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In vehicular networks, the increasing value of transportation data and scale of connectivity also brings many security and privacy
concerns. Peer authentication and message integrity are two vital security requirements to ensure safe transportation system.
Because of the constrained resources of the units performing the cryptographic components, the proposed security-enhancing
schemes should be lightweight and scalable. In this paper, we present a multisignature scheme derived from the SM2 signature
which enables a group of parties to collaboratively sign a message and generate a compact joint signature at the end. Our scheme
requires no preprocessing or interactions among the parties before signing, and its performance matches or surpasses known ones
in terms of signing time, verification time, and signature size. 'erefore, our scheme is also suitable for vehicular networks, with
the goal to enhance security with small computation and storage cost.

1. Introduction

With the development of advanced information and com-
munication-based technologies, intelligent transportation
system (ITS) can provide a seamless transportation infra-
structure and more functionalities for vehicles than a decade
ago. Specifically, the Vehicle-to-Everything (V2X) com-
munication technology in vehicular networks nowadays is
able to support information sharing between vehicles and
any other element involved in ITS [1, 2], including nearby
vehicles (V2V), the infrastructure (V2I), mobile devices
carried by pedestrians (V2P), and remote application servers
or cloud platforms (V2N). 'e increasing scale of ITS
ecosystem and the growing trend to integrate vehicular
network deployment with other networks also bring con-
cerns about cybersecurity for ITS since any message inter-
ception or modification by malicious units could result in
fatal consequences [3, 4].

Digital signature is commonly used in vehicular net-
works to ensure integrity of messages exchanged among
devices. However, the effectiveness of information

propagation and routing, which are associated to delays and
hence also have impacts on road safety, naturally depends on
the computational overhead imposed by the applied security
mechanisms [5]. Beyond traditional signature schemes,
multisignature (MS) and aggregate signature (AS) are ex-
tended primitives considering multiuser setting to support
cosigning and to reduce verification cost. 'e two primitives
in common allow a group of signers to combine their in-
dividual signatures into a single short one. Specifically, an
MS scheme [6, 7] enables a group of signers, each having a
public key and a corresponding private key, to collabora-
tively produce a joint signature on a commonmessage which
can be publicly verified given the set of public keys of all
signers. As a more general primitive, an AS scheme [8, 9]
allows each of the signers to sign a different message, and all
these individual signatures can still be aggregated into a
single short one. As in the traditional signature scheme, the
short combined signature should convince the verifier that
all signers signed their designated messages.

Both MS and AS schemes have many potential uses in
vehicular networks, such as in the distributed certificate
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authority (CA) or in V2I/V2V communications. Unfortu-
nately, the commonly used technologies including dedicated
short-range communications (DSRC) and cellular-V2X (C-
V2X) mainly exploit elliptic curve-based signature schemes,
e.g., ECDSA and SM2, which to the best of our knowledge
has very few MS or AS extensions due to their nonlinear
construction.

In this paper, we propose a candidate multisignature
scheme MS − SM2 based on the SM2 signature algorithm
and specify the applications of MS − SM2 for vehicular
networks. SM2 is a signature algorithm standard based on
the elliptic curve published by the Chinese government and
has been extensively used in cryptographic devices in finance
and industry. Our proposed MS − SM2 scheme allows
dynamic joining of signers (with certified public keys) and
has no burdensome assumptions on the public-key infra-
structure (PKI), which makes it plausible in vehicular
networks.

1.1. Our Contributions. 'e original contribution of this
work is mainly twofold:

(i) We first present a multisignature scheme MS − SM2
based on the SM2 signature by designing a cosigning
protocol and prove its security in plain public-key
and semihonest model. No preprocessing or any
proof-of-knowledge step on the signer side is re-
quired in our scheme. 'e experimental results also
show that our protocol is relatively practical for
many applications.

(ii) We then illustrate some possible applications of
MS − SM2 in vehicular networks, especially the
usage in the multiple CAs architecture to reduce the
certification storage for vehicles and RSUs and in
V2I communication to reduce the computational
overhead for RSUs.

1.2. Related Work. A trivial way to build a multisignature
from standard signatures is to concatenate all stand-alone
signatures signed individually. However, the resulted
multisignature is of large size and particularly of size
proportional to the number of signers, which does not scale
well in practice [6, 7, 10]. 'erefore, a multisignature
should be short, meaning its length should be (ideally)
independent from the number of signers and about the
same as that of an ordinary stand-alone signature. Infor-
mally, the possibility of extending standard signature
schemes to multisignatures comes from the homomor-
phism of the involved arithmetic operations of the un-
derlying assumptions. However, the homomorphism also
brings a serious vulnerability and allows adversaries to
mount rogue key attacks, in which the attackers without
valid key pairs can set its public key as a function of those
from other honest signers and finally forge multisignatures.
Micali et al. [6] described the formal model for the attack
and showed a way to prevent such attacks known as
knowledge of secret key (KOSK) assumption, in which users

are required to prove knowledge of their secret keys during
public key registration. Bellare and Neven [7] proposed a
new practical multisignature scheme based on the Schnorr
signature without KOSK assumption and proved that it
can avoid rogue attack in the so-called plain public key
model. 'ere are several following-up work on con-
structing 2-round Schnorr-based multisignatures, i.e., all
singers only need 2 rounds of communications to produce
a multisignature [11–15]. Recently, public key aggregation
is introduced to a multisignature scheme by which the
verifier can check the validity of a multisignature only
using a short aggregate key rather than a public key list
[16, 17].

2. Preliminaries

For prime number p, Zp denotes the additive group of
integer modulo p. We consider elliptic curve E: y2 � x3 +

ax + b(modp) in Zp, where a, b ∈ Zp and
4a3 + 27b2 ≠ 0(modp). 'e set of points on E along with the
infinity point O constitutes an additive elliptic-curve group
E(Zp) under points addition, denoted by ⊕, withO being the
identity. Let G(xG, yG) ∈ E(Zp)(G≠O) be the base point in
E(Zp) with order n. For k ∈ Z, Q(xQ, yQ) � [k]G denotes
the scalar multiplication in E(Zp).

Range [x, y] denotes the set of integers i, x≤ i≤y. Given
a nonempty set S, s$⟵ denotes the operation of sampling
an element of S uniformly at random and assigning it to s.
For a randomized algorithm A, y⟵A((x1, . . . , xn); ρ)

denotes the operation of running A on inputs (x1, . . . , xn)

and random coins ρ then assigning its output to y.

2.1. Multisignature Scheme

2.1.1. Syntax. We follow the description of Bellare and
Neven [7] and define a multisignature scheme as a tuple
MS � (Setup,KeyGen,MSign,Vrfy). Note that the scheme
is defined in the plain public key model, where the key
generation is as same as that in any public-key cryptography
and no more preprocessing protocol or key verification is
required.

Setup(1κ)⟶ pp: the setup algorithm takes as input the
security parameter κ and generates system parameters pp.

KeyGen(pp)⟶ (sk, pk): the key generation algorithm
is a randomized algorithm executed by every signer on input
pp to generate a key pair (sk, pk).

MSign(pp, L, ski, m)⟶ σ: the MSign algorithm rep-
resents the signing protocol run by a group of signers who
intend to collaboratively sign the same message m. Each
signer i executes the protocol on input pp, a set of public keys
of signers L � pk1, . . . , pkN􏼈 􏼉, private key ski and message
m. 'e protocol outputs a multisignature σ.

Vrfy(pp, L, m, σ)⟶ 0/1: the verification algorithm
checks the validity of a multisignature σ on message m on
behalf of the group of signers whose public keys are in set L

and output 1 or 0 indicating the multisignature is valid or
not.
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2.1.2. Completeness. Amultisignature scheme should satisfy
the following completeness property, meaning that for any
number n and message m, if (pki, ski)←Key Gen(pp) for
i ∈ 1, . . . , N{ } and all signers run MSign(pp, L, m, ski), then
every signer will output the same signature σ such that
Vrfy(pp, L, m, σ) � 1.

2.1.3. Security. 'e security of multisignature requires that it
is infeasible to forge a signature involving at least one honest
signer. We assume an adversary (forger)F that corrupts all
other signers except the honest one and can choose their
public keys in arbitrary ways as it likes, e.g., the rogue key
attack. 'e unforgeability of multisignature in plain public
key model is defined by the following three-phase game
ExpUF− CMA

MS (F) between the forger F and a challenger.

Setup. 'e challenger generates system parameter
pp←Setup(1κ) and a challenge key pair
(pk∗, sk∗)←KeyGen(pp) for the target honest signer. It
returns (pp, pk∗) to F.

Query. 'e forgerF is allowed to make signature queries on
any message m for any set L of signers with pk∗ ∈ L. 'is
signing oracle O(pp, ·, sk∗, ·) simulates the honest signer
with key sk∗ interacting in a signing protocol with other
signers in list L. F can make any number of such queries
concurrently.

Forge.F outputs a set L∗ of public keys, a message m∗, and a
multisignature σ∗. 'e forger is said to win the game if
Vrfy(pp, L∗, m∗, σ∗) � 1 with pk∗ ∈ L∗ and the message m∗

never appeared in Query phase.
'e advantage of forger F in breaking the multi-

signature scheme is defined as the probability that F wins
the above game (over the random coins of the challenger),
denoted as AdvUF− CMA

MS (F).

Definition 1 (UF-CMA security). A multisignature scheme
is (t, qs, N, ε)-unforgeable if it holds that AdvUF− CMA

MS (F)≤ ε
for every forgerF that runs in time at most t, makes at most
qs signing queries, produces forgeries on behalf of N parties,
and wins the ExpUF− CMA

MS (F) game with negligible proba-
bility ε. In random oracle model, we define it as
(t, qs, qh, N, ε)-unforgeable where qh denotes the maximum
number of hash queries.

2.2. SM2 Signature Algorithm. 'e SM2 signature algorithm
is initialized by taking as input a security parameter κ and
outputs pp(E(Zp),O, G, n, H(·)) as public parameters, in
which H: 0, 1{ }∗ ⟶ Zn is a cryptography hash function.
'e SM2 signature scheme is briefly reviewed in Table 1.

2.3.General ForkingLemma. Wewill use the general forking
lemma [7] to prove the security of our scheme, which is a
useful tool by extending the forking lemma of Pointcheval
and Stern [18] without mentioning concrete signatures or
random oracles.

Lemma 1 (general forking lemma). Let H be a set of size
h(≥ 2), and (h1, . . . , hq)←$ . Let A be a randomized algo-
rithm that on input x, (h1, . . . , hq)􏽮 􏽯 returns a pair (i, σ),
where i ∈ 0, . . . , q􏼈 􏼉 and σ is a side output. For some ran-
domized input generator IG, the accepting probability of
algorithm A, denoted by acc, is defined as Pr[i≥ 1||x←$ .
Consider randomized algorithm ForkA associated with A,
taking as input x, proceeds as described in Algorithm 1. Let frk
be the probability that Pr[b � 1|x←$ . :en,

frk ≥ acc
acc
q

−
1
h

􏼠 􏼡. (1)

2.4. Secure Multiparty Computation. Secure multiparty
computation (MPC) enables a group to jointly perform a
computation without disclosing any participant’s private
inputs. 'e participants agree on a function to compute and
then can use an MPC protocol to jointly compute the output
of that function on their secret inputs without revealing
them [19]. 'ere are several well-studied MPC protocols
such as the GMW protocol [20] and the BGW protocol [21].
Both of the two schemes are based on the secret-sharing
technique and can support both Boolean circuit and
arithmetic circuit.

Here, we only present the general idea of a simple ad-
dition function to show how the protocols work. 'e basic
idea is to allow each party holding the secret shares of the
inputs; therefore, each party can locally sum up their shares
and get a valid sharing of the final result. We describe it in a
bit more detail in Figure 1.

3. SM2-Based Multisignature Scheme:
MS− SM2

In this section, we present a multisignature scheme based on
the SM2 signature in the plain public key model. Intuitively,
the original signing algorithm of SM2 involves a nonlinear
combination of secret key and randomness; therefore, it is
nontrivial to extend it directly to a multisignature. To cope
with the problem, in the protocol, we first exploit the linear
part in SM2 to produce a semiaggregated signature and then
employ a simple MPC protocol for addition to finally
achieve the goal. Note that we slightly modify the output of
original SM2 signing algorithm in protocol where we take
the inverse of s instead to be the part of signature by each
party. 'erefore, the multisignature in our scheme is almost
of the same structure as the original SM2 signature and
remains practical. 'e unforgeability of the multisignature
under chosen message attack can be proved in the random
oracle model using general forking lemma [7, 16].

3.1. Construction. 'e initialization Setup algorithm and
KeyGen algorithm of the multisignature are almost the same
as that in the SM2 scheme, except that there are two hash
functions used in multisignature scheme, denoted as
H0: E(Zp)⟶ Zn, H1: 0, 1{ }∗ ⟶ Zn. We now proceed to
describe the signing protocol and verification algorithm of
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the MS − SM2 scheme. Note that we take L to be size of N

for simplicity, where N is the maximum number of co-
signers and N≪ n.

MSign(pp, L, m, ski): each signer i with secret key ski �

di and public key pki � Pi in set L runs an interactive
protocol to collaboratively sign a message m. 'e com-
munication proceeds in a number of rounds, where in each
round, every signer sends and receives messages to and from
other signers and also performs some local computation.

(1) Choose ki←
$
, compute Ki(xi,1, yi,1) � [ki]G and

ti � H0(xi,1, yi,1), and broadcast ti.

(2) Upon receiving tj from all other signers, broadcast
Ki(xi,1, yi,1).

(3) Upon receiving (xj,1, yj,1) from all other signers,
check the hash values and abort the protocol if for
any j that tj ≠H0(xj,1, yj,1). Otherwise, set
ei � H1(Zi

����L‖iNi�1Ki

����m), ri � ei + xi,1(mod n), and
􏽥si � (ki − ri · di) (mod n) . 'en, broadcast 􏽥si.

(4) Upon receiving 􏽥sj from all other signers, compute
􏽥s � 􏽐

N
i�1 􏽥s(modn) and run the protocol forFadd with

input si � (1 + di) · 􏽥s− 1(mod n) to get the addition
s � 􏽐

N
i�1 si(modn).

Table 1: SM2 signature algorithm.

KeyGeneration Signing Verification
For user j, it generates To sign message M, j computes To verify (M′, σ′) with Pj,
sk: dj←

$
1. e � H(ZjM) 1. If r′, s′ ∉ [1, n − 1],

pk: Pj � [dj]G 2. k←$ Return REJECT
Zj: public hash bits of user 3. (x1, y1) � [k]G 2. e′ � H(ZjM′)

j’s information including pk

4. r � (e + x1) (modn) ; 3. t � r′ + s′(modn)

If r � 0 or r + k � n, go to Step 2 If t � 0, return REJECT
5. s � (1 + dj)

− 1(k − r · dj)(modn); 4. (x1′, y1′) � [s1′]G + [t]Pj

If s � 0, go to Step 2 5. If r1′ � (e1′ + x1′)(modn),
6. Return signature σ � (r, s) Return REJECT

Else
Return ACCEPT

(1) Select random coins ρ for A
(2) (h1, . . . , hq)←$

(3) (i, σ)←A(x, (h1, . . . , hq); ρ);

(4) if i � 0 then
(5) return (0, ε, ε);
(6) end
(7) (hi′

, . . . , hq′
)←$

(8) (i′, σ′)←A(x, h1, . . . , hi− 1, hi
′, . . . , hq

′; ρ);

(9) if (i � i′ and hi ≠ hi
′) then

(10) return (1, σ, σ′)
(11) else
(12) return (0, ε, ε′)
(13) end

ALGORITHM 1: 'e forking algorithm ForkA.

PARAMETERS:
N : the number of parties;
xi : the input of party Pi;
F : the function to compute (it is addition function here);

PROTOCOL:
Each party Pi creates N shares of input xi using a (N, N)-secret sharing scheme, denote each
share by pi (j).

2. Pi sends each share pi (j) (j ∈ [1, N], j ≠ i) toPj.
3. Pi computes vi = ∑N

j=1 pj (i). �at is each party adds up all shares they received.
4. Pi broadcasts vi to all other parties.
5. Each party computes v = ∑N

j=1 vj to get the desired output.

1.

Figure 1: 'e MPC protocol for addition Fadd.
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At the end the interactive protocol, the algorithm out-
puts a multisignature σ � (K, s), where K is the set of all
points Ki(xi,1, yi,1).

Vrfy(pp, L, m, σ): given a multiset of public keys L,
message m, and multisignature σ, the verifier computes ei �

H1(Zi

����L‖iNi�1Ki

����m) and ri � ei + xi,1(modn), accepts the
signature if [s]⊕Ni�1Ki − [s]⊕Ni�1([ri]Pi) � [N]G + ⊕Ni�1Pi, and
outputs 1. Otherwise, it outputs 0.

Correctness: if σ � (K, s) is a valid output of protocol,
Vrfy algorithm always accepts and outputs 1. 'e equation
only holds when all signers follow the protocol and use valid
key pairs. Note that the integer computations are all modulo
n, and we omit the notation for simplicity.

[s]⊕
N

i�1
Ki − [s] ⊕

N

i�1
ri􏼂 􏼃Pi( 􏼁 � s 􏽘

N

i�1
ki

⎡⎣ ⎤⎦G − s 􏽘

N

i�1
ri · di( 􏼁⎡⎣ ⎤⎦G

� s · 􏽘
N

i�1
ki − 􏽘

N

i�1
ri · di( 􏼁⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦G

� 􏽘

N

i�1
si · 􏽘

N

i�1

􏽥si
⎡⎣ ⎤⎦G � 􏽘

N

i�1
1 + di( 􏼁 · 􏽥s

− 1
· 􏽥s⎡⎣ ⎤⎦G

� 􏽘
N

i�1
1 + di( 􏼁⎡⎣ ⎤⎦G � [N]G + ⊕

N

i�1
Pi.

(2)

3.2. Security Proof. In general, we can treat the multi-
signature scheme as a multiparty computation protocol and
prove its security in simulation-based framework for a
clearer security guarantee. Unfortunately, the security of
multisignature is traditionally defined in game-based
framework, and on the other hand, simulation-based proof
is complex in the random oracle model. Here, we follow the
game-based definition of Bellare and Neven [7] and only
show a proof sketch for the scheme.

'e basic idea of game-based proof is to obtain from F

two different forgeries σ and σ′ with the same randomness
by employing the general forking lemma. As a result, we can
extract the secret key from the target public key pk∗, which is
usually a solution of the discrete-logarithm problem in the
elliptic-curve group E(Zp). For simplification, we take an
equivalent verification equation into consideration, and if
σ � (K, s) and σ′ � (K, s′) satisfy

⊕
N

i�1
Ki − ⊕

N

i�1
ri􏼂 􏼃Pi( 􏼁 � s

− 1
N􏽨 􏽩G + s

− 1
􏽨 􏽩⊕

N

i�1
Pi,

⊕
N

i�1
Ki − ⊕

N

i�1
ri􏼂 􏼃Pi( 􏼁 � s

− 1
N􏽨 􏽩G + s

− 1
􏽨 􏽩⊕

N

i�1
Pi,

(3)

then the secret key d∗ corresponding to pk∗ can be com-
puted from the equation

􏽘

N

i�1
ri
′ − ri( 􏼁di􏼂 􏼃 � s

− 1
− s′− 1

􏼐 􏼑 N − 􏽘
N

i�1
di

⎛⎝ ⎞⎠. (4)

However, in the process of MSign, each signer can check
the value 􏽥s before continuing to execute the protocol, which
allows signers to quit cosigning immediately if there is any

rogue key attack. Specifically, they can compute [x1′, y1′] �

[􏽥s]G + 􏽐
N
i�1([ri]Pi) and check if x1′ is equal to the corre-

sponding part in the result.

[􏽥s]G + 􏽘
N

i�1
ri􏼂 􏼃Pi( 􏼁 � 􏽘

N

i�1

􏽥si
⎡⎣ ⎤⎦G + 􏽘

N

i�1
ri · di( 􏼁⎡⎣ ⎤⎦G

� 􏽘
N

i�1
ki − ri · di( 􏼁⎡⎣ ⎤⎦G + 􏽘

N

i�1
ri · di( 􏼁⎡⎣ ⎤⎦G

� 􏽘
N

i�1
ki

⎡⎣ ⎤⎦G � ⊕Ni�1 xi,1, yi,1􏼐 􏼑.

(5)

'erefore, we can let the simulator halt if the forger
successfully forged 􏽥s.

Lemma 2. If there exists a (t, qs, qh, N, ε)-forgerF′ that can
output a forgery 􏽥s, then there exists a PPTalgorithmA which
(t′, ε′)-solves the DL problem in E(Zp).

Proof. Note that 􏽥s � 􏽐
N
i�1

􏽥si (modn) and each 􏽥si has similar
structure with Schnorr signature. 'erefore, the proof of
Lemma 2 is similar to that of the MS − BN scheme. Gen-
erally, given a (t, qs, qh, N, ε)-forgerF′, we first wrap it into
an algorithm B that can be used in the general forking
lemma. We then describe an algorithm A that on input
pk∗ � P∗ and runs ForkB(pk∗) to output the corresponding
discrete logarithm. □

Let q � qh + qs, T0[·], T1[·] be the programmed hash
tables for oracles H0 andH1, respectively, and
h1 h1,1, . . . , h1,q􏽮 􏽯 be the answers of queries to H1. Two
counters ctr1 and ctr2 are initialized to zero. An additional
array T2[·] records a unique index 1≤ i≤ qh + Nqs to each
public key Pi occurring either as a cosigner’s public key in
signature queries or H1 queries, where T2[P∗] � 0. On input
pp, h1, P∗ ∈ E(Zp), B plays the ExpUF− CMA

MS (F) game with
F′ with the target public key pk∗ � P∗. B answers queries
from F′ by programming the oracles as follows:

(i) H0(Ki): if H0(Ki) is undefined, then B randomly
assigns T0[Ki]←

$ and then returns ti � T0[Ki].
(ii) H1(Zi

����L‖iNi�1Ki

����m): if T2[Pi] is undefined, then B

increments ctr2 and sets T2[Pi] � ctr2. Let
k � T2[Pi]; if T1[k, L‖iNi�1Ki

����m] has not yet been
defined, then B assigns random values to all
T1[j, L‖iNi�1Ki

����m] for 1≤ j≤ qh + Nqs, increases
ctr1, and assigns T1[0, L‖⊕Ni�1Ki

����m] � h1,ctr1.
(iii) Osign(L, m): if P∗ ∉ L, then B returns ⊥ to the

forger. Otherwise, it parses L as P∗, P2, . . . , PN􏼈 􏼉.B
first checks whether T2[Pi](2≤ i≤N) has already
been defined, if not it increases ctr2 and sets
T2[Pi] � ctr2. 'en, it increases counter ctr1 and
sets e1 � h1,ctr1

. It chooses 􏽥s1←
$

and computes a
elliptic curve point K1 such that
K1(x1,1, y1,1) � [ 􏽥s1]G + [r1]P

∗, where r1 � h1,ctr1
+

x1,1. It finally sends t1 � H0(K1) to all cosigners.
After receiving all tj from F′ (all other cosigners),
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B looks up the corresponding Kj in table T0 such
that tj � T0[Kj]. If not all such values can be found,
B randomly chooses K1′←

$
and broadcasts K1′. If

there exists Kj′
≠Kj such that T0[Kj′ ] � T0[Kj],

thenB sets bad1 � true and aborts the execution of
F′ by outputting (0,⊥). Otherwise, B computes
K∗ � iNi�1Ki and checks whether T1[0, L‖K∗‖m] has
already been defined. If the entry was taken, B sets
bad2 � true and aborts the execution by outputting
(0,⊥). If not, B sets T1[0, L‖K∗‖m] � e1 and
broadcasts K1. Upon receiving all Kj, B stops the
process if for any 2≤ j≤N such that H0(Kj)≠ tj.B
then broadcasts 􏽥s1.

Finally, if F′ outputs a valid forgery (K,􏽥s) on message m

under the signer list L, thenB checks T1[0, L‖iNi�1Ki‖m]. Let J

be the index that h1,J � T1[0, L‖iNi�1Ki‖m]. B returns
(J, (K, h1,J,􏽥s, L)). 'e accepting probability ofB is as follows:

accB � Pr F′succeeds∧bad1∧bad2􏽨 􏽩

≥Pr F′succeeds􏼂 􏼃 − Pr bad1􏽨 􏽩 − Pr bad2􏽨 􏽩

≥ ε −
qh + Nqs + 1( 􏼁

2

2n
−
2qs qh + Nqs( 􏼁

n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

We then construct the algorithmA that on inputpk∗ � P∗

and runs ForkB(pk∗). According to the general forking
lemma, it returns (1, (K, h1,J,􏽥s, L), (K, h1,J′ ,

􏽥s′, L)) with
probability frkA. Note that the discrete logarithm with regard
to P∗ can be computed through (K, h1,J,􏽥s, L), (K, h1,J′ ,

􏽥s′, L).
'erefore, the probability ε′ is as follows:

ε′ ≥ frkA

≥ accB
accB

qh + qs

−
1
n

􏼠 􏼡

≥
ε2

qh + qs

−
4qs qh + Nqs + 1( 􏼁

2

n qh + qs( 􏼁

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

3.3. Experimental Results. We now present the concrete
experimental results based on our implementation. We
implemented the MS − SM2 scheme in Java and ran it on an
EC2 instance of type CPU 2.50GHz with 1GB RAM.We use
the standard SM2 curve and the SM3 hash algorithm. We
ran experiments from 2 to 20 parties and compare our
results in two-party setting with a related protocol from
Zhang et al. [22] in Table 2. Note that [22] is an SM2-based
two-party distributed signing protocol, which is slightly
different from multisignature in the way that parties should
also cooperate in key generation. Moreover, they omit the
zero-knowledge proof component in their implementation,
and our demo (https://github.com/lhoou/ms-sm2) as a
simulation only includes local computation and omits the

communication cost in real world. As for multiuser setting,
the performances of our scheme are presented in Table 3.

4. Applications to Vehicular Networks

In this section, we describe two potential applications of
MS − SM2 to vehicular networks. We first show that it can
be employed in the architecture of multiple certificate au-
thorities to reduce the number of certificates that are re-
quired for devices in the system including on-board units
(OBU) and road-side units (RSU). In addition, we also
specify its possible usage in the process of V2I communi-
cations. 'e goal is to reduce computation and storage
overhead for the units while maintaining security properties.

4.1. Multi-CA Architecture. In vehicular networks, taking
C-V2X, for example, certificate authorities usually include
organizations for registration, communication authoriza-
tion, and pseudonym authorization. Specifically, any device
that is involved in the network should first require for
registration certificate from registration CA and then require
for other certificates from different CAs that are needed to
send and receive messages in the network.

For instance, a vehicle is required to get a certificate from
the registration CA using its unique identity before joining
the network. It can then require a pseudonym certificate for
the anonymous V2V communication and a secure V2I
communication certificate from secure communication CA
using its registration certificate. 'e vehicle can also apply
multiple registration certificates from different registration
CAs. To simplify the authentication process, the distributed
CAs can employ MS − SM2 in order to jointly generate only
one certificate or one registration certificate for the vehicle at
the same time, instead of generating certificates one by one.

4.2. Cooperative V2I Communication. Cooperative com-
munication in vehicular networks has been leveraged to offer
various improvements on spectral efficiency, transmission
reliability, and reduced transmission delay. Vehicles can
cooperate with each other either directly or through an RSU,
and the vehicular node which helps the source node to
transmit its data is called a helper node or relay node [23].

(i) Cooperative traffic reports: vehicles in the same traffic
area, such as in an accident or in a neighborhood, can
cooperatively issue a traffic report including awareness
messages (CAMs), safety importance, and vehicle
heading and transmit a packet to the RSU attached
with a MS − SM2 signature.'eMS − SM2 signature
can help the RSU to check validity of the packet and
also reduce the computation cost of RSU.

(ii) RSU-assisted communication: when a source RSU
fails to successfully transmit a packet to the targeted
destination, it forwards the packet to the next RSU
along the path using the backhaul wired connection.
'e new RSU relays the received packet to the
targeted destination. In this scenario, both the source
RSU and relayed RSU can jointly sign the packet
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using MS − SM2 to convince the target vehicle of the
message transmitted, which can also prevent any
malicious RSU from sending out frauds without
collusion.

5. Conclusions

In this paper, we present a candidate multisignature scheme
from the SM2 signature algorithm in the plain public-key
model. Compared to a list of individual signatures, the
storage volume of MS − SM2 signature reduces nearly 50%
and the computation cost is relatively low. In addition, we
specify in detail some potential applications of the MS −

SM2 scheme to vehicular networks, especially in the sce-
nario of cooperatively secure communication, with the goal
of maximizing performance and compatibility. Because of
the high-speed mobility, designing more efficient protocols
with fewer communication rounds for vehicular networks is
still a challenging research problem.
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