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Scanning attack is normally the first step of many other network attacks such as DDoS and propagation worm. Because of
easy implementation and high returns, scanning attack especially cooperative scanning attack is widely used by hackers,
which has become a serious threat to network security. In order to defend against scanning attack, this paper proposes an
adaptive IP hopping in software defined network for moving target defense (MTD). In order to accurately respond to
attacker’s behavior in real time, a light-weight convolutional neural network (CNN) detector composed of three
convolutional modules and a judgment module is proposed to sense scanning attack. Input data of the detector is
generated via designed packets sampling and data preprocess. *e detection result of the detector is used to trigger IP
hopping. In order to provide some fault tolerance for the CNN detector, IP hopping can also be triggered by a preset timer.
*e CNN driving adaptability is applied to a three-level hopping strategy to make the MTD system optimize its behavior
according to real time attack. Experiments show that compared with existing technologies, our proposed method can
significantly improve the defense effect to mitigate scanning attack and its subsequent attacks which are based on hit list.
Hopping frequency of the proposed method is also lower than that of other methods, so the proposed method shows lower
system overhead.

1. Introduction

According to Symantec’s 2019 report [1], a growing number
of people and organizations display an interest in com-
promising operational computers via network. *e static
properties of network make the state and behavior of in-
formation system predictable, so attackers can not only
launch attack effectively, but also escape detection easily [2].
Methods of network and host properties randomization
such as Moving Targets Defense (MTD) have been rec-
ommended as a countermeasure against reconnaissance that
attacks the static and predictable property of network [3]. IP
hopping is one of the key technologies of MTD. It frequently
changes IP addresses of protected nodes in network in order
to prevent attackers from creating effective hit list.

Existing researches [4–22] have proved that IP hopping
technology is an effective method to defend against scanning
attack which is normally the first step of many other network
attacks such as DDoS [23] and propagation worm [24]. *e
game between scanning attacker and IP hopping defender is
shown in Figure 1. Scanning attacks are generally manifested
as attackers continuously release different forms of probe
packets. Attackers will know which hosts in the network are
potential targets according to the response packets received,
while IP hopping technology frequently changes the used IP
addresses of protected hosts. On the one hand, IP hopping
makes the protected hosts avoid scanning attack to some
extent. On the other hand, IP hopping could make the
probed targets of attacker invalid in attacker’s hit list in a
short time. For example, once the attacker probed a target
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and added its IP to the hit list, the IP may be invalid soon
under the protection of IP hopping. *e main challenge of
defender is to decide when and how to hop.

IP hopping technology is firstly proposed and deployed
in legacy network [2, 4–12] and proved to be an excellent
defensive means. In recent years, software defined network
(SDN) [25] has been widely studied and considered as the
next network technology. SDN provides an operation mode
of separating data forwarding and rule control. *e flexi-
bility of SDN brings conveniences and supports many new
network technologies. Meanwhile, SDN also faces endless
network threats. IP hopping technology applied to SDN has
also been researched in many papers [11–20]. *ey usually
use OpenFlow [26, 27] to develop a MTD architecture for IP
hopping defense. *e controller in SDN controls the mu-
tation of IP of protected hosts. *e controller also manages
switches in protected network to ensure timely and accurate
forwarding of packets in situation of constantly changing
terminal IP addresses.*e structure of SDN provides flexible
convenience to deploy IP hopping defense technology.

Faced with scanning attack, most of the researches do
not pay enough attention to the behavior of attackers. *e
existing IP hopping defense systems lack the necessary
perceptual ability to the attackers’ behavior. For instance,
when no attacker invades the protected network, IP ad-
dresses of nodes keep hopping. In addition, the IP hopping
system may probably be disruptive to legitimate user be-
havior. Some researches propose adaptive IP hopping
methods [16, 19–22]. Adaptive methods can configure IP
hopping scheme and execute IP hopping according to be-
havior of attackers so as to achieve elaborate defense effect.
However, there is still much to improve in existing adaptive
methods in reducing the success rate of scanning attacks and
reducing the average life time of scanned targets in hit list.

*is paper proposes a novel adaptive IP hopping defense
method in SDN. In ourmethod, a light-weight convolutional
neural network (CNN) [28, 29] is used to perceive the

attackers’ scanning behavior and guide the configuration of
next IP hopping. Experiments show that our proposed
method can significantly improve the survival rate of pro-
tected hosts under scanning attack while reducing the av-
erage lifetime of targets in attackers’ hit list to avoid DDoS
and other subsequent attacks. *e main contribution of this
paper can be concluded as follows. Firstly, we propose a
sampling and data preprocess method of attacker’s behavior
data in SDN. Secondly, we designed a light-weight CNN
structure which can be used to detect attacker’s behavior in
real time and drive IP hopping defense. *irdly, applying
CNN driving adaptability to three-level hopping strategy, a
novel adaptive IP hopping in SDN is proposed and proved to
achieve better defense effect via considerable amount of
experiments.

*e rest of this paper is organized as follows. Section 2
gives an overview of related works. Section 3 introduces the
motivation of our proposed method. Section 4 presents our
proposed method in detail. *e implementation and ex-
periments are presented in Section 5. Finally, Section 6
concludes this paper.

2. Related Works

Researches of IP hopping for MTD can be classified into two
categories according to implementation platform, which are
legacy network and SDN.We list both technologies in legacy
network and SDN in detail.

Traditional IP address randomization techniques such as
DHCP [30] or NAT [31] do not develop the potential of IP
randomization in network defense completely for the rea-
sons of infrequency and traceability [2]. IP hopping tech-
nologies were firstly proposed and developed in legacy
network. *ey have been tested to effective measures to
contain different kinds of scanning attacks and other attacks
based on hit list such as worms. Krylov and Kravtsov [4]
proposed an IP hopping method which is deployable and
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Figure 1: Background: game between the scanning attacker and IP hopping defender.
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effective to hide content and destination server. Zhao et al.
[5] analyzed shortcomings of service migration and pro-
posed new technique called “Middle Agent” which was
applied to the end-hopping prototype system. Clark et al. [6]
showed via analysis that refreshing and reassigning the IP
addresses would disrupt the normal communication, so they
introduced an optimal method to minimize the disruption.
Zhuang et al. [7] defined some key concepts that might be
used to formally talk about MTD system; they also discussed
some essential problems of the MTD system. Yackoski et al.
[8] introduced a new network architecture called Self-
shielding Dynamic Network Architecture (SDNA) allowing
multiple types of dynamics. Cho et al. [9] concluded the
design principles, key methodologies, important algorithms,
and some relevant key techniques about MTD. Dunlop et al.
[10] proposed a hopping system based on IPv6 address called
MT6D to handle the limit of number of IP addresses while
ensuring the acceptable speed of UDP requests. Morrell et al.
[11] explored the ratio of clients and server of MT6D and
discovered some network limits. Miao et al. [12] pointed out
that IP hopping defense in SDN is inefficient because of flow
table matching which introduces high latency. *ey pro-
posed the use of vector packet processing to accelerate IP
hopping defense in legacy network. Experiment results
showed that they effectively reduced the hit rate under
scanning attack while maintaining the data processing
capability.

In SDN environment, Jafarian et al. [13] firstly proposed
and deployed IP hopping in SDN; they proposed a MTD
method named Random Host Mutation (RHM) which
mutates IP addresses on the switches and keeps the mutation
process transparent to the users (hosts). However, the
hopping caused a certain amount of system overhead and
cannot adapt to the behavior of the attacker. It is easy for
attackers to find out the regular pattern of hopping defense.
Jafarian et al. [14] then proposed a spatiotemporal address
mutation that binds the changed IP address to the host. *e
source identity further improves the security of information
system. However, the defense system requires sufficient
address space, which is an additional overhead of defense.
Krylov et al. [15] proposed a method countermeasure of
DDoS attack called IP Fast Hopping, which is an imple-
mentable network layer software solution. *is method also
lacks the necessary perception of attack behavior and cannot
adapt to the change of different attack behavior. On the basis
of paper [13], Jafarian et al. [2] proposed an effective address
randomization method which improves the unpredictability
by fast mutation and constrained configuration. *ey pro-
posed to use two-level hopping scheme to improve the ef-
ficiency of defense and further enhance the uncertainty of
hopping. A flaw is that its attack perception ability is not
sensitive enough, and it cannot adapt to the variety of at-
tacks, such as irregular scanning frequency. Jafarian et al.
[16] proposed an adversary-aware IP address randomiza-
tion, which uses hypothesis testing to character behavior of
attacker. Experiment shows a method in [16] which sig-
nificantly slows down attack and increases its detectability.
However, the accuracy of hypothesis test method depends
on the number of known samples, which reduces the

efficiency of attack perception. MacFarland and Shue pro-
posed a new hopping method in SDN which provides
protection for information system without any modification
on clients [17]. *is transparent defense method is similar to
[13] in effect and cannot adapt to the changes of attacker
behavior. In [18], Chang et al. not only randomize the IP
address to achieve the purpose of defense, but also solve the
problem of IP address synchronization between network
nodes. *is scheme is another implementation method in
SDN. However, its synchronization behavior inevitably
results in additional system overhead. In [19], Lei et al.
deployed adversary strategy awareness module in MTD
system and proposed a novel technique called self-adaptive
end-point hopping technique (SEHT). In SEHT, IP hopping
is triggered and configured with the guide of adversary
strategy awareness.*e result of three-level hoping is a more
refined method, which improves the unpredictability of
defense. However, similar to [16], its perception method is
not sensitive to the change of aggressive behavior. In [20],
Smith et al. also introduce intrusion detection to trigger
MTD system. In their work, the intrusion detection is based
on neuroevolution of augmented topologies algorithm
(NEAT) and is real time in operation. However, the accuracy
of detection still needs to be improved. In [21], in order to
maximize unpredictability of network mutation, Zhang et al.
use adversary strategy awareness with hypothesis test to
make mutation strategy selection. Similar to [16], the ac-
curacy of hypothesis testing depends on the number of valid
samples, which is an additional overhead. In [22], Ma et al.
use anomalous awareness in [32] to drive a self-adaptive
end-point hopping defense. However, the anomalous
awareness based on information distance is not accurate
enough. A smart attacker may be scanning without
anomalousness on information distance.

In conclusion, IP hopping for MTD is an effective
method that can defend against network attack especially
scanning attack. However, some existing methods do have to
be improved in their adaptability, which means the MTD
system should respond to attack behavior accurately in real
time andmake fine-grained adjustment on hopping strategy.

3. Motivation

3.1. Attack Analysis. In this paper, we mainly focus on one
kind of cooperative scanning attack. *is cooperative
scanning indicates that a number of hosts act as scanners and
sample (probe) IP addresses in the protected network. *e
whole IP space will be divided and assigned to the scanners
and will be scanned uniformly. *e purpose of attacker is
testing which IP addresses are currently used online, so that
he can prepare for following attacks such as DDoS. A
cautious attacker usually scans IP addresses without repe-
tition to minimize failed probes [33].

We assume that the scanning attack starts from the outer
network but is a propagating scanning. Each newly probed
host may get infected and start acting as a scanner. Once a
host is probed, it takes time tp to infect the host. Scanners
can share the IP address space that has not been scanned.
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Each scanner has two important attributes which are
frequency of scanning packet (FSP) and proportion of
scanning packet (PSP). FSP denotes the number of probes
sent per second. PSP denotes the proportion of probe
packets in all packets sent by the scanner.

We believe that, compared with network data flow
produced by normal host for legal communication, data flow
produced for scanning attack does have distinguishing
features. *ese features make it possible to detect scanning
attack from network data flow without being disturbed by
normal probes. “Normal probes” means probes released for
legal communication.

3.2. Promotion Idea. In adaptive IP hoping system, the result
of attack awareness is used to guide the configuration of IP
hopping and trigger IP hopping. Both the accuracy and
timeliness of attack awareness directly affect the validity of
hopping. *e accuracy demands not only detecting mali-
cious packet (false rejection rate) but also not being dis-
turbed by normal probes (false acceptance rate).

However, the accuracy and timeliness of previous adaptive
IP hopping methods still need to be improved. *e method in
[20] uses a nearly fully connected structure to build a light-
weight detection network. *e structure of full connection
makes it difficult to balance the capacity and lightweight of the
network, so it is difficult for the detection to achieve balance
between accuracy and timeliness. *e method in [19] simply
judges failed probe packets as malicious. However, not failed
probe packets can also be malicious ones, and failed probe
packets may also be legal ones. *e method of data sampling in
[19] also needs to be improved.

Regarding accurately aware behavior of attack in real time,
in this paper, we firstly propose a newmethod of data sampling.
*e proposed sampling method collected all probe packets in
order to include all malicious scanning packets. A part of
nonprobe packets thatmay be related to scanning attack are also
included. We then propose a novel CNN structure to detect
sampled data and drive IP hopping system including guiding
hopping configuration and triggering hopping. We try to make
hopping defense react each illegal probe to improve effective-
ness of hop and reduce invalid hops. Architecture of CNN
driving adaptive IP hopping is shown in Figure 2.*e reason for
choosing CNN as the detector is as follows: firstly CNN’s local
perception processing can mine the data correlation and
remove the redundant information in data so as to ensure the
detection accuracy; secondly, CNN’s weight sharing and
pooling process can reduce the number of connections and
weights in neural network so as to build a light-weight detector.
*irdly, CNN has been used in intrusion detection system and
proved an effective tool to detect behavior of attackers [34–37];
thus, previous works can be used for reference in this paper.

4. The Proposed Method

4.1. Architecture and Workflow. *e proposed IP hopping
system evades and prevents scanning attacks by dynamically
changing IP address of protected hosts, thus increasing the
usage difficulty of vulnerabilities and backdoors and

ensuring the security of protected network. *e adaptability
of proposed method is reflected in two aspects: adaptive IP
hopping configuration and adaptive IP hopping trigger. *e
CNN detector is used to make the attack behavior aware
automatically and to not only guide hopping configuration
but also trigger hopping.

*e flowchart of our proposed method is composed of 4
modules as shown in Figure 3 which are packets sampling,
data preprocess, trained CNN detector, and hopping
strategy execution. In packets sampling module, we collect
packets which may be related to scanning attack. Data
preprocess module is used to form the collected packets into
a data matrix as the input of the following CNN detector.
*e CNN detector is a designed module which is used to
judge whether the input data correspond to a malicious host
or not. Finally, IP hopping strategy is activated by the
judgment result of CNN detector. Besides, the hopping can
also be triggered by a preset timer in case that the CNN
detector makes missed alert.

4.2. Packets Sampling. Input data of CNN should include
packets of normal probe or scanning attack and their related
packets. In order to ensure the accuracy of detection, the
input data should be as complete as possible but as little
redundant as possible. Considering that the scanning be-
havior of attackers is variable, for example, attacker can
launch scanning attack packets in different FSPs and PSPs.
Smart attacker can also hide his scanning attack packets
among background data stream. Considering that the attack
data traffic may have the above characteristics, two different
sampling methods are used at the same time, which are
continuous sampling and precise sampling. Continuous
sampling is used to sample not only probe packet itself but
also the after background stream packet, so as to make it
possible for the subsequent processing to mine the rela-
tionship between the attack packet and the background
stream. Precise sampling is used to collect all probe packets
since each probe packet could be an attack packet. Precise
sampling collects only probe packets. Both precise sampling
and continuous sampling are touched off by any of the eight
kinds of packets which could be used to probe including
ARP request, ICMP echo, ICMP time stamp, ICMP net-
mask, TCP SYN, TCP ACK, TCP FIN, and UDP empty.

4.2.1. Continuous Sampling. For every probe packet, con-
tinuous sampling collects some following packets from the
same source host. *e following packets and probe packet
itself form the sampled packets of one continuous sampling.

Considering different packets from the same source that
host may reach and that are forwarded by different switches,
once any switch receives a probe packet, it packets in the
probe packet to the controller and raises an event (it is called
“event” in RYU platform) of continuous sampling. After
that, it is ordered by the controller that every switch in the
controlled network should packet in a certain number of
following packets sent by the source host of the probe packet
in a specified time.
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4.2.2. Precise Sampling. Precise sampling only pays atten-
tion to probe packets. For every probe packet, precise
sampling collects some previous probe packets and some
following probe packets from the same source. *e previous
probe packets, following probe packets, and probe packet
itself form the sampled packets of one precise sampling.

Implementation of precise sampling is similar to con-
tinuous sampling, but precise sampling only collects probe
packets. Once any switch receives a probe packet, it packets
in the probe packet to the controller and raises an event of
precise sampling. After that, it is ordered by the controller
that every switch in the controlled network should packet in
a certain number of following probe packets from the same
source in a specified time. *e controller has already stored
all previous probe packets in the network, and it selects a
certain number of previous probe packets from the same
source.

4.3. Data Preprocessing. Our designed CNN detectors will
operate on data extracted from sampled packets in order to
make a classification whether the packet and its source host
are illegal or not. Data extracted from one continuous
sampling and one precise sampling combine an input data of
CNN detector. *e method of data extraction is as follows.

Each packet is essentially a binary bitstream. In order to
further remove invalid parts from sampled data, only parts
that may be related to scanning attack are preserved, while

others are discarded. Five parts of each packet (if exist) are
preserved, which are

(1) Fixed part of the IP datagram header (160 bits)
(2) Fixed part of the TCP message header (160 bits)
(3) UDP message header (64 bits)
(4) ICMP message header (64 bits)
(5) Ethernet header and ethernet ARP fields of ARP

message (42 bits)

Content of the packet that does not belong to the above
five parts will be discarded. We also notice that since IP
hopping system makes the protected network ever-chang-
ing, the judgment whether one probe packet is illegal or not
should consider the current network situation. For this
purpose, we add a flag bit at the end of the binary bitstream
extracted from each probe packet, as shown in Figure 4. If
the probe packet hits a currently used IP address, the flag bit
is set 1; otherwise it is set 0.

We do not convert these binary bitstreams to integers as
[20] does for the purpose of avoiding data confusion and
preserving data integrity. Data extracted from each sampled
packet were placed end-to-end forming vector F. In order to
adapt to convolutional process in CNN detector, vector F is
then converted to matrix M. Zero padding is used to ensure
a two-dimensional matrix.

Since the number of sampled packets may probably be
different in each sampling, and the types of packets obtained
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from each sampling are also different, size of M is not fixed.
To adapt different size of input data, we introduce global
pooling to be the last pooling layer in the structure of CNN,
which is described in the next subsection.

4.4. Designed CNN Detector. CNN has been widely used in
network intrusion detection such as [34–37]. Meanwhile,
because of its local perceptual processing mode, CNN has
special advantage in discovering the local to local correlation
in data. As analysis in packets sampling and data process, the
local to local correlation in our data may probably be related
to the classification (malicious or not). For the structural
design of CNN, we have kept adjusting the structure of CNN
empirically in a large number of experiments. *e adjust-
ment process includes using different activation functions
and using convolution kernels of different sizes to make sure
the structure is suitable for the judgment on our processed
attack traffic data.

*e CNN detector is designed to be deployed on the
controller of SDN. We set two requirements of the de-
ployment of the designed CNN: firstly, there should be no
special requirements for hardware performance of the
controller; secondly, time consumed in one execution of
judgment should not be too long to avoid data piling up.*e
CNN should be a light-weight detector. *e structure of the
designed CNN is shown in Figure 5, which is composed of
three convolutional modules and a judgment module. Each
convolutional module is composed of a convolutional layer,
a batch normalization layer [38], a ReLU layer [39], and a
pooling layer.*e reason for using ReLU as activation is that
our input data is a binary matrix. ReLU makes different
activation for the element greater than 0 and less than 0. *e
judgment module is composed of a fully connected layer and
a Softmax layer.

In Figure 5, the boxes with “Conv” mean convolutional
layer.*e formulas a × (b × c × d) in “Conv” boxes show the
size and shape of convolutional kernel. A convolutional layer
inputs d matrixes and outputs a matrixes, and b × c is the
size of convolutional kernel on each input matrix. *e
process of a convolutional layer is shown in

X
out
j � 

d

i�1
X

in
i ∗Kij + Bj, (1)

where Xout
j is the jth output matrix of the layer, Xin

i is the ith
input matrix of the layer, Kij is a convolutional kernel
operated on Xin

i and output to Xout
j , and Bj is the bias matrix

added to the jth output matrix. In (1), ∗ means convolu-
tional operation.

*e boxes in Figure 5 with “Pooling” mean pooling layer.
In the boxes of pooling layer, “size” means the size of pooling

window and “s” means the stride of pooling operation. *e
process of pooling layer can be described in

x � poolave(R) �
1

|R|

r∈R

r, (2)

where x is an output neuron, ave means we use average
pooling in each pooling layer, R means a pooling region in
the input matrix, and r is a neuron in R. Global pooling is
operated in the last pooling layer, which means the size of
pooling window flexibly is equal to the size of each input
matrix of the layer. Global pooling enables the CNN to adapt
to different size of input data. *e process of convolution
and pooling is shown in Figure 6.

*e boxes in Figure 5 with “ReLU” mean ReLU layer
which is an activation layer. *ese layers improve the
nonlinear factors of CNN and enable the model to fit a
problem that linear model cannot.*e process of ReLU layer
is described in

x
out

� max 0, x
in

 , (3)

where xout is an output neuron and xin is an input neuron of
ReLU layer.

*e boxes in Figure 5 with “BN” mean batch normali-
zation layer. BN layer first normalizes elements in each input
feature map to zero-mean and unit-variance to ensure that
the input neuron to ReLU falls in the region near value 0, and
hence the gradient back-propagation would not fall into
poor local minima.

*e box in Figure 5 with “Fully connected” means fully
connected layer. In this layer, each output neuron is con-
nected to each input neuron with a weight parameter. *e
process of this layer is shown in

x
out
j � 

Nf

i�1
x
in
i × ωij, (4)

where xout
j means the jth output neuron of this layer, xin

i

means the ith input neuron of this layer, Nf means the
number of input neurons of this layer, and ωij is the weight
parameter of connection between xout

j and xin
i .

*e box in Figure 5 with “Softmax” means Softmax layer.
*is layer normalizes the value of neuron to the range of [0,
1] to indicate probabilities of the input data belonging to
each class. *e process of Softmax layer is shown in

x
out
j �

e
xin

j


Ns

i�1 e
xin

i

, x
out
j ∈ [0, 1], (5)

where xout
j means the jth output neuron of this layer, exin

j and
exin

i mean jth and ith input neurons of this layer, and Ns

means the number of input neurons and is also the number
of output neurons of this layer. In our designed CNN, both
fully connected layer and Softmax layer output two neurons;
one indicates “normal” and the other indicates “malice.”

Denote D(·) as the process of the trained CNN detector
and X as a matrix of input date. Judgment of the CNN
detector is shown in (6) where result “1” means “malice” and
result “0” means “normal.”

Binary bitstream extracted from a probe packet Flag bit

Figure 4: Binary bitstream extracted from a probe packet and the
added flag bit.
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D(X) �
0, normal,

1, malice.
 (6)

It is obvious that packets sampling occupies the channel
between the switch and the controller to some extent. Also,
data process and CNN detection consumes the resources on
the controller side. In order to mitigate the impact on
network QoS, one judgment result will also be applicable for
other probe packets from the same source in 1minute. In the
following 1 minute, probe packets from the same source will
not raise packets sampling. *is also prevents the defense
system from being overburdened by an excessive number of
probe packets.

4.5. IP Hopping Strategy. In this paper, we provide each
protected host with a fixed real IP (rIP) and a hopping
virtual IP (vIP). In our IP hopping system, IP hopping can
be touched off by two kinds of events: the first is the
system timer (periodic hopping) and the second is the
judgment result of the CNN detector (triggered hopping).
Periodic hopping and triggered hopping run indepen-
dently. *e set of periodic hopping is in case that CNN
makes missed alert and triggered hopping was not exe-
cuted in some situation.

*e notions used in our IP hopping strategy are listed in
Table 1. Assume the whole protected network has k subnets
which are represented by S1, S2, . . . , Sk . Total l protected
hosts are distributed in the k subnets. *e l protected hosts
are represented by h1, h2, . . . , hl . IPW, IPR, and IPV rep-
resent the whole IP set, the real IP set, and the virtual IP set,
respectively, so IPW � IPR∨IPV, rIP ∈ IPR, and vIP ∈ IPV. It
is impossible to choose vIP from the whole IPV in each
hopping, because a range of vIPs can only be assigned to one
physical subnet at a given time. We adopt a three-level
hopping to assign available vIP space, which are base
hopping, low-frequency hopping, and high-frequency
hopping. As shown in (7), the IPV set is divided into mB

number of base hopping range (BHR) according to the
number and scale of subnets, mB ≥ k.

IPV � 

mB

b�1
R

b
BHR. (7)

*en, as shown in (8), each BHR is divided into mL

number of low-frequency hopping range (LHR) according
to the number of hosts in subnet. Each LHR contains several
vIPs, and these vIPs are used for high-frequency hopping.

R
b
BHR � 

mL

l�1
R

l
LHR. (8)

4.5.1. Periodic Hopping. *e IP hopping system periodically
refers to three levels of hopping which are base hopping,
low-frequency hopping, and high-frequency hopping. Base
hopping changes the IP address range assigned to a given
subnet with time interval TBH. Low-frequency hopping
changes the IP address ranges assigned to a given host within
the corresponding BHR with time interval TLH. High-fre-
quency hopping changes the vIP assigned to a given host
within the corresponding LHR with time interval THH.

Adaptive IP hopping configuration is an important as-
pect of adaptability in proposed method. To characterize
attacker’s scanning behavior, we associate a weight ωB with
each BHR, a weight ωL with each LHR, and a weight ωH with
each protected host. Higher weight for a range indicates
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Figure 5: Structure of designed CNN.
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higher attacker activity in that range in the last interval. *e
value of ωB, ωL, and ωH is computed according to the
malicious probe packets in the last interval. *ese weights
will guide the configuration of next hopping.

(1) Base Hopping. In base hopping, each subnet will be
assigned with one or more BHRs. Denote ωi

B as the weight of
the Ri

BHR and Ni
BHR as the number of vIPs in it. Computation

of weight ωi
B is in Algorithm 1.

When more than one BHR assignment schemes is
available, we choose the scheme that achieves minimal
standard deviation of sums of weights of BHRs assigned to a
subnet, in order to ensure nearly equal security of each
subnet. Denote rt

ij as a flag. rt
ij �� 1 means R

j

BHR is allocated
to Si in the tth assignment scheme, and rt

ij �� 0 means R
j

BHR
is not allocated to Si in the tth assignment scheme. In the tth
assignment scheme, we compute the standard deviation of
sums of weights of BHRs assigned to Si as (9)–(13). VectorW

denotes the set of ωB; vector Rt
i denotes the set of flag rt

ij; st
i

denotes the sum of weights of BHRs assigned to Si in the tth
BHR assignment scheme. μt denotes the mean, and σt de-
notes the standard deviation.

W � ω1
B,ω2

B, . . . ,ωmB

B , (9)

R
t
i � r

t
i1, r

t
i2, . . . , r

t
imB

 , (10)

s
t
i � R

t
i · W

T
, (11)

μt
�

1
mB



mB

i�1
s

t
i , (12)

σt
�

��������������

1
mB



mB

i�1
s

t
i − μt

 
2




. (13)

We compare σt in each assignment scheme and select the
assignment scheme with minimal σt for next base hopping.

(2) Low-Frequency Hopping. Once a subnet is assigned with
one or more BHRs, these BHRs are divided into several LHR.
For low-frequency hopping, each host will be assigned with
one or more LHRs. Each LHR has a weight ωL. *e

computing method of ωL and the selection of LHR as-
signment scheme are the same as those of base hopping, so
they are not elaborated here.

(3) High-Frequency Hopping. Once a host is assigned with
one or more LHRs, vIPs in these LHRs form a vIP pool. In
high-frequency hopping, a vIP in the pool will be selected
and used in next interval. For high-frequency hopping,
denote ωi

H as the weight of the ith vIP in the pool of a host.
Computation of weight ωi

H is in Algorithm 2.
For one host, only one vIP can be used at one time. All

vIPs in the pool are sorted according to their weights. *e
vIPs with higher weights will be preferred.

4.5.2. Triggered Hopping. In our IP hopping system, the
hopping can also be touched off by the judgment result of the
CNN detector. Base hopping, low-frequency hopping, and
high-frequency hopping will be active in three cases,
respectively.

(1) Base Hopping. As in Algorithm 3, in a time interval
TBH, if the number of hit times of the vIP pool of a
subnet divided by the number of host in the subnet
has reached the threshold PBH, a base hopping for the
whole protected network should be touched off.
Denote HTi

B as the number of hit times of the vIP
pool of Si.

(2) Low-Frequency Hopping. As in Algorithm 4, in a time
interval TLH, if the number of hit times of the vIP
pool of host hi has reached the threshold PLH, a low-
frequency hopping for the corresponding subnet
should be touched off. Denote HTi

L as the number of
hit times of the vIP pool of hi.

(3) High-Frequency Hopping. As in Algorithm 5, in a
time interval THH, if a host is hit by a malicious probe
packet, a high-frequency hopping for the host should
be touched off.

*e proposed periodic hopping and triggered hopping
are both adaptive hopping strategies. On the one hand, they
can make protected hosts avoid using IP addresses that
attackers may seriously scan, so as to improve the survival
rate protected hosts under scanning attack. On the other
hand, once a protected host is hit in scanning attack, its used

Table 1: *e notions used in the IP hopping strategy.

Character Description
rIP, vIP Real IP address and virtual IP address
Si, hi *e ith subnet and the ith host in the protected network
IPW, IPR, IPV *e sets of all IP addresses, real IP addresses, and virtual IP addresses
Rb
BHR, Rl

LHR *e bth BHR and the lth LHR in a BHR
mB, mL *e number of BHR and the number of LHR in a BHR
TBH, TLH, THH Time interval of base hopping, low-frequency hopping, and high-frequency hopping
ωB , ωL , ωH Weights of each BHR, LHR. and protected host to characterize attacker’s scanning behavior
rt

ij A flag to show whether R
j
BHR is allocated to Si in tth BHR assignment scheme

PBH, PLH *resholds to touch off base hopping and low-frequency hopping
HTi

B , HTi
L Hit times of the vIP pool of Si and hi

NSi *e number of hosts in Si
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Require: All detected data X in last base hopping interval
For all probe packets in the last base hopping interval
If D(X) �� 1 && the target IP is in Ri

BHR
ωi

B + +;
End if

End for
ωi

B � ωi
B/N

i
BHR;

Return ωi
B

ALGORITHM 1: Computation of weight ωi
B in base hopping in periodic hopping.

Require: All detected data X in last high-frequency hopping interval
Require: vIP pool of the host for high-frequency hopping
For all probe packets in the last high-frequency hopping interval
If D(X) �� 1 && the target IP is the ith vIP in the pool
ωi

H + +;
End if

End for
Return ωi

H

ALGORITHM 2: Computation of weight ωi
H in high-frequency hopping in periodic hopping.

Require: All detected data X after last base hopping
Require: vIP pool of Si

Require: Preset threshold PBH
HTi

B � 0;
For all probe packets
If D(X) �� 1 && the target IP is in the vIP pool of Si

HTi
B + +;

End if
End for
If HTi

B/N
Si ≥PBH

Triggering base hopping;
End if
Return Null

ALGORITHM 3: Base hopping in triggered hopping.

Require: All detected data X after last low-frequency hopping
Require: vIP pool of hi

Require: Preset threshold PLH
HTi

L � 0;
For all probe packets
If D(X) �� 1 && the target IP is in the vIP pool of hi

HTi
L + +;

End if
End for
If HTi

L ≥PLH
Triggering low-frequency hopping for the corresponding subnet;

End if
Return Null

ALGORITHM 4: Low-frequency hopping in triggered hopping.
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IP address may immediately hop to another one to disable
the scanned target in attacker’s hit list.

5. Implementation and Evaluation

In this section, we firstly introduce the hardware and
software platform of our implementation. *en the used
network topology and the behavior of attackers are briefly
described. Finally we propose three performance indexes to
experiment and evaluate the performance of our proposed
method.

5.1. Hardware and Software Platform. To investigate the
effectiveness and scalability of proposed approach, we
implemented it on an OpenFlow controller [26] that
manages a Mininet network [40]. We used Mininet to create
a network of OpenFlow switches (Open vSwitch kernel
switches). Ryu platform is used on the controller to deploy
the application of proposed IP hopping.We used Tensorflow
1.0 [41] to train and save the CNN model, and the trained
model is called from Ryu application to enforce a judgment.
*e CNNmodel is trained in GPUmode with a Nvidia K40c,
but it is used in CPU mode with Intel Core i7 8700 for the
purpose of no high hardware requirements of controller.

We use Mininet to create a virtual network which is
managed by a remote controller. *e virtual network is
shown as Figure 7. *e created virtual network contains 210
hosts. *ese hosts are distributed in 25 subnets. *e number
of hosts in each subnet is random.*e subnets are connected
with each other with OpenFlow switches. Wireshark is used
in our Mininet to collect and form data set of probe packets.

To show the effectiveness of the proposed method
against hit list attacks, cooperative scanning attack is
launched on some host and then may propagate to others.
We assume that the scanners are aware of the IP resource
pool of the protected network.

5.2. PerformanceEvaluation. *ree performance indexes are
used to experiment and evaluate the performance of our
proposed method which are accuracy and performance of
CNN detection, survival rate of protected hosts, and the
average lifetime of targets in attack’s hit list. Technologies for
performance comparison with our proposed method are
OF-RHM [13], SEHT [19], and the method in [12]. In order
to ensure fairness, OF-RHM andmethod in [12] are adjusted
to three-level hopping which is consistent with SEHT and
proposed method.

5.2.1. Performance of CNN Detection. Accuracy and time
efficiency are important indexes of CNN and determine the
effectiveness of adaptability of our proposed method. Data
extracted from one continuous sampling and one precise
sampling combine a sample. We totally collected 10000
samples and these samples make up our data set.*e data set
is divided into three sets, which are training set, validation
set, and testing set. *e training set consists of 7000 samples
and is used in training the CNN model; validation set
consists of 1000 samples and is used to monitor the real time
accuracy performance of CNN in the process of training;
testing set consists of 2000 samples and is used to finally test
the accuracy and time efficiency of CNN detection. Our data
set is composed of samples collected from scanners with PSP
20%, 40%, 60%, and 80% and FSP 0.5 s, 1 s, and 2 s. *e
training phase takes 7.29 hours on our platform.

In order to ensure real time of detection, if the amount of
data in the queue to be detected reaches three, undetected
data except the new arrival one will be discarded (data loss).

Denote Acc as the accuracy of CNN detection, FRR as
the false rejection rate, and FAR as the false acceptance rate.
Testing performance is shown in Table 2.*e proposed CNN
performs better under higher PSP.

Denote TE as time efficiency, which means time con-
sumed in one test including the time of data preprocess and
CNN detection. Although the test of CNN is set in CPU
mode, TE is only 0.019377 s. Another adaptive hopping
method SEHT [19] directly treats all failed probe packets as
scanning attacks, so it takes nearly no time to discover
scanning attack. However, not distinguishing between
scanning attack and normal probe in SEHTmakes the result

Require: All detected data X after last high-frequency hopping
Require: Currently used IP of hi

If D(X) �� 1 && the target IP is at use by hi

Triggering high-frequency hopping for hi;
End if
Return Null

ALGORITHM 5: High-frequency hopping in triggered hopping.
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Switch 3

Switch 4

Switch 5

Switch 33

...

Subnet 1

Subnet 2

Subnet 3

Subnet 4

...

Subnet 32

Controller
Controlled by

Figure 7: *e topology of Mininet virtual network.
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inaccurate. Moreover, SEHT adopts hypothesis tests based
on Sibson entropy to discriminate scanning attack strategy.
We obtain that TE of hypothesis test in SEHT is about
0.015377 s, which is only slightly better than our proposed
CNN. CNN could be retrained through transfer learning to
acquire ability of multiclassification to discriminate scan-
ning attack strategy while barely increasing TE.

For further research, we calculate the rate of data loss in
different number of scanners under nonpropagating scan-
ning. RDL denotes the rate of data loss. Table 3 shows RDLs
in different number of scanners (NoS). Obviously, higher
FSP and larger NoS cause higher RDL. *e reason is that,
with higher FSP and larger NoS, the CNNmay probably find
it more difficult to handle the coming packets in time.

5.2.2. Survival Rate of Protected Hosts under Cooperative
Scanning Attack. *e attacker carries out uniform and un-
repeatable scan on the IP space used in protected network.
Survival rate of protected hosts denotes the proportion of hosts
which are not probed by attacker through a round of attack.

(1) Survival Rate under Different Initial Scanners. *e sur-
vival rates of protected hosts under propagating cooperative
scanning attack using different quantity of initial scanners
are shown in Figures 8–11. Figure 8 shows survival rate
under cooperative worm using 50 scanners; Figure 9 shows
survival rate under cooperative worm using 100 scanners;
Figure 10 shows survival rate under cooperative worm using
150 scanners; Figure 11 shows survival rate under cooper-
ative worm using 200 scanners. *e hyperparameters are set
as follows: THH � 20 s, TLH � 40 s, TBH � 160 s, PSP� 60%,
FSP� 2 s, PBH � 0.5. PLH is equal to half the number of IPs in
the IP pool of corresponding host.

In a static network, the survival rate reaches 0 after
spending 101 s–247 s because of using uniform active scan-
ning. Method of OF-RHM can lower the reduction of survival
rate and finally improve the minimum survival rate to some
extent. *e two adaptive methods can significantly lower the
reduction of survival rate and finally improve the minimum
survival rate. Moreover, performance of our proposed
method is slightly better than SEHT. Meanwhile, the defense
performance of method in [12] is similar to that of OF-RHM.
*e proposed method achieves the best result among the five
methods, because it can accurately identify scanning attack
packets and guide IP hopping of hosts to avoid attack.

(2) Minimal Survival Rate under Different Time Intervals.
Minimal survival rate denotes the proportion of hosts which
are not probed after a round of scanning attack. Table 4
shows ten different time intervals used in our experiments.

*e minimum survival rates under cooperative worm on IP
hopping systems with different time intervals are shown in
Figures 12–15. Figure 12 shows the minimum survival rate
using 50 scanners; Figure 13 shows the minimum survival
rate using 100 scanners; Figure 14 shows the minimum
survival rate using 150 scanners; Figure 15 shows the
minimum survival rate using 200 scanners. *e hyper-
parameters are set as follows: PSP� 60%, FSP� 2 s,

Table 2: Testing performance of the CNN detection.

PSP (%) Acc FRR FAR
20 0.7604 0.2113 0.2679
40 0.8215 0.1357 0.2213
60 0.8483 0.0928 0.2107
80 0.9667 0.0179 0.0487

Table 3: Rates of data loss (RDL) in different number of scanners.

FSP (s)
NoS

50 100 150 200
0.5 0 0.3512 0.4019 0.5467
1 0.3421 0.5381 0.6011 0.6604
2 0.5156 0.7402 0.8351 0.8603
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Figure 8: Survival rate under cooperative scanning (50 scanners).
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Figure 9: Survival rate under cooperative scanning (100 scanners).
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PBH � 0.5. PLH is equal to half the number of IPs in the IP
pool of corresponding host.

*e minimum survival rates under cooperative worm in
network with OF-RHM decrease from P1 to P10 and finally
reach 0 under P6 to P10. In network with OF-RHM, long
time interval makes the network equivalent to a static one.
*e minimum survival rates under cooperative worm in
network with SEHTdecrease slightly between P1 and P7 and
then go stabilized. *e minimum survival rates under
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Figure 10: Survival rate under cooperative scanning (150
scanners).
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Figure 11: Survival rate under cooperative scanning (200
scanners).

Table 4: P1–P10: different settings of three-level time interval (s).

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
THH 5 10 15 20 25 30 35 40 45 50
TLH 10 20 30 40 50 60 70 80 90 100
TBH 40 80 120 160 200 240 280 320 360 400
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Figure 12: *e minimal survival rates under cooperative scanning
with different time intervals (50 scanners).
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Figure 13: *e minimal survival rates under cooperative scanning
with different time intervals (100 scanners).
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cooperative worm in network with the method in [12] are
similar to that of OF-RHM. *e minimum survival rates
under cooperative worm in network with our proposed
method decrease the most slightly in the three methods.
Because scanning behavior of attacker triggers IP hopping
with different levels, our proposed method gets the best
performance in the three methods. Using our proposed
method, defender can set greater time interval to reduce
network resource overhead and the possibility of packet loss.

(3) Minimal Survival Rate under Different PSP and FSP. *e
value of PSP affects the performance of our designed CNN
detector, and the value of PSP affects rates of data loss. *e
minimal survival rates under different PSP and FSP are
shown in Table 5. *e hyperparameters are set as follows:
THH � 20 s, TLH � 40 s, TBH � 160 s, PBH � 0.5, NoS � 50,
and PLH is equal to half the number of IPs in the IP pool of
corresponding host.

As shown in Table 5, compared with SEHT, our proposed
method performs better significantly when PSP� 60% and
PSP� 80%; when PSP� 40%, our proposed method performs
slightly better than SEHT; when PSP� 20%, our proposed
method performs slightly worse except for FSP� 0.5 s.With the
decrease of PSP value, the CNN makes more false rejection
which weakens the advantage of our proposed method
gradually. Lower FSP indicates better performance both in the
proposed method and in SEHT. Also notable is that perfor-
mance of SEHT is not sensitive to change of PSP for the reason
that SEHT treats all failed probe packets as scanning attack.

5.2.3. Average Lifetime of Targets in Attack’s Hit List.
Worm-type virus and other hit list based network attacks
need time long enough to launch. For example, propagation
of worm from one host to another must take enough time. If
vIP of target host hopped before the completeness of worm
propagation, the worm propagation fails. We compute the
average lifetime of targets in attack’s hit list. Reducing
lifetime of targets in attack’s hit list is beneficial to reduce the

success rate of worm propagation. Lifetime of a target is
explained as the duration between receiving response of
probe packet from the target host and hopping of IP address
of the target host. Figure 16 takes host 1 as an example to
explain the meaning of lifetime.

Figure 17 shows the average lifetime of targets using 50
scanners; Figure 18 shows the average lifetime of targets
using 100 scanners; Figure 19 shows the average lifetime of
targets using 150 scanners; Figure 20 shows the average
lifetime of targets using 200 scanners. *e hyperparameters
are set as follows: PSP� 60%, FSP� 2 s, PBH � 0.5. PLH is
equal to half the number of IPs in the IP pool of corre-
sponding host.

*e average lifetime of targets in our proposed method is
significantly lower than methods without CNN assistance.
However, we also find that as the number of scanners in-
creases, advantage of our proposed method is weakened
gradually. *at may be probably because of the increasing
rate of data loss.

Moreover, we make a comparison of average lifetime
between targets caused by discarded data and data not
discarded. *e result of the comparison is shown in Table 6.
In Table 6, “NoS” means number of scanners. Once probe
packets of attacker are detected, the lifetime of targets caused
by these packets can be controlled in less than 1 second. *e
adaptability of our proposed method driven by CNN can
obviously reduce the average lifetime of targets in attack’s hit
list. Moreover, improve the efficiency of attack awareness
and reduce data loss may probably be our future work.

5.2.4. Hopping Frequency. Once the IP address of a host
hops, communication to the host will withstand a short time
high delay for the reason of querying and loading new flow
table. High delay may affect experience of legal users, so high
hopping frequency may not be user friendly. Denote HFRHM,
HFSEHT, and HFPM as the actual hopping frequency of RHM,
SEHT, and the proposed method. Hopping frequency here is
defined as hopping times divided by time. *e hyper-
parameters are set as follows: PSP� 60%, FSP� 2 s,
PBH � 0.5, NoS � 50. PLH is equal to half the number of IPs
in the IP pool of corresponding host.

Comparison of hopping frequency in normal period is
shown in Table 7. In normal period without attack, their
hopping frequencies are tested as HF[12] � HFRHM;

HFPM <HFSEHT under a set time interval. *e proposed
method performs better than SEHT for the reason of nearly
not being disturbed by normal probes. Hopping frequency
of RHM and the method in [12] is equal to THH. OF-RHM
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Figure 15: *e minimal survival rates under cooperative scanning
with different time intervals (200 scanners).

Table 5: Minimal survival rate under different PSP and FSP.

PSP (%)
FSP

Proposed method SEHT [19]
0.5 (s) 1 (s) 2 (s) 0.5 (s) 1 (s) 2 (s)

20 0.699 0.557 0.451 0.693 0.655 0.579
40 0.704 0.677 0.594 0.690 0.661 0.595
60 0.799 0.732 0.679 0.701 0.667 0.597
80 0.833 0.767 0.769 0.699 0.672 0.601
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and themethod in [12] achieve the best performance because
of not conducting any adaptive strategy.

Comparison of hopping frequency in attack period is
shown in Table 8. In attack period, their hopping frequencies
are tested as HFPM <HFSEHT <HFRHM � HF[12] when
achieving same survival rate. *e proposed method acts

according to behavior of attack carefully to make each hop as
effective as possible. *e proposed method performs about
4%–14% better than SEHT and 21%–29% better than OF-
RHM and the method in [12].

5.3. Performance Overhead and Limitation. While making
some performance breakthroughs, our proposed method
does have performance overhead and limitation. Firstly,
as detailed in Section 4.2, both the used switches and
controller should have enough cache space to temporarily
store packets related to scanning attack. Secondly,
training the CNN detector needs some devices and takes a
period of time. *irdly, our proposed method is designed
and deployed in SDN environment. It cannot be used in
legacy network environment directly. Adopting our
proposed method to legacy network will be our future
work.

Time

Attacker releases
probe packet

to host 1

Attacker receives
response packet

from host 1
IP of host 1

hoped

Lifetime of host 1 
in hit list

Figure 16: Lifetime of host 1 in attacker’s hit list.
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Figure 17: Average lifetime of targets in attacker’s hit list against
different time intervals (50 scanners).
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Figure 18: Average lifetime of targets in attacker’s hit list against
different time intervals (100 scanners).
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Figure 19: Average lifetime of targets in attacker’s hit list against
different time intervals (150 scanners).
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Figure 20: Average lifetime of targets in attacker’s hit list against
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6. Conclusions

Faced with scanning attack, in order to improve the effec-
tiveness of IP hopping defense, this paper proposes an
adaptive moving target defense system, which uses a
designed light-weight CNN to sense changeable attack be-
havior and guide IP hopping defense. In terms of security,
experiment result shows that the proposed method achieves
better effectiveness of defense for it performs better under
the indexes of survival rate of protected hosts and average
lifetime of targets in attack’s hit list compared with other
methods. In terms of usability, experiment result shows that,
when achieving same defense effect, the proposed method
only needs lower hopping frequency, thus with lower
overhead than other existing methods.

Our following work includes firstly improving the
structure of CNN detector to improve the processing effi-
ciency while keeping the accuracy, so as to reduce the rate of
data loss and achieve better security of protected network;
secondly, applying the proposed method to different scan-
ning strategies such as follow-up scanning; thirdly, exploring
the deployment scheme of our proposed method in legacy
network.
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