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Improving the attack resistance of the modulation classification model is an important means to improve the security of the
physical layer of the Internet of +ings (IoT). In this paper, a binary modulation classification defense network (BMCDN) was
proposed, which has the advantages of small model scale and strong immunity to white box gradient attacks. Specifically, an end-
to-end modulation signal recognition network that directly recognizes the form of the signal sequence is constructed, and its
parameters are quantized to 1 bit to obtain the advantages of low memory usage and fast calculation speed. +e gradient of the
quantized parameter is directly transferred to the original parameter to realize the gradient concealment and achieve the effect of
effectively defending against the white box gradient attack. Experimental results show that BMCDN obtains significant immune
performance against white box gradient attacks while achieving a scale reduction of 6 times.

1. Introduction

+e Internet of +ings (IoT) is an open and comprehensive
network of intelligent objects. It is deployed in different
environments through various sensor devices to realize real-
time collection and interaction of different monitored,
connected, and interactive objects or processes [1, 2]. +e
IoT has been widely used in all aspects of life, including
smart transportation, smart homes, smart cities, smart
factories, emergency, medical care, and logistics trans-
portation, bringing great convenience and benefits to human
life, and there are still a large number of technologies that
improve the efficiency of the Internet of +ings constantly
emerging [3, 4]. However, compared with the gradual ex-
pansion of the application range of the IoT devices on a
global scale, the development of its security technology is far
behind. If not defended, active malicious physical layer
attacks such as deception and interference will disrupt the
original communication and transmission order of the IoT,
greatly reduce the communication performance of legiti-
mate users, and even infringe on the privacy of users, harm
personal safety, and affect industrial production [5–7].
+erefore, the physical layer security of the IoT has been

brought to an unprecedentedly important position. As the
basis of software wireless, cognitive radio, and spectrum
detection, automatic modulation recognition has become an
effective means to deal with physical layer security issues
[8, 9]. In addition, automatic modulation classification
technology is also used in various civil and military fields,
such as user legitimacy detection, spectrum detection and
management, interference and identification, electronic
exhibition, and threat analysis [10–13].

In recent years, artificial intelligence technology has
made many achievements in the fields of image recognition
and natural language processing, and it is also widely used
in communication-related topics, including metalearning
for channel estimation, reinforcement learning for resource
scheduling, and transfer learning for stations/access points
switching [14–17]. More and more researchers have
combined artificial intelligence technology with signal
processing technology and have achieved many very
valuable results for the subject of automatic modulation
classification [18]. Literature [19] proposes an adaptive
extensible neural network for modulation classification in
the multipath fading channel by dividing the network into
the amplitude, phase, and frequency weight subnetwork.
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Literature [20] proposes that the complex network is used
to discover the deep features of the modulated I/Q signal
for modulation signal, which has achieved superior per-
formance. Literature [21] proposes a transfer learning-
based semisupervised modulation classification to address
the problem of a small number of samples that are labelled
and a large number that are unlabeled in real communi-
cation scenarios. Literature [22] proposes a signal recog-
nition and reconstruction convolutional neural networks,
the first zero-shot learning work, by studying the repre-
sentation of signal semantic feature space. +ese research
results have played a huge role in promoting the subject of
modulation signal classification.

However, the automaticmodulation classificationmethod
based on artificial intelligence technology has the following
two obvious shortcomings. (1) While the model classification
performance is improved, its scale tends to increase with it,
which will increase the storage complexity and computational
complexity of themodel to the point where the edge devices of
the IoTcannot afford it [23]. (2)+e deep learning model is to
fit high-dimensional data, rather than truly understand the
data. +is leads to the existence of adversarial samples, which
only add a slight disturbance to the data that humans cannot
detect, which makes the model produce a very outrageous
output.+is will also become a threat to the security of the IoT
[24]. Literature [25] constructs a convolutional neural net-
work to classify the modulated signal and proposes an index
of activation maximization to evaluate the importance of the
filter in the network. +e network can still obtain the same or
higher accuracy when the compression rate is 80%. Literature
[26] converts the modulated signal into the form of a con-
stellation diagram and constructs a binary convolutional
neural network to classify it. While maintaining the same or
higher classification accuracy rate, the model storage com-
pression can be achieved by 26 times. Literature [27] intro-
duces a scaling factor for each neuron in CNN and enforces
scaling factors sparsity via compressive sensing to screen out
redundant neurons and then these neurons are pruned.
Literature [28] designs a communication signal adversarial
sample by adding a carefully designed counter disturbance,
which can ensure that the communication performance is not
damaged, while reducing the intruder’s modulation classifi-
cation accuracy. Literature [29] launched white box and black
box attacks on the modulation signal classification model.
Both attack methods can significantly reduce the classification
accuracy of the model. +is literature further proves that the
model classification confidence is inversely proportional to
the attack success rate. Literature [30] uses the generative
adversarial networks for semisupervised learning, which
improves themodel’s robustness and generalization ability for
modulated signal classification. In addition, a lot of work has
been carried out, focusing on the evaluation of adversarial
perturbation in communication signals such as invisibility of
adversarial examples, the effectiveness of adversarial attacks
on signals, and fitting difference to measure the perturbed
waveforms [31–33]. +erefore, the research on the automatic
modulation classification model with both lightweight and
antiattack has important research value for the whole problem
of the IoT with a large number of edge devices.

In order to further improve the reliability of the ap-
plication of artificial intelligence technology in the security
of the IoT, this paper designs a binary modulation signal
classification defense network (BMCDN). In the forward
propagation of the binarized convolutional layer, the net-
work parameters and input are quantized from 32-bit
floating-point type to 1-bit integer type, which reduces the
storage overhead of the model. In the original convolution
operation, the 32-bit floating-point multiplication operation
was replaced by the bit operation, and the accumulation
operation was replaced by the counting operation, which
reduced the calculation time of the model. In the backward
propagation process of the binarized convolutional layer, the
gradient of the quantized input and parameters are directly
passed to the original input and parameters to update the
network. At this time, the gradient obtained by the input is
not its true gradient, but the gradient of its quantized value,
which has the effect of gradient masking and can effectively
defend against white box gradient attacks.

+is paper is organized as follows. In Section 2, typical
white box gradient attack methods are briefly introduced. In
Section 3, the proposed defense framework BMCDN is
presented and analyzed. In Section 4, the comprehensive
experiments are described to verify the advantages of model
scale and immunity to white box gradient attacks. Section 5
draws the conclusions.

1.1. Attacks. According to how much information the at-
tacker has on the target model, attack methods can be di-
vided into white box attacks, gray box attacks, and black box
attacks. Among them, white box attacks are the most
commonly used method to evaluate defense performance
[34]. In a white box attack, the attacker knows the network
architecture, parameters, training data, etc., of the model.
+is paper selects fast gradient sign method (FGSM) and
projected gradient descent (PGD) in the white box attack to
attack the design model and evaluate its defense
performance.

1.2. FGSM. FGSM is a typical single-step attack. According
to whether the attack target has a specific category, it can be
divided into untargeted attack and targeted attack [35]. +e
FGSM algorithm is shown in the following formula:

untargeted: x′ � x + ε · sign ∇xJ f(x), ytrue( 􏼁( 􏼁, (1)

targeted: x′ � x − ε · sign ∇xJ f(x), ytarget􏼐 􏼑􏼐 􏼑, (2)

where f(·) donates the target model. Its input data is the
modulated signal x, and output is the classification result;
J(f(x), y) donates the cost function between model output
and label; ∇xJ(f(x), y) donates the partial derivative of the
cost value with respect to x; sign(·) will get the direction of
the gradient; ϵ donates the step size of the perturbation;
formula (1) indicates that perturbation is added to x to
increase the loss value between themodel output and the real
label, while formula (2) indicates that perturbation is added
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to x to decrease loss value between the model output and the
target label to get the adversarial sample x’, respectively.

1.3.PGD. PGD is a typical iterative attack, which can be seen
as a combination of random perturbation and an iterative
version of FGSM [36]. PGD is considered to be the most
adversarial attack algorithm, under the same perturbation
intensity. +e PGD algorithm is shown in the following
formula:

x0′ � x + n,

untargeted: xi+1′ � clipε,x xi
′ + α · sign ∇xJ g xi

′( 􏼁, ytrue( 􏼁( 􏼁( 􏼁,

targeted: xi+1′ � clipε,x xi
′ − α · sign ∇xJ f xi

′( 􏼁, ytarget􏼐 􏼑􏼐 􏼑􏼐 􏼑,

(3)

where n is a random perturbation; α is the perturbation step
length of each step. Usually, the number of iteration steps is
greater than the ratio of disturbance intensity ϵ to α; clip∈,x(·)

will clip the adversarial example x′ to maintain it in the
ϵ−neighbourhood of original data.

2. Methods

In order to further improve the reliability of the application
of artificial intelligence technology in the security of the IoT,
this paper designs a binary modulation signal classification
defense network. Extremely low bit width will bring storage
and computational advantages.+e extremely low weight bit
width will give it storage and calculation advantages in
forward operations. +e direct return of the binarized
gradient to the original parameters will also achieve the effect
of gradient concealment and achieve the effect of effectively
defending against white box gradient attacks.

2.1. ForwardPropagation. +e network binarization method
selected in this paper is the deterministic binarization
method among the naive binarization methods [37]. In the
deterministic binarization method, the parameters of the
binarized convolutional layer and the input quantization
rules are as follows:

w
b

�
+1, w≥ 0,

−1, otherwise,
􏼨 (4)

where w is the original full-precision parameter in the
network, and wb is the binarized parameter obtained after
binarization. +e sign function sign(·) can be used to obtain
the sign of the parameter and input to realize the
binarization.

In actual computer storage, setting 0 bit represents
parameter value −1, and setting 1 bit represents parameter
value −1. +e truth value table of the multiplication of 1-bit
weight and the computer variable operation after quanti-
zation is shown in Table 1.

From Table 1, we can find that the ±1 weight multi-
plication operation obtained by the above quantization rule
is equivalent to the “XNOR” operation of the computer’s 1-
bit variable. +erefore, the accumulation operation after the

convolution kernel operation can also be replaced by the
“bitcount” counting operation. +e operation rules of the
binarized convolutional layer are shown in Figure 1.

2.2. Backward Propagation. +e gradient during training of
the binarized network is still obtained through backward
propagation. +e most critical step is the binarization op-
eration, which directly affects the gradient calculation of the
parameters and input before the binarization. +e curve of
the sign(·) function used in the binarization process is
shown in Figure 2.

From the figure, we can see that the derivative of the
function is almost zero everywhere. +is will cause the
gradient to be blocked when it is propagated here. In order to
avoid the problem of the gradient propagation being
blocked, this experimental design transfers the binarized
parameters and the input gradient directly to the original
parameters and input, respectively. Among them, the gra-
dient of the original data exceeding [−1, 1] is set to zero.
After an update step is completed, original data will be
clipped to the interval of [−1, 1]. A very simple example is
listed, as shown in Figure 3.

In Figure 3, from left to right, a process in which weights
and inputs are binarized and convolution is calculated. +e
lower right corner of each data indicates the respective
gradient value after backpropagation. +e gradient propa-
gated to output through the previous layer is assumed to be
1. It can be seen from Figure 3 that the gradient obtained
from the original input and weight is the gradient of the
binarized input and weight. Although the gradients they get
are not their own gradients, this at least ensures that the
network can be updated and optimized. Obviously, the
gradient obtained by the weight and input is not its optimal
gradient, which makes the update and optimization direc-
tion in each update step not optimal.

However, this gradient propagation method will achieve
a very good gradient masking effect. +e core idea of the
white box gradient attack is to add a disturbance to the input,
which will increase the cost of the output and the label the
fastest. +is direction is actually the reverse of the optimal
gradient of the input data. In the binary convolutional layer,
this optimal gradient is hidden. As a result, it will gain high
immunity against white box gradient attacks. +e principle
of its immunity to the white box gradient attack is shown in
Figure 4.

Figure 4 shows a simplified two-dimensional contour
map of the cost value of network output and label for one

Table 1: +e truth value table of the multiplication of 1-bit weight
and the computer variable operation.

Multiplication of 1-bit weight Equivalent computer
operation

Wm Wn Wm × Wn Vm Vn Vm ⊙Vn

1 1 1 1 1 1
1 −1 −1 1 0 0
−1 1 −1 0 1 0
−1 −1 1 0 0 1
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Figure 1: Schematic diagram of binary convolutional layer operation rules.
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data. +e darker part has a higher cost value. +e points on
the same circle have the same cost value. Point A reaches
point B after binarization, and point C and point D and
point E and point F are the same. A data will inevitably
transform from itself to its binary state. +erefore, point A
and point B have the same cost value. After back-
propagation, point A obtains the gradient of point B. +e
attack generated by the attack algorithm only produces an
attack effect in the v direction, and there is no attack effect in
the h direction, so the attack effect will be weakened or
invalidated as point C and point D. It even produces the
opposite effect of the attack as point E and point F. +e
training of the binary network is a process of multiple it-
erations. +e gradient value obtained through back-
propagation at one time may not be conducive to training,
but the next time, a gradient that is conducive to training
may be obtained. After multiple iterations, it can be ensured
that the network as a whole is updated in a direction that fits
the data well.

3. Architecture

+is paper designs and constructs a BMCDN that directly
processes the waveform domain modulation signal. In each
layer of the network, we use the block structure shown in
Figure 5. Among them, Float/Binary Layer is used for feature
extraction and classification, BatchNormal Layer is used to
normalize data to speed up training, and MaxPooling Layer
implements feature fusion to enhance the antinoise per-
formance of the network.

By analyzing the data of the modulated signal, we can
find that there are a large number of fine-grained features in
the signal, which enable them to carry different information
in different ways. If the binarization process is carried out
too early, these features will be filtered out or submerged.
+erefore, the first two layers in the network designed in this
paper still maintain the float-blocks to extract fine-grained
features in the signal. After passing through the float-blocks,
the one-dimensional data features are mapped to the high-
dimensional network space, which can ensure that the
subsequent binarization processing will not bring too much
information loss. After the float-blocks, binary-blocks with
filters of different sizes are designed to extract coarse-grained
features from the data. For the feature classification step, this
paper designs to use a binarized convolutional layer with a
1×1 size filter as the classification layer. Between the coarse-
grained feature extraction layer and the classification layer, a
transition layer is designed to be inserted to match the data
size. After the classification layer, a Float Layer with a size of
1×1 convolution kernel combined with the softmax layer is
designed as an output layer to obtain classification proba-
bilities of different classifications. +e structure of the
BMCDN is shown in Figure 6.

4. Results and Discussion

+e dataset used in this study is the public modulation signal
dataset RML2018.10A published by [38]. In this dataset, 24
types of single-carrier modulation signals that are widely

used are collected, including OOK, 4ASK, 8ASK, BPSK,
QPSK, 8PSK, 16PSK, 32PSK, 16APSK, 32APSK, 64APSK,
128APSK, 16QAM, 32QAM, 64QAM, 128QAM, 256QB-
WC-AM-AM-WC, AM-DSB-SC, FM, GMSK, and OQPSK.
+e SNR ranges from −20 dB to 30 dB in 2 dB steps. +e
parameters of the pulse shaping filter, the multipath fading
of the channel and other system, and environmental pa-
rameters are all taken into consideration when collecting
data. In this paper, the dataset is divided into training set,
validation set, and test set according to the ratio of 8:1:1. +e
experimental environment in this paper is a computer with
GTX2080 GPU resources and Windows 10 operating sys-
tem. +e experiment is based on the PyTorch deep learning
framework and the DeepRobust adversarial sample attack
and defense platform [39].

4.1. Analysis of the Classification Effect of theModel. In order
to obtain a clear positioning of the classification perfor-
mance of the constructed BMCDN, the experimental design
constructs a full-precision network with the same archi-
tecture for comparison, float modulation classification de-
fense network (FMCDN). +e two networks use the same
training environment and parameters, the loss function is
the cross-entropy loss function, the optimizer is adaptive
moment estimation, the batch size is 256, and the learning
rate is 5e− 5. +e test classification accuracy rates of the two
trained models under modulated signal data with different
SNR are shown in Figure 7.

From Figure 6, we can find that the classification ac-
curacy of FMCDN and BMCDN is improved with the in-
crease of SNR and tends to stabilize around 14 dB. +e
accuracy of FMCDN is stable around 96%, while the ac-
curacy of BMCDN is stable around 90%. In the two networks
with the same architecture, the parameters of FMCDN are
all floating-point data, and the fitting ability of the network is
obviously better than that of BMCDN, so the difference in
accuracy is within expectations and acceptable.

4.2. Analysis of Model Size. In order to comprehensively
analyze the performance of the two networks, this paper
further evaluates the scale of the model from both the model
file size and the running speed. +e test environment se-
lected for the experiment is JD AI’s DABNN, a binary
network reasoning framework highly optimized for ARM

Float/Binary Layer

BatchNormal Layer

MaxPooling Layer

Figure 5: Schematic diagram of block structure.
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instruction set [40]. In order to obtain a more accurate and
stable difference, the selected platform is a Raspberry Pi 4B
with a single ARM core and a frequency of 1.5GHz. After
half an hour of startup, the model is run for 100 times to
compare its average running time. +e model file size and
runtime difference are shown in Figure 7.

From Figure 8, we can see that the file size of the
BMCDNmodel is less than one-sixth of the FMCDNmodel,
and the running time is less than three-quarters of the

FMCDN. In theory, the size of the binarization layer is one-
third of the full-precision layer. In terms of computational
complexity, floating-point multiplication operations will
also be replaced with bit operations to achieve speed-up
effects. +e increase in speed is also related to the floating-
point unit of the device. In the BMCDN, both the first two
layers and the last layer remain full-precision layers, which
causes the model file size to fail to reach the optimal
compression limit of 32 times smaller, and some

FloatLayer
128@1∗5

FloatLayer
128@1∗5

BinaryLayer
128@1∗6

BinaryLayer
128@1∗6

BinaryLayer
128@1∗5

BinaryLayer
128@1∗6

BinaryLayer
128@1∗7

BinaryLayer
128@1∗3

BinaryLayer
128@1∗3

BinaryLayer
128@1∗1

FloatLayer
24@1∗1

Fine-grained 
feature 

extraction layer

Coarse-grained 
feature extraction 

layer

Transition 
layer

Classification 
layer

Output 
layer

Softmax

Figure 6: +e structure of the BMCDN.
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intermediate operations in the binarization layer are also
floating-point operations, and it is reasonable to obtain the
above runtime compression. +e compression ratio of the
model file size and runtime will increase as the proportion of
the binarization layer increases.

4.3. Analysis of the Model’s Antiattack Performance. +is
paper uses two typical white box attack methods, single-step
attack FGSM, and iterative attack PGD to evaluate the
antiattack performance of BMCDN and FMCDN. +e
perturbation intensity of the two attack methods ranges
from 0 to 0.03, with a step size of 0.005. Among them, the
number of iterations of PGD is the quotient of the distur-
bance intensity and the step size plus 5 to ensure the attack
intensity. According to the classification accuracy rate in
Figure 6, this paper selects representative data of SNR −8 dB,
0 dB, 8 dB, and 16 dB to attack to evaluate antiattack per-
formance of the model. +e attack effects of the two attack
algorithms are shown in Figures 9(a) and 9(b).

In order to further improve the performance of the
constructed model against attacks, this paper designs the use
of training sets with attack disturbances to conduct defense
training on the model. +e perturbation intensity of the
training set is 0.02. +e training method and parameters of
defense training are the same as the above experiment. +e
same attack as before is applied to the model after defensive
training, and the attack effect is shown in Figures 9(c) and
9(d).

When horizontally comparing Figures 9(a) and 9(b) or
Figures 9(c) and 9(d), we can find that (1) the accuracy rate
decreases as the attack intensity increases for the model
weather before defensive training or after defensive training.
(2) For data whose classification effect is poor by the model
itself, the attack algorithm is not effective against this type of
data. (3) Under the same disturbance intensity, the iterative
attack method PGD is more aggressive than the single-step
attack method FGSM for FMCDN, while FGSM and PGD
have almost the same attack effect on BMCDN. (4) Under
the same disturbance intensity, BMCDN has stronger
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Figure 7: Test results of the two models under different SNR.
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antiattack performance compared with FGSM. +e gradient
concealment of BMCDNmakes the data not modified in the
direction of the fastest increase in loss every time the
antiperturbation is resisted. In addition, the weak distur-
bance is overwhelmed by the binarization operation.
+erefore, BMCDN obtains a strong antiattack performance
against white box gradient attacks.

When vertically comparing Figures 9(a) and 9(c) or
Figures 9(b) and 9(d), we can find that (1) after defensive
training, the defense performance of the two models for the
two attack algorithms is improved, and the improvement of
FMCDN is greater than that of BMCDN. (2) However, the
antiattack performance of the FMCDN model after defen-
sive training is weaker than that of the BMCND model
before defensive training. +erefore, the optimization effect

of defense training on the decision boundary is not as good
as the defense performance of gradient mask against white
box gradient attacks.

5. Conclusions

Aiming at the problem of high computational complexity
and vulnerability to adversarial sample attacks when arti-
ficial intelligence is applied to the issue of IoT security, this
paper designs a modulation classification defense model
BMCDN that combines fast inference and antiwhite box
gradient attacks to detect the malicious attacks and inter-
ference in the IoT. In the BMCDN model, the binarization
operation enables the multiplication and accumulation
operations in the forward inference of the network to be
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replaced by bit operations, which greatly reduces the amount
of parameters and the computational complexity. In addi-
tion, the gradient masking in backpropagation also enables it
to have the performance of resisting white box gradient
attacks far exceeding the full-precision network model with
the same architecture.

While obtaining the above results, we have been keeping
these points in mind: (1) there is no free lunch. +e model
obtains the characteristics of a smaller scale and resisting
white box gradient attacks, so it will inevitably show the
vulnerability to certain attacks. Further research on the
defense performance of BMCDN is necessary. (2)We believe
that there are still redundant connections in the BMCND
model, and further pruning may result in a more lightweight
physical layer defense model of the IoT. (3) More complex
channel models should be considered, and corresponding
attacks and defense methods should be studied and
designed. (4) We believe that the binarization block is the
reason why its network is resistant to white box gradient
attacks. +erefore, we introduce a small number of binar-
ization blocks and retain most of the full-precision blocks,
which may be able to ensure the classification performance
of the model while gaining defensive performance. +e
research on these points will further improve the deficiencies
of this paper and promote the topic of physical layer security
of the IoT.

Data Availability

+e RML2018.10A dataset used in the experiments is public.
Please refer to the corresponding literature for download
URL. +e source code of the proposed method is available
from the corresponding author on reasonable request,
http://opendata.deepsig.io/datasets/2018.01/2018.01.OSC.
0001_1024x2M.h5.tar.gz.
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