the correctness.
+at is, the equation should hold, ABM.Inv′(ABM.Eval′
(ekabm
′ , t′, x′), ikabm

′ , t′) � x′, for all π⟵$ABM.P′(1k),
(ekabm
′ , ikabm
′ , tkabm
′ )⟵$ABM.Kg′(1k, π), tag t′ ∈ Tinj

′ , and
x′ ∈ ABM.Dom′. +is property is also referred to as
invertibility.

Lossiness. ABM.LTF′ is l-lossy if the size of the image set
ABM.Eval′(ekabm

′ , t′, ABM.Dom′) is at most
|ABM.Dom′|/2l, for all π⟵$ABM.P′(1k), (ekabm

′ , ikabm
′ ,

tkabm
′ )⟵$ABM.Kg′(1k, π), and lossy tag t′ ∈ Tlos

′ . l is
called the lossiness of ABM.LTF′.

Indistinguishability under PSA. Let A be any PPT ad-
versary against ABM.LTF′. We say ABM.LTF′ holds the
indistinguishability under PSA between multiple lossy tags
and random tags if A’s the advantage

AdvIND−PSA3
ABM.LTF′ ,A(k) � Pr A

ABM.LTg′ tkabm
′ ,·( ) 1k

, ekabm
′􏼐 􏼑 � 1􏼔 􏼕Pr A

O
T′(·) 1k

, ekabm
′􏼐 􏼑 � 1􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (8)
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is negligible, where (ekabm
′ , tkabm
′ )⟵$ABM.Kg′(1k,π∗), π∗ is

chosen byA rather than from the ABM.P′ algorithm. +e call
to oracle ABM.LTg′(tkabm

′ ,·) returns a lossy tag, andOT′ (·) is
a random oracle returns a uniform and independent tag from
T′.

Evasiveness under PSA. +is property requires that it is
hard to compute noninjective tags for any adversary, even
though it has been given multiple lossy tags. Let A be any
PPT adversary against ABM.LTF′. ABM.LTF′ holds the
evasiveness under PSA if A’s advantage

AdvEVA−PSA
ABM.LTF′,A(k) � Pr A

ABM.LTg′ tkabm
′ ,·( ),O(·) 1k

, ekabm
′􏼐 􏼑 ∈ Tlos

′ ∪Tinv
′􏼔 􏼕, (9)

is negligible, where (ekabm
′ , tkabm
′ )⟵$ABM.Kg′(1k, π∗), π∗

is chosen by A itself. +e oracle O(·) is queried by A with
input t′ which returns the answers “lossy/invalid” and
“injective” which indicate the type of t′.

3.3. IND-SO-PSA Security. To capture the security of the
public-key encryption scheme under SOA and PSA, we
formulate a new security notion called indistinguish-
ability under selective opening attacks and parameter
subversion attacks (IND-SO-PSA). IND-SO-PSA secu-
rity captures indistinguishability under parameter sub-
version attacks, selective opening attacks, and chosen
ciphertext attacks. In other words, it guarantees that even
though the system parameter of the PKE scheme is
chosen maliciously and the adversary is allowed to open a
subset of the challenge ciphertexts (i.e., seeing the cor-
responding plaintexts and randomness used during the
encryption), the remainder of the plaintexts should be
indistinguishable from freshly re-sampled ones. In the
following, we give the formal definition of IND-SO-PSA
security.

Definition 7 (IND-SO-PSA security). LetA be an adversary
attacking PKE. We say that PKE holds the indistinguish-
ability under selective opening attacks, parameter subver-
sion attacks, and chosen ciphertext attacks (IND-SO-PSA
security), if A’s advantage

AdvIND−SO−PSA
PKE,A (k), � Pr GIND−SO−PSA

PKE,A (k) � 1􏽨 􏽩 −
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (10)

of winning the security game GIND−SO−PSA
PKE,A (k) defined in

Figure 5 is negligible.

At the beginning of the game GIND−SO−PSA
PKE,A (k), the

challenger C firstly tosses a coin to determine a challenge
bit b ∈ 0, 1{ }. +en, A firstly queries the INIT oracle with
the public system parameter π∗ chosen by himself.C runs
the algorithm PKE.Kg to generate public-secret key pair
(pk, sk). pk is given to the adversary A. A will output a
message distributionD as well as a re-sampling algorithm
ReSampD after adaptively querying the DEC oracle.
Subsequently, C samples uniformly a message vector m0
from D and a randomness vector r � (r(i))i∈[n] from a
randomness space (R)n. C returns the challenge ci-
phertext c � (c(i))i∈[n] toA. After receiving c,A adaptively
queries the DEC oracle and chooses an arbitrary subset
I⊆ [n] to indicate which ciphertexts he wants to open.I

is given to C. Notice that any element of the challenge
ciphertext c is not allowed for DEC oracle. After receiving
I, C will re-sample a message m1⟵$ResampD(mI)

conditioned on the (m(i))i∈I of m0. C will send
(mb, (m(i), r(i))i∈[I]) to A. Finally, A outputs a guess bit
b′, and if b′ � b, we say A wins the game, and the game
will output 1 in this case.

4. Construction of ABM-LTF-PSA

In this section, based on the embeddable group that was
introduced by Auerbach et al. in [20], we construct an ABM-
LTF-PSA and prove that it satisfies the IND-PSA3 as well as
the EVA-PSA without the random oracle. +e formal
guarantees that a lossy tag is computationally indistin-
guishable from a random one, even when the adversary is
given access to the lossy tag generation oracle and could
choose the system parameter by himself. +e latter prevents
the adversary who could choose the system parameter by
himself from generating lossy tags. We note that ABM-LTF-
PSA can be seen as a generic LTF-PSA, which means that it
could be used as LTF-PSA. On the contrary, LTF-PSA could
be constructed with the same way as the construction of
ABM-LTF-PSA. +us, we will not reconsider the instanti-
ation of LTF-PSA here.

4.1. ABM-LTF-PSA from Embeddable Group Family. Let
CHF � (CHF.Kg, CHF.Eval, CHF.Equ) be a chameleon
hash function, H1: G⟶ 0, 1{ }∗ be a hash function, and
EG � (EG.P, EG.G, EG.S, EG.E, EG.I) be an embeddable
group family (we have recalled in the Section 2.2) [20].
We assume that the multiplication and addition opera-
tions hold on EG.ES. In addition, we note that the al-
gorithm EG.E of EG is deterministic as the instantiations
of EG in [20]. An ABM-LTF-PSA based on the embed-
dable group family is a tuple of algorithms ABM.LTF′ �
(ABM.P′, ABM.Kg′, ABM.Eval′, ABM.Inv′, ABM.LTg′)
that specified as following.

(i) ABM.P′(1k): taking as input the security parameter
k, it runs the EG.P(1k) algorithm of EG to generate
a system parameter π.

(ii) ABM.Kg′(1k, π): the key generation algorithm does
the following steps:

(1) Generate a public key pkchf and the corre-
sponding trapdoor tdchf of the CHF using
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CHF.Kg. +is CHF will be used in the following
to compute tags of ABM.LTF’.

(2) Generate an embedding cyclic group
G � (G, q, g) by running EG.G(1k, π).

(3) Let n � n(k). Sample αij ∈ Zn×n
q , βij ∈ Zn×n

q , and
δij ∈ Zn×n

q by running EG.S(1k, π,G) for
1≤ i and j≤ n, and set three matrixes
S1 � (αij)

n×n, S2 � (βij)
n×n, and S3 � (δij)

n×n.
(4) Set matrixes A � (gαij )n×n, B � (gβij )n×n, and

C � (gδij )n×n for g generated in Step 2.
(5) Compute σij by running EG.E(1k, π,G,Aij), θij

by running EG.E(1k, π,G,Bij), and τij by
running EG.E(1k, π,G,Cij) for 1≤ i and j≤ n.
We have σij, θij, and τij ∈ EG.ES(k, π). Set
matrixes E1 � (σij)

n×n, E2 � (θij)
n×n, and

E3 � (τij)
n×n.

(6) Select a pseudorandom function PRF: 0, 1{ }∗×

0, 1{ }l2⟶ 0, 1{ }l. Run EG.S(1k, π,G) to get
vector e � (e(1), e(2), . . . , e(n)) ∈ Z1×n

q . Set vector
k � (κ(1), κ(2), . . . , κ(n)) ∈ 0, 1{ }∗ as the key of
the PRF, where κ(i) � H1(ge(i)

). Run τij to
compute κ′(i) ∈ EG.ES(k, π) and get vector k′ �
(κ′(1)

, κ′(2)
, . . . , κ′(n)

) as the hiding vector of k.
We note that k should be kept secret and k′
could be public.

(7) Select an universal hash function
UHFs: 0, 1{ }l1 × 0, 1{ }l3⟶ 0, 1{ }l2 with key
s ∈ 0, 1{ }l3 . Sample a matrix Hn×n from the
embedding space EG.ES(k, π), and we use hi to
denote the ith row of H.

(8) Set the public evaluation key ekabm
′ �

(C,E1,E2, pkchf , k′, s,H,G), private inversion
key ikabm
′ � (C, S1, S2, k, s,H,G), and lossy tag

generation key tkabm
′ � (E3, k, s,H, tdchf ,G).

(iii) Tags: a tag in ABM.LTF′ is defined in the form of
t′ � (tp
′, ta
′), where ta

′ ∈ 0, 1{ }∗ is an auxiliary part,
tp
′ � (D, Rchf) ∈ (EG.ES(k, π)n×n × Rchf) is a pri-

mary part, and Rchf ∈Rchf is a randomness for
CHF. Set the tag space as T′ � (EG.ES

(k, π)n×n × Rchf) × 0, 1{ }∗. With a tag t′ � ((D,

Rchf), ta), we compute φ � CHF.Eval(pkchf ,

(D, ta
′); Rchf) ∈ 0, 1{ }l1 . Let matrix U � DE3 − F

where F � (f1, f2, . . . , fn)T and f i � PRF(κ(i),

UHFs(φ)) · hi is the ith row of F for 1≤ i≤ n. We
define

t′ ∈

Tinj
′ , Rank(U) � n;

Tlos
′ , U � 0;

Tinv
′ , Rank(U)≠ n andRank(U)≠ 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(11)

We say that t′ is an injective tag if the rank of matrixU is
n, i.e., Rank(U) � n; else, ifU � 0, we say that t′ is a lossy tag;
particularly, if the rank of matrix U is out of the above two
cases, i.e., Rank(U)≠ n and Rank(U)≠ 0, we say that t′ is an
invalid tag.

(iv) ABM.Eval′(ekabm
′ , t′, x): with a tag

t′ � ((D, Rchf), ta
′) and the public evaluation key

ekabm
′ � (C,E1,E2, pkchf , k′, s,H,G), for a vector of

preimage input x � (x(1), x(2), . . . , x(n)) ∈ Z1×n
q , the

algorithm does the following:

(1) For tag t′, compute φ � CHF.

Eval(pkchf , (D, ta
′); Rchf) ∈ 0, 1{ }l1 . With k′, re-

cover the key vector k � (κ(1), κ(2), . . . , κ(n)) of
PRF as κ(i) � H1(ge(i)

), where ge(i) is computed
by running EG.I(1k, π,G, κ′(i)

).
(2) For matrixes E1 � (σij)

n×n and E2 � (θij)
n×n,

compute gαij and gβij by running
EG.I(1k, π,G,E1ij) and EG.I(1k, π,G,E2ij)

correspondingly. Obtain the matrixes A �

(gαij )n×n and B � (gβij )n×n, where 1≤ i and j≤ n.
Randomly select μ and υ from Zq by
running EG.S(1k, π,G), and compute s1 � gμ,
s2 � gυ, and E � Aμ + Bυ, i.e., Eij � Aij

μ+

Bij
υ � gαij μ + gβij υ. Compute ϖ1 by running

EG.E(1k, π,G, s1) and ϖ2 by running
EG.E(1k, π,G, s2), where ϖ1 andϖ2 ∈ EG.ES

(k, π).
(3) Compute τij by running EG.E(1k, π,G,Cij) to

obtain matrix E3 � (τij)
n×n for 1≤ i and j≤ n.

Concatenating matrixes E and U to obtain the
matrix Mn×2n. +at is, M � (E|U) ∈ EG.ES

(k, π)n×2n, where U � DE3 − F, F � (f1, f2, . . . ,

Figure 5: Game-defining IND-SO-PSA security of PKE.
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fn)T, and f i � PRF(κ(i),UHFs(φ)) · hi for
1≤ i≤ n.

(4) Compute x(i) by running EG.E(1k, π,G, gx(i)

) to
set a vector x � (x(1), x(2), . . . , x(n)), where
x(i) ∈ EG.ES(k, π), 1≤ i≤ n.

(5) Compute the following equation to get the
image vector y ∈ EG.ES(k, π)1×2n:

y � 􏽘
n

i�1
PRF κ(i)

,UHFs(φ)􏼐 􏼑 · x · M. (12)

(6) Output (y,ϖ1,ϖ2).

(v) ABM.Inv′(ikabm
′ , t′, y,ϖ1,ϖ2): given an inversion

key ikabm
′ � (C, S1, S2, k, s,H,G), a tag t′ � ((D,

Rchf), ta
′), ϖ1 andϖ2, and image vector y, the algo-

rithm ABM.Inv′ computes x as follows:

(1) Compute s1 and s2 by running EG.I(1k, π,G,ϖ1)
and EG.I(1k, π,G,ϖ2). Compute E1′ � s

S1
1 and

E2′ � s
S2
2 , which means that E1′ ij � gμαij and

E2′ ij � gυβij . Obtain the matrix E by computing
E � E1′ + E2′, that is, Eij � gμ αij + gυ βij . Compute
M � (E|U) ∈ EG.ES(k, π)n×2n as the algorithm
ABM.Eval′.

(2) For tag t′ � ((D, Rchf), ta
′), it first computes

φ � CHF.Eval(pkchf , (D, ta
′); Rchf) ∈ 0, 1{ }l1 .

(3) With ikabm
′ , it computes the following equation

to get x:

x �
y · M−1

􏽐
n
i�1 PRF κ(i)

,UHFs(φ)􏼐 􏼑
, (13)

where (M− 1)2n×n is the inverse matrix of M.
(4) Finally, it computes and outputs the vector of

preimage x by running EG.I(1k, π, x).

(vi) ABM.LTg′(tkabm
′ ): the lossy tag generation algo-

rithm is given the lossy tag generation key tkabm
′ . It

does the following steps to compute a lossy tag
t′ � (tp
′, ta
′):

(1) Randomly choose a tag 􏽥t′ � (( 􏽥D, 􏽥Rchf),􏽥ta
′) ∈ T′,

and then, compute the value φ �

CHF.Eval(pkchf , ( 􏽥D,􏽥ta
′), 􏽥Rchf).

(2) Solve for an appropriate n × n matrix
D ∈ EG.ES(k, π)n×n such that the equation
DE3 � F is valid, where F � (f1, f2, . . . , fn)T, f i �

PRF(κ(i), UHFs(φ)) · hi, for 1≤ i≤ n.
(3) Compute the value Rchf from the equation

Rchf � CHF.Equ(tdchf , ( 􏽥D,􏽥ta
′), (D, ta

′); 􏽥Rchf),
and output a tag t′ � ((D, Rchf), ta

′). It is easy to
check that the tag t′ output by this algorithm is
indeed a lossy one.

Correctness. We note that the correctness of the above
ABM-LTF-PSA instantiation holds due to the following
equation:

E � Aμ
+ Bυ

� s
S1
1 + s

S2
2 � E1′ + E2′ � E. (14)

Lossiness. For any lossy tag t′ ∈ Tlos
′ in the above ABM-

LTF-PSA instantiation, we note that its lossiness
l � log2(qn/(n2|EG.ES(k, π)|)). When t′ ∈ Tlos

′, the matrix
U is equal to 0, i.e.,U � 0, we have at most n2 possible values
of M � (E|U) ∈ EG.ES(k, π)n×2n. +us, the image set
ABM.Eval′(ekabm

′ , t′, ABM.Dom′) has size n2|EG.ES(k, π)|.
Meanwhile, the size of domain ABM.Dom′ of the
ABM.Eval′ is qn because the preimage of ABM.LTF′ is
x ∈ Z1×n

q . According to the definition of lossiness for
ABM.LTF′, we could obtain the lossiness of the above
construction is l � log2(qn/(n2|EG.ES(k, π)|)).

4.2. Proofs of Security

Lemma 2. Let n is polynomial in k and q is exponential in the
security parameter k. AmatrixX randomly sampled fromZn×n

q

will have Rank(X) � n with all but negligible probability in k.

Proof. +e probability of Rank(X) � n is equal to the
probability that n columns of X are linearly independent.
+is means that there are qn − 1 possibilities (i.e., the zero
vector is removed) for the sample of the first column vector.
For the sample of the second column vector, there are qn − q

possibilities (i.e., the q vectors linearly dependent on the first
vector should be removed). +e rest may be deduced by
analogy. +us, the probability of Rank(X) � n is

q
n

− 1( 􏼁 · q
n

− q( 􏼁 · q
n

− q
2

􏼐 􏼑 · · · q
n

− q
n−1

􏼐 􏼑

q
n

· q
n

· · · q
n � 􏽙

n

i�1
1 −

1
q

i
􏼠 􏼡

� 1 −
1
q

func(k),

(15)

where func(k) is a function satisfying that 0< func

(k)≤ n(1 + 1/q + · · · + 1/qn). Because q is exponential in k,
(1/q)func(k) is negligible in k. So, we could finally obtain
that this probability is overwhelming. □

Theorem 1 (indistinguishability). Let EG be an efficiently-
embeddable group and CHF be a chameleon hash function.
Let ABM.LTF′ be the all-but-many lossy trapdoor function
that we built above. For any PPTadversaryA with advantage
AdvIND−PSA3

ABM.LTF′,A, there exists adversaries A1 and A2 such that

AdvIND−PSA3
ABM.LTF′ ,A(k)⩽ 2n

2
+ n􏼐 􏼑AdvEPR−PSA

EG,A1
(k) + nAdvPRFA2

(k).

(16)

Proof. We proceed with the proof by describing a sequence of
games, i.e., Game 1 to Game 3. Let Si be the event that the
output of adversaryA is 1 inGame i. InGame 1, all algorithms
work exactly the same as the real scheme. A interacts with
ABM.LTg′(tkabm

′ , ·), and the algorithm outputs lossy tags for
adversary A. We emphasis that the system parameter π∗ in-
volved in this game is chosen by A. So, we obtain

Pr S1􏼂 􏼃 � Pr A
ABM.LTg′ tkabm

′ ,·( ) 1k
, ekabm
′􏼐 􏼑 � 1􏼔 􏼕. (17)
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In Game 2, we modify the way of generating the public
evaluation key ekabm

′ � (C,E1,E2, pkchf , k′, s,H,G). Spe-
cially, we choose the matrixes E1 and E2 and the vector k′
uniformly at random from EG.ES(k, π∗). Since E1, E2, and
k′ do not influence the output distribution of ABM.LTg′, by
the EPR-PSA assumption of EG, this modification will not
be noticed by A. So, for an EPR-PSA adversary A1, we
obtain

Pr S2􏼂 􏼃 − Pr S1􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 2n
2

+ n􏼐 􏼑AdvEPR−PSA
EG,A1

(k). (18)

In Game 3, the proceeding of algorithm ABM.LTg′ is
changed. Particularly, in the 2nd step of algorithm
ABM.LTg′, we randomly select a matrix
F⟵$EG.ES(k, π∗)n×n instead of computing a matrix
F � (f1, f2, . . . , fn)T, in which f i � PRF(κ(i),UHFs(φ)) · hi

with uniformly random φ for 1≤ i≤ n, as in Game 2.
According to the PRF security (defined in Figure 1) of the

pseudorandom function, for a PPT adversary A2 against
PRF, we could obtain

Pr S3􏼂 􏼃 − Pr S2􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ nAdvPRFA2
(k). (19)

On the contrary, in Game 3, the matrix D of tp
′ is the

solution of equation DE3 � F mod q with random F. If the
rank of matrix E3 is n, then D will be random. According to
Lemma 2 (same result holds for EG.ES(k, π)n×n), we indeed
have Rank(E3) � n. +is means that D is random. +us, we
could obtain result that the primary part tp

′ � (D, Rchf) of tag
t′ is random. +erefore, all tags generated in Game 3 are
random tags. So, we obtain

Pr S3􏼂 􏼃 � Pr A
O
T′(·) 1k

, ekabm
′􏼐 􏼑 � 1􏽨 􏽩. (20)

Summing up, we find that the advantage
AdvIND−PSA3

ABM.LTF′,A(k) of adversary A is

Pr A
ABM.LTg′ tkabm

′ ,·( ) 1k
, ekabm
′􏼐 􏼑 � 1􏼔 􏼕 − Pr A

O
T′(·) 1k

, ekabm
′􏼐 􏼑 � 1􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ 2n

2
+ n􏼐 􏼑AdvEPR−PSA

EG,A1
(k) + nAdvPRFA2

(k). (21)

□
Theorem 2 (evasiveness). Let EG be the efficiently-embed-
dable group and CHF be a chameleon hash function. Let
ABM.LTF′ be the all-but-many lossy trapdoor function that

we built above. For any PPT adversary A with advantage
AdvEVA−PSA

ABM.LTF′,A, there exist adversaries A1, A2, and A3 such
that

AdvEVA−PSA
ABM.LTF′ ,A(k)⩽ 2n

2
+ n􏼐 􏼑AdvEPR−PSA

EG,A1
(k) + nAdvPRFA2

(k) + AdvCOLLCHF,A3
(k) + neg(k). (22)

Proof. We proceed with the proof by describing a sequence
of games, Game 1 to Game 4. Let Si be the event that the
output of adversaryA is a lossy or invalid tag inGame i. We
consider the following two types of tags output by A.
Specifically, for a tag t′ � ((D∗, R∗chf), t′ ∗a ),

(i) Type 1: if φ∗ � CHF.Eval(pkchf , (D∗, t′ ∗a ); R∗chf) is
also the chameleon hash output of some previously
generated tag, then we refer to t′ � ((D∗, R∗chf), t′ ∗a )

as a Type 1 tag.
(ii) Type 2: if φ∗ � CHF.Eval(pkchf , (D∗, t′ ∗a ); R∗chf) is

not the chameleon hash output of any previously
generated tag, then we refer to t′ � ((D∗, R∗chf), t′ ∗a )

as a Type 2 tag.

We make an assumption, without loss of generality, that
A obtains n � n(k) lossy tags by querying the
ABM.LTg′(tkabm

′ ) oracle. Let (ti
′)i∈[n] � ((Di, Rchf i), tai

′)i∈[n]

denote these lossy tags. +en, A adaptively comes up with
n′ � n′(k) tags (t′ ∗i )i∈[n′] � ((D∗i , R∗chfi), t′∗ai )i∈[n′] by querying
the oracle OT′ and gets answers “invalid” or “injective.”

In Game 1, all algorithms work exactly the same as the
real scheme. In particular, we note that the system parameter
π∗ involved in this game is chosen by A. So, we have

AdvEVA−PSA
ABM.LTF′ ,A(k) � Pr S1􏼂 􏼃. (23)

In Game 2, we modify the way of generating the public
evaluation key ekabm

′ � (C,E1,E2, pkchf , k′, s,H,G). Spe-
cially, we choose the matrixes E1 and E2 and the vector k′
uniformly at random from EG.ES(k, π∗). Since E1, E2, and
k′ do not influence the output distribution of ABM.LTg′, by
the EPR-PSA assumption of EG, this modification will not
be noticed by A. So, for an EPR-PSA adversary A1, we
obtain

Pr S2􏼂 􏼃 − Pr S1􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 2n
2

+ n􏼐 􏼑AdvEPR−PSA
EG,A1

(k). (24)

In Game 3, we change the algorithm ABM.LTg′. In
particular, in the 2nd step of ABM.LTg′, we randomly select
a matrix F⟵$EG.ES(k, π∗)n×n for any φ, instead of
computing a matrix F � (f1, f2, . . . , fn)T, in which
f i � PRF(κ(i),UHFs(φ)) · hi. For all queries (t′ ∗i )i∈[n′] to the
OT′ oracle, we return the answer “injective.” In the following
context, we will use the mathematical methods of induction
to prove that the distinguishability of Game 2 and Game 3
implies that there is an adversary A2 against the pseudo-
random function PRF.

(i) For the base step, suppose n′ � 1 (the case n′ � 0 is
vacuous). In Game 2, OT′ honestly computes
U � DE3 − F, where F � (f1, f2, . . . , fn)T and
f i � PRF(κ(i),UHFs(φ∗1 )) · hi, for 1≤ i≤ n. +en, it
returns the answer “injective.” +e distributions of
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U in Game 2 and Game 3 are correspondingly
PRF(κ(j),UHFs(φ∗i ))􏼈 􏼉j∈[n]∪ PRF(κ(j),UHFs􏼈

(φ∗1 )} and Fi⟵$EG.ES􏼈 (k, π∗)n×n}i∈[n]∪
F⟵$EG.ES(kπ∗)n×n

􏼈 􏼉. Hence, these two distri-
butions are computationally distinguishable,
according to the security of PRF, with the proba-
bility at most n · AdvPRFA2

(k) for a PRF adversaryA2.
In addition, since for φ∗1 from ti

′ ∗ in Game 3, the
matrix F is random, so is the matrix U, and the
adversary is always given answers “injective” except
with the negligible probability ε. +us, it holds that
|Pr[S3] − Pr[S2]|≤ n · AdvPRFA2

(k) + n′ · ε when
n′ � 1.

(ii) Suppose that the above result |Pr[S3] − Pr[S2]|≤ n ·

AdvPRFA2
(k) + n′ · ε holds for η � n′ − 1≥ 1. Ac-

cordingly, in Game 3, we simply answer “injective”
without even looking at the query φ∗i .

(iii) Now, we consider the case of n′. In Game 3, for tags
t′ ∗i􏽮 􏽯

i∈[η+1]
, we only focus on the n′th query tag

t′∗η+1􏽮 􏽯. In Game 2, we honestly derived the “in-
jective” answers for the previous η queries, and the
n′th answer is computed asU � DE3 − F. Since PRF
in Game 3 is only evaluated on
UHFs(φ∗i )i∈[n]􏽮 􏽯∪ UHFs(φ∗η+1)􏽮 􏽯 and since in

Game 2 by inductive hypothesis the answers were
all “injective,” the inductive hypothesis still holds,
i.e., |Pr[S3] − Pr[S2]|≤ n · AdvPRFA2

(k) + (η + 1) · ε.
As a result, for all n′ � n′(k), we set neg1(k) � n′ · ε,
and it holds that

Pr S3􏼂 􏼃 − Pr S2􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ nAdvPRFA2
(k) + neg1(k). (25)

We note that tags (t′ ∗i )i∈[n′] in Game 3 are distributed as
random tags.

In Game 4, the trapdoor tdchf
′ of chameleon hash

function CHF is not available. Each primary part of tag t′ is
sampled uniformly at random, i.e., (D, Rchf)⟵$

(EG.ES(k, π∗)n×n × Rchf). +us, it holds that
Pr[S4] � Pr[S3]. In addition, for any fresh φ, we randomly
select a matrix F⟵$EG.ES(k, π∗)n×n, that is, there is not an
adversary that will output Type 2 tags with at most a
negligible probability neg2(k), so we could get
Pr[S4, 2]≤neg2(k). +e Type 1 outputs will break the col-
lision resistance of the chameleon hash function CHF, so we
have Pr[S4, 1]≤AdvCOLLA3

(k) for some adversary A3.
+erefore, we could obtain Pr[S4]≤neg2(k)+ AdvCOLLCHF,A3

(k).
Summing up, let neg(k) � neg1(k) + neg2(k), and we

find that the advantage of adversary A is

AdvEVA−PSA
ABM.LTF′ ,A(k)⩽ 2n

2
+ n􏼐 􏼑AdvEPR−PSA

EG,A1
(k) + nAdvPRFA2

(k) + AdvCOLLCHF,A3
(k) + neg(k). (26)

□
5. Construction of IND-SO-PSA Secure
PKE Scheme

Taking the constructions in [32–34, 39] as guidances, we
propose an IND-SO-PSA secure PKE scheme with the
newly-built ABM-LTF-PSA and LTF-PSA based on an ef-
ficiently-embeddable group family. Let
ABM.LTF′ � (ABM.P′, ABM.Kg′, ABM.Eval′, ABM.Inv′,
ABM.LTg′) be an all-but-many lossy trapdoor function in
the presence of PSA we constructed in Section 4, LTF′ �
(LTF.P′, LTF.IKg′, LTF.LKg′, LTF.Eval′, LTF.Inv′) be a
lossy trapdoor function in the presence of PSA, and EG �

(EG.P, EG.G, EG.S, EG.EE, EG.I) be the underlying
embeddable group family of ABM.LTF′ and LTF′. Let
H2: EG.ES(k, π)⟶ 0, 1{ }l1 be a hash function and CHF �

(CHF.Kg, CHF.Eval, CHF.Equ) be a chameleon hash
function.

+e scheme PKE � (PKE.P, PKE.Kg, PKE.Enc, PKE.

DEC) will be built as follows.

(i) PKE.P(1k): taking as input the security parameter
k, it runs the EG.P(1k) algorithm of EG to generate
a system parameter π. We note that here π is also
used as the system parameter of ABM.LTF′ and
LTF′ in this construction.

(ii) PKE.Kg(1k, π): the key generation algorithm does
the following steps:

(1) Run algorithm ABM.Kg′(1k, π) to get
(ekabm
′ , ikabm
′ , tkabm
′ ). Have the same embed-

dable group G with generator g and order q and
the same public key pkchf ofCHF as generated in
the step 1 and step 2 of algorithm ABM.Kg′.

(2) Run algorithm LTF.IKg′(1k, π) to get (ek′, ik′).
Set the public key as pk � (ekabm

′ , ek′, pkchf) and
the secret key as sk � (ikabm

′ , ik′). It finally
outputs a pair of public and secret keys (pk, sk).

(iii) PKE.Enc(pk, m): with the public key pk �

(ekabm
′ , ek′, pkchf) and the message m ∈ 0, 1{ }l2 , the

encryption algorithm PKE.Enc(pk, m) does the
following:

(1) Randomly select a vector r � (r(1), r(2), . . . , r(n))

from Z1×n
q by running EG.S(1k, π,G).

(2) Compute r(i) by running EG.E(1k, π,G, gr(i)

) for
1≤ i≤ n, and set vector r � (r(1), r(2), . . . , r(n)).
+at is, we have r(i) ∈ EG.ES(k, π).

(3) Randomly select an universal hash function
UHFw: 0, 1{ }l1 × 0, 1{ }l3⟶ 0, 1{ }l2 with index
key w ∈ 0, 1{ }l3 . Compute Θ � H2(r),
ρ � UHFw(Θ)⊕m, and y1 � LTF.Eval′(ek′, r).
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We note that UHFw is not the same one used in
the construction of ABM.LTF′.

(4) Set t′ � (tp
′, ta
′) for randomly-sampled

tp
′ � (D, Rchf) and ta

′ � (UHFw, ρ, r); then,
compute φ � CHF.Eval(pkchf , (D, ta

′, y1); Rchf).
We note that CHF is the same one used in the
construction of ABM.LTF′.

(5) Use φ as the input of the step 3 of theABM.Eval′
algorithm, and compute y2 � ABM.Eval′
(ekabm
′ , t′, r). Notice that y2 is a tuple (􏽢y,ϖ1,ϖ2)

as described in the step 6 of ABM.Eval′. Output
the ciphertext C � (y1, y2, tp

′,UHFw,φ, ρ). Note
that the randomness of this encryption algo-
rithm contains w and t′, and all components in
t′ are public except r.

(iv) PKE.Dec(C, sk): after receiving the ciphertext
C � (y1, y2, tp

′,UHFw,φ, ρ), the decryption algo-
rithm does the following:

(1) Run algorithm LTF.Inv′(ik′, y1) to obtain the
vector r � (r(1), r(2), . . . , r(n)).

(2) Run algorithm ABM.Eval′(ekabm
′ , t′, r) to

compute y2′ with the tag t′ � (tp
′, ta
′), where tp

′ �
(D, Rchf) and ta

′ � (UHFw, ρ, r). Check that
whether the equation y2′ � y2 holds. If not, then
return ⊥; otherwise, go to the next step.

(3) Compute φ′ � CHF.Eval(pkchf , (D, ta
′, y1);

Rchf). If φ � φ′, reject this ciphertext; otherwise,
go to the next step.

(4) Compute r(i) by running EG.E(1k, π,G, gr(i)

) for
1≤ i≤ n to obtain vector r � (r(1), r(2), . . . , r(n)).
Compute Θ � H2(r), and recover the message
from m � UHFw(Θ)⊕ ρ.

6. Security Analysis

In this section, we analyse the IND-SO-PSA security of our
PKE scheme constructed in Section 5. In particular, we prove
that our scheme can satisfy the IND-SO-PSA security which
is defined in Section 3.3. We will give more detailed proofs of
security in the following. We note that the proof is processed
without random oracle.

Theorem 3 (IND-SO-PSA). Let ABM.LTF′ be the newly
proposed all-but-many lossy trapdoor function from the
embeddable group family scheme we built in Section 4, LTF′
be a lossy trapdoor function in the presence of PSA, and CHF

be a chameleon hash function. For any PPTadversaryA with
advantage AdvIND−SO−PSA

PKE,A (k), there exist adversariesA1,A2,
A3, and A4 such that

AdvIND−SO−PSA
PKE,A (k)⩽AdvCOLLCHF,A1

(k) + AdvIND−PSA3
ABM.LTF′ ,A2

(k) + AdvEVA−PSA
ABM.LTF′ ,A3

(k) + AdvIND−PSA2
LTF′ ,A4

(k) + neg(k). (27)

Proof. We firstly revisit the definition of the IND-SO-PSA
security (shown in Figure 5). Suppose that we have n

challenge ciphertexts, and the ith challenge ciphertext is
denoted as C(i) � (y(i)

1 , y(i)
2 , t′(i)

p ,UHFw(i) ,φ(i), ρ(i)) in which
t′(i)
p � (D(i), R

(i)
chf). We proceed with the proof by describing

a sequence of games, Game 1 to Game 6. Let Si be the event
that the output of adversaryA is 1 in Game i. In Game 1, all
algorithms work exactly the same as the game
GIND−SO−PSA

PKE,A (k). We note that the system parameter π∗
involved in this game is chosen by A, as shown in Figure 5.
By the definition of IND-SO-PSA security, we have

AdvIND−SO−PSA
PKE,A (k) � Pr S1􏼂 􏼃 −

1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (28)

In Game 2, we note that the decryption queries
whose element φ(i) has already existed in one of the
challenge ciphertexts were rejected. +at is, if adversary
A queries decryption oracle with a ciphertext
C � (y1, y2, tp′,UHFw,φ(i), ρ) in which φ(i) is appeared in
some C(i) � (y(i)

1 , y(i)
2 , t′(i)

p ,UHFw(i) ,φ(i), ρ(i)), then it will be
rejected, or the collision resistant property of CHF will be
broken. We note that the only element that is not a part of
the inputs of CHF in ciphertext C is y2. Let ta

′ � (UHFw, ρ, r)
and t′(i)

a � (UHFw(i) , ρ(i), r(i)). In the following, we consider
three cases:

(i) y2 � y(i)
2 and (y1, tp

′,UHFw, ρ) � (y(i)
1 , t′(i)

p ,UHFw(i) ,

ρ(i)): this is the case that the query ciphertext is
precisely the ith challenge ciphertext. +us, this
decryption query should be rejected.

(ii) y2 � y(i)
2 and (y1, tp

′,UHFw, ρ)≠ (y(i)
1 , t′(i)

p ,UHFw(i) ,

ρ(i)): to recover the encrypted message, the de-
cryption algorithm has to verify the correctness of
the tag of ABM.LTF′ by executing the equivocation
algorithm of CHF. +is would happen only if the
following equation holds: CHF.Eval(pkchf ,

(D, ta
′, y1); Rchf) � CHF.Eval (pkchf , (D(i), t′(i)

a ,

y(i)
1 ); R

(i)
chf), which means that there exist a collision

of chameleon hash function CHF.
(iii) y2 ≠ y

(i)
2 : recall that φ � φ(i) is computed by an in-

jective tag. We will consider the following cases. (1)
y1 � y(i)

1 and (tp
′,UHFw, ρ) � (t′(i)

p ,UHFw(i) , ρ(i)):
the output of this query in step 1 is r. It is obvious
that r � r(i). +us, we can get ta

′ � t′(i)
a . In this case,

there is indeed a collision ((D, ta
′, y1); Rchf) and

((D(i), t′(i)
a , y(i)

1 ); R
(i)
chf) happening to CHF. (2) y1 �

y(i)
1 and (tp

′,UHFw, ρ)≠ (t′(i)
p ,UHFw(i) , ρ(i)): similar

to the above case, wemust have r � r(i) and ta
′ � t′(i)

a .
+en, the query will be rejected unless a collision
happens to CHF. (3) y1 ≠ y

(i)
1 and

(tp
′,UHFw, ρ) � (t′(i)

p ,UHFw(i) , ρ(i)): the output of
this decryption query in the step 1 is r, and we must
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have r≠ r(i), and thus, ta
′ ≠ t′(i)

a . +en, the query will
be rejected unless an exact collision
((D, ta
′, y1); Rchf) and ((D(i), t′(i)

a , y(i)
1 ); R

(i)
chf) hap-

pens to CHF. (4) y1 ≠ y
(i)
1 and

(tp
′,UHFw, ρ)≠ (t′(i)

p ,UHFw(i) , ρ(i)): similar to the
above case, we must have r≠ r(i) and ta

′ ≠ t′(i)
a . +en,

the query will be rejected unless a collision happens.

+erefore, Game 1 to Game 2 behaves the same unless
the collision resistancy of the chameleon hashing is broken.
+us, for some adversary A1, it holds that

Pr S2􏼂 􏼃 − Pr S1􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤AdvCOLLCHF,A1
(k). (29)

In Game 3, we generate the lossy tags by running the
ABM.LTg′ for all challenge ciphertexts C(i) for i ∈ [n].
Note that we allow the decryption query made with lossy
tags in which φ≠φ(i). According to the indistinguish-
ability under PSA of the ABM.LTF′, for some adversary
A2, we have

Pr S3􏼂 􏼃 − Pr S2􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤AdvIND−PSA3
ABM.LTF′ ,A2

(k). (30)

Recall that, in Game 3, we firstly run the algorithm
LTF.Inv′(ik′, y1) to obtain the vector r. +en, we check that
ABM.Eval′(ekabm

′ , t′, r) � y2. If it is not, then reject. Now, in
Game 4, with ikabm

′ , we run the algorithm ABM.Inv′ to
recover r. Particularly, in the step 3 of ABM.Inv′, the value φ
is the one contained in the ciphertext for the decryption
query. According to the correctness ofABM.LTF′ and LTF′,
Game 4 and Game 3 could have the same result unless the
component φ of decryption query belonging to one of the
challenge ciphertexts or the queries are made with lossy or
invalid tags. We have to consider the previous sitution in
Game 3. +e latter would happen unless the evasiveness
under the PSA property of ABM.LTF′ is broken. +us, for
some adversary A3, we get

Pr S4􏼂 􏼃 − Pr S3􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤AdvEVA−PSA
ABM.LTF′ ,A3

(k). (31)

In Game 5, a lossy evaluation key is generated for LTF′.
So, for some adversary A4, we have

Pr S5􏼂 􏼃 − Pr S4􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤AdvIND−PSA2
LTF′,A4

(k). (32)

In Game 6, the element ρ of each challenge ciphertext is
set as ρ � c⊕m where c is selected randomly from 0, 1{ }l2 . As
in Game 5, the y2 elements are computed by ABM.LTF′
with lossy tags for all challenge ciphertexts. +us, according
to Lemma 1, we have

Pr S6􏼂 􏼃 − Pr S5􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ neg(k). (33)

In Game 6, since all challenge messages have been
padded, the adversary A could get no information about
them. +e original message vector m0 and conditionally re-
sampled message vector m1 come from the same distribu-
tion, so Pr[S6] � 1/2. Summing up, we could get that
AdvIND−SO−PSA

PKE,A (k)⩽AdvCOLLCHF,A1
(k) + AdvIND−PSA3

ABM.LTF′ ,A2
(k) +

AdvEVA−PSA
ABM.LTF′ ,A3

(k) + AdvIND−PSA2
LTF′ ,A4

(k) + neg(k). □

7. Conclusion

In this paper, to capture SOA and PSA simultaneously, we
introduce a new security notion called IND-SO-PSA,
which captures indistinguishability under parameter
subversion attacks, selective opening attacks, and chosen
ciphertext attacks. IND-SO-PSA security guarantees that
even though the system parameter of the PKE scheme is
chosen maliciously and the adversary is allowed to open a
subset of the challenge ciphertexts (i.e., seeing the cor-
responding plaintexts and randomness used during the
encryption), the remainder of the plaintexts should be
indistinguishable from freshly re-sampled ones. In order
to construct IND-SO-PSA secure PKE, we introduce two
new primitives (i.e., LTF-PSA and ABM-LTF-PSA) and
propose their instantiations with an efficiently-embed-
dable group family. +en, based on these new primitives,
we construct a PKE scheme satisfying the newly-proposed
IND-SO-PSA security.
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