
Research Article
PICAndro: Packet InspeCtion-Based Android Malware Detection

Vikas Sihag ,1,2 Gaurav Choudhary ,3 Manu Vardhan ,2 Pradeep Singh,2

and Jung Taek Seo 4

1Sardar Patel University of Police, Security and Criminal Justice, Jodhpur, India
2National Institute of Technology, Raipur, India
3DTU Compute, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
4Department of Computer Engineering, Gachon University, Seongnam, Republic of Korea

Correspondence should be addressed to Jung Taek Seo; seojt@gachon.ac.kr

Received 14 September 2021; Revised 9 October 2021; Accepted 21 October 2021; Published 8 November 2021

Academic Editor: Zhe-Li Liu

Copyright © 2021 Vikas Sihag et al. ,is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

,e post-COVID epidemic world has increased dependence on online businesses for day-to-day life transactions over the
Internet, especially using the smartphone or handheld devices. ,is increased dependence has led to new attack surfaces which
need to be evaluated by security researchers. ,e large market share of Android attracts malware authors to launch more
sophisticated malware (12000 per day). ,e need to detect them is becoming crucial. ,erefore, in this paper, we propose
PICAndro that can enhance the accuracy and the depth of malware detection and categorization using packet inspection of
captured network traffic.,e identified network interactions are represented as images, which are fed in the CNN engine. It shows
improved performance with the accuracy of 99.12% and 98.91% for malware detection and malware class detection, respectively,
with high precision.

1. Introduction

Cell phones have become a vital piece of our routine for
accessing valuable services as mobile banking, shopping,
food, and governance. ,e data transferred from these apps
are sensitive, and many malicious applications are objecti-
fied to get such information using different means [1].
Cybercriminals resort to social engineering tools, the most
common of these passing a malicious application off as
another popular and desirable one. Recently, a popular and
attractive name, “Coronavirus,” has been used in different
ways for malicious purposes, such as package names con-
cealing spyware and banking Trojans, adwares, and droppers
[2]. Of course, this was not limited to naming: the pandemic
theme was also used in application user interfaces. Mobile
malware and adware in particular often come in the form of
a gaming or entertainment app that seems harmless, but
what users are unaware of is that their device is doing
malicious activities in the background [3]. ,erefore, mobile
malware is on the rise, with attackers shifting their efforts to

smartphones and tablets as global mobile markets come
under attack. Staying secure means recognizing your risk
and understanding common threats by adopting an effective
malware detection mechanism [4]. Figure 1 illustrates the
rise in research publications in the domain of malware
detection and related terms.

,e existing malware detection mechanism relies on two
methods, dynamic and static. In addition, having a new
literature review with machine learning influenced the re-
search studies and explored some technical details in mal-
ware detection using machine learning-based techniques.
Numerous past works are identified with Android malware
detection, yet the vast majority of the past investigations
utilize limited features to distinguish malware [6–8]. Each
kind of component can address a couple of properties of the
applications. Android malware detectors are vulnerable and
can be evaded with a low evasion rate. A robust approach is
required to establish a durable defense against these
adversarial attacks that are too difficult to bypass. ,e
expanding malware threats risk has constrained the Android

Hindawi
Security and Communication Networks
Volume 2021, Article ID 9099476, 11 pages
https://doi.org/10.1155/2021/9099476

mailto:seojt@gachon.ac.kr
https://orcid.org/0000-0002-2120-1296
https://orcid.org/0000-0003-3378-2945
https://orcid.org/0000-0003-2944-7896
https://orcid.org/0000-0003-0971-8548
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9099476


antimalware industry to foster solutions for mitigating
malware threats on Android cell phones and other Android
gadgets [9, 10].

In this paper, we propose PICAndro (Packet InspeCtion-
basedAndroidmalware detection) a network interaction-based
detection framework. We first generate dynamic analysis
network traffic logs for an input APK (an Android executable),
followed by conversion of network traffic into network in-
teractions after packet inspection. Furthermore, they are
represented as gray-scale images. Images are thus fed into the
convolution neural network model for training. Moreover, the
model is evaluated against the dataset for malware detection.

Organization of the paper is as follows. Section 2 dis-
cusses the related work. In Section 3, we present the pro-
posed framework followed by performance evaluation in
Section 4. Furthermore, we discuss issues related with
proposed approach and comparison in Section 5, followed
with conclusion in Section 6.

2. Related Work

,e expanding number of Android malware brings more
security issues to mobile users and makes it challenging to
identify the malware [11]. Various researchers have been
focused on different solutions in Android malware
detection.

2.1. Network Traffic-Based Android Malware Detection.
To identify and classify Android malware, various solutions
have been proposed in the literature. Malik and Kaushal [14]
gave CREDROID, a semiautomated Android malware de-
tection approach using network traffic. ,e authors focused
on the DNS server and remote server traffic to identify
malware transferring sensitive information. ,e proposed
solution lacks the identification of malware without network
interactions. Li et al. [12] proposed a technique to detect
malware based on network traffic monitoring and used SVM
for feature extractions. ,e authors focused on the

improvement of Android terminal defense ability against
malicious attacks. Arora et al. [13] focused on malware
detection in Android-based mobiles. ,e authors used rule-
based classifiers in traffic analysis for malware detection.

Zulkifli et al. [16] proposed a dynamic malware detection
technique based on decision tree algorithms emphasizing
behavioral aspects of the network. ,e authors used Drebin
and Contagio dataset for feature selections. Wang et al. [29]
focused on multilayer traffic analysis for malware detection.
,e authors proposed lightweightmalware detection based on
the combination of network traffic analysis and machine
learning.,e proposed approach is applied on the server-side
only. Zaman et al. [30] focused on malware detection and
proposed a method based on behavioral analysis using syscall
tracing. Abuthawabeh and Mahmoud [17] proposed a model
for Android malware detection and categorization based on
conversation-level network traffic features. However, authors
do not include feature extraction at the run time.

2.2. Deep Learning-Based Android Malware Detection.
Different methodologies have been proposed in past research
works fully intent on identifying Android malware based on
deep learning mechanisms. Alzaylaee et al. [21] proposed a
deep learning-based malware detection approach for mobile
applications based on the dynamic analysis with the help of
state entire input generations. ,e proposed method can be
able to detect zero-day Android malware. In this paper, the
authors evaluated 31,125 Android applications and 420 static
and dynamic features. Wu [31] presented a detailed study on
the deep learning-based Android malware detection solutions
and classified them as per their techniques. Yuan et al. [19]
proposed a deep learning-based malware detector based on
rule mining techniques. ,e authors extracted 192 features
from both static and dynamic analysis with the help of the
DBN-based deep learning model.

Kim et al. [20] presented a detailed study on multimodal
deep learning used for malware detection and proposed a
malware detection framework based on static analysis. ,e

9.0 M

8.5 M

8.0 M

7.5 M

7.0 M

6.5 M

6.0 M

5.5 M

5.0 M

4.5 M

4.0 M

8.05 M

7.49 M

8.81 M

6.79 M

5.22 M

6.54 M

7.32 M
6.99 M

5.50 M 5.65 M

4.78 M
5.20 M

5.50 M

4.68 M

5.34 M

6.40 M

7.04 M

6.47 M

7.52 M

Ja
nu

ar
y 

20
19

Fe
br

ua
ry

 2
01

9

M
ar

ch
 2

01
9

Ap
ril

 2
01

9

M
ay

 2
01

9

Ju
ne

 2
01

9

Ju
ly

 2
01

9

Au
gu

st 
20

19

Se
pt

em
be

r 2
01

9

O
ct

ob
er

 2
01

9

N
ov

em
be

r 2
01

9

D
ec

em
be

r 2
01

9

Ja
nu

ar
y 

20
20

Fe
br

ua
ry

 2
02

0

M
ar

ch
 2

02
0

Ap
ril

 2
02

0

M
ay

 2
01

9

Ju
ne

 2
02

0

Ju
ly

 2
02

0

Au
gu

st 
20

20

Se
pt

em
be

r 2
02

0

O
ct

ob
er

 2
02

0

N
ov

em
be

r 2
02

0

D
ec

em
be

r 2
02

0

Figure 1: Number of attacks per month on mobile users in 2019 and 2020 [5].

2 Security and Communication Networks



authors provided a flexibility feature that in future more
features can be added as per the requirements. Sihag et al.
[22] proposed deep learning-based Android malware de-
tection framework using dynamic features. ,e authors
considered dynamic analysis of the logs of Android APK and
done processing on features. ,e proposed approach was
tested on 13,533 applications and extract behavioral pat-
terns. Zhang et al. [23] focused on feature selection and
processing and proposed an Android malware detection
approach based on the text sequence of APPs generated by
AndroPyTool. Bayazit et al. [24] proposed a neural network-
based Android malware detection mechanism based on IP
features selection. ,e authors used the CICMalDroid2017
dataset for analysis. ,e IP was converted into integer
numbers and subdivided into four numbers.

2.3. Image-Based Android Malware Detection. Darwaish
et al. [28] presented an image-based Android malware de-
tection approach that is robust against various adversarial
settings. ,e authors have checked the proposed against two
novel attacks. Ding et al. [25] proposed the CNN-deep
learning-based static Android malware detection method.
,e authors used the bytecode file as a binary stream and
converted it into the 2D matrix. Mercaldo and Santone [18]
focused on the familial classification problem of malwares
and evaluated their approach against 50,000 samples. ,ey
used mobile applications as a gray-scale image to identify
belonging malware facilities.

,e static analysis approach can be affected by code ob-
fuscation and code manipulation techniques [32]. Ünver and
Bakour [27] proposed a framework for distinguishing between
the Android applications as software or malware. Yang and
Wen [33] inspected unzipped files fromAPK files using images
patterns with the help of a random forest classifier.

Table 1 provides a comprehensive overview of research
work in network, deep learning, and image-based Android
malware detection approaches available in the literature.

3. Design of PICAndro

In this section, we discuss the overview and design of the
proposed framework.

3.1. Overview. ,e proposed architectural diagram of the
PICAndro framework is illustrated in Figure 2. ,e ob-
jective of the framework is to classify the given Android
application executable .APK based on its network be-
havior. Network behavior of APK is extracted by exe-
cuting it in an emulated environment. Captured network
interactions in the form of packets are inspected to extract
network flows and sessions, which are further represented
in the form of images. ,e generated images are fed into
convolution neural networks for training the model,
which is then evaluated against the test dataset to answer
our research questions. ,e proposed approach consists of
below mentioned modules.

3.2. Dynamic Analysis. Two types of approaches, namely,
static and dynamic analysis are used to extract application
features. Static (code) analysis analyzes an app by scanning
its code, whereas dynamic analysis extracts features by ex-
ecuting it. We employ dynamic analysis to record appli-
cation behavior as it is effective against evasive applications
[34]. ,e first module of the proposed approach involves
running sample Android applications on an emulator to log
application behavior and capture network traffic [35]. User
interactions into the emulator were fed using the Monkey
tool. ,e captured log includes system calls, network traffic,
binder calls, and composite behavioral interactions. For our
analysis, we focus on network traffic only.

3.3. Image Representation. ,e captured traffic comprises
packets of different sizes and different network interactions.
Packet inspection based on different network granularity
levels outputs different network interactions. ,e proposed
work uses flow and session as network interactions. It does
not consider per packet interactions. A session can be de-
fined as a collection of flows in both directions corre-
sponding to a connection whereas a flow can be defined as
packets having the same 5 identifiers, namely, source and
destination IP addresses; source and destination port
numbers; and protocol. We consider only the first N2 bytes
of a flow/session for representing as anN × N image for data
uniformity.,e starting bytes of a flow/session best reflect its
characteristics as it contains connection information and
few data contents. Each byte of the network interaction is
represented as a pixel (e.g., 0 x ff represents a white and 0 x 00
represents a black pixel). Steps involved are defined in Al-
gorithm 1. Figure 3 shows 20× 20 image representation of
flows in malware samples from different families.

3.4. Convolution Neural Networks. We employ the convo-
lution neural network (CNN)-based deep learning method
for image classification. ,e CNN model is first fed with
Network Interaction (NInt) images of size N×N. ,e first
convolution layer (CL1) performs convolution operation
with 32 kernels (of size 3× 3). ,e results of CL1 (N×N× 32
output shape) are fed into a 2× 2 max-pooling layer MP1. It
is followed by a second convolution layer CL2 with 64
kernels (of size 3× 3) and second 2× 2 max-pooling layer
MP2.,e last two layers are dense layers (dropout� 0.1). For
the output layer, we use sigmoid and softmax functions for
binary and multiclass classification, respectively. Rectified
linear unit (ReLU) activation function is used for hidden
layers as it forwards only the positive part of the argument.

3.5. Classification Model. ,e representation of network
interaction behavior enables us to detect misbehavior by
samples effectively. ,e above discussed CNN model is
trained on the dataset, which is then used for classification
and detection. ,e classification results are then used for
performance evaluation.

Security and Communication Networks 3



Table 1: A comparison of Android malware detection approaches based on network features, deep learning, and image-based models.

Author Year Detection features Technique Dataset

Network

Li et al. [12] 2014 Network features SVM Self collected
Arora et al. [13] 2014 Traffic statistics Decision tree Android MalGenome

Malik and Kaushal [14] 2016 DNS queries WoT matching Android MalGenome
Wang et al. [15] 2017 URL text semantics SVM Self collected
Zulkifli et al. [16] 2018 Traffic statistics Decision tree Android MalGenome
Abuthawabeh and
Mahmoud [17] 2019 Conversation level ExtraTree classifier CICAndMal2017

Sanz et al. [18] 2020 TCP/IP header Random forest Self collected

Deep
learning

Yuan et al. [19] 2016 Advertising, API, intent, network,
permission Deep belief networks Contagio, MalGenome

Kim et al. [20] 2018 Opcode, API, library, permission,
components

Multimodal deep
learning

VirusShare,
MalGenome

Alzaylaee et al. [21] 2020 Permission, events, and application
attributes MLP McAfee labs

Sihag et al. [22] 2021 System calls, binder call Neural network MalDroid2020
Zhang et al. [23] 2021 Text sequencing CNN Contagio, MalGenome
Bayazit et al. [24] 2021 IP address NN CICAndMal2017

Image

Ding et al. [25] 2020 Byte code CNN Drebin
Mercaldo and Santone [26] 2020 APK raw Neural network AMD dataset

Ünver and Bakour [27] 2020 Binary bitstream Machine learning Drebin MalGenome,
AMD

Darwaish et al. [28] 2021 Permissions, intents, components,
API CNN AndroZoo

APK

Data Collection Dynamic Analysis

Emulator

Convolution Neural Networks

Conv2D + MaxPooling2D + Flatten + Dense

Classification

Network Traffic Network Flow and
Session Processing

Image representation

NxN Image

Packet Inspection
(Session and Flow

Generation)

NxN Image

Figure 2: Proposed framework architecture of PICAndro.

4 Security and Communication Networks



4. Performance Evaluation

In this section, we first introduce datasets and evaluation
parameters. It follows with the evaluation of our proposed
approach against the following research questions:

RQ1. Can PICAndro detect malware samples with high
accuracy?
RQ2. Can PICAndro effectively classify malware
samples into their classes?
RQ3. Which network interaction among flow and
session is better for network traffic-based detection?
RQ4. Which image size is most effective for repre-
senting network interactions?

4.1. Dataset and Evaluation Metrics. To answer the listed
RQs, we evaluate the performance and efficiency of PIC-
Andro against a dataset. A dataset of Android application
consisting of 13533 samples was collected from different
sources (Benign samples� 2621 and malicious
samples� 11712) [36–39]. ,e dataset comprises different
Malware types and Benign samples. Samples were catego-
rized for 2-class (Malware and Benign) and 5-class (Adware,
Banking, Benign, Riskware, and SMS) scenarios. Samples

were analyzed using dynamic analysis, and network traffic
was recorded. Of the initially collected APK samples,
samples that did not execute during dynamic analysis or
generate network traffic were not considered further. ,e
captured traffic was inspected to identify network interac-
tions (flows and sessions). Table 2 describes the successful
sample APKs in each category of the dataset, generated flow,
and session statistics. It was observed that Riskware category
generated most number of interactions (#Sessions/#APKs
and #Flows/#APKs), with 34.6 sessions per sample and 61.1
flows per sample. SMS category generated the least network
interaction around 2.6 sessions and 5.2 flows per sample.
Figure 4 represents the filesize distribution of sample APK
files among categories of the dataset. Figure 5 illustrates the
number of packets per session and flow for the captured
traffic. Each network interaction is then represented as an
image of N×N size. For experimental purpose, we have
considered multiple image size 400 (20× 20), 625 (25× 25),
784 (28× 28), and 900 (30× 30).

Parameters listed in Table 3 are considered to evaluate
the PICAndro framework.

4.1.1. RQ1: Can PICAndro Detect Malware Samples with
High Accuracy? ,e problem of malware detection deals
with identifying malicious network interactions from the

Figure 3: 20× 20 gray-scale image representation of malware BankTrojanSVPeng, FakeInstal downloader, SMSreg, RiskwareShedun, and
artemis malware samples.

Input: RawTraffic.pcap
Output: Gray-ccale images
Extract NInt from RawTraffic.pcap
foreach NInt do
if NInt is empty then
continue

end
if NInt already exists then
continue

end
if NInt size ≥N2 bytes then
consider first N2 bytes

end
if NInt size <N2 bytes then
pad 0 x 00’s till size � N2 bytes

end
Generate N×N size gray-scale image

end

ALGORITHM 1: Image Generation.

Security and Communication Networks 5



Table 2: Description of dataset.

Classification
type Class/category # APKs Avg. APK

size (bytes) # Sessions Avg. # packets
per session # Flows Avg. # packets

per flow

5 class

Adware 1383 196046 23566 16.65 46435 8.47
Banking 2206 79575 30066 11.22 54000 6.27
Benign 2155 467907 41145 33.75 81149 17.13
Riskware 3299 173814 114150 10.46 201570 6.04
SMS 4013 54275 10559 25.08 20763 12.76

2 class Benign 2155 467907 41145 33.75 81149 17.13
Malware 10901 113567 178341 12.28 322768 6.86

Adware Banking Riskware SMS Benign Malware
Sample category

0

100000

200000

300000

400000

600000

500000

Fi
le

 si
ze

 in
 b

yt
es

Median 10579 3522 70662 399 83149 3190

Figure 4: Boxplot representing filesize (bytes) distribution of samples in the dataset among different categories.Note. Median value for each
category is mentioned on the top.

60

50

40

30

20

10

0

N
um

be
r o

f p
ac

ke
ts

Median

Adware Banking Riskware SMS Benign Malware
Sample category

8 5 7 2 10 6

(a)

N
um

be
r o

f p
ac

ke
ts

Median
30

25

20

15

10

5

0
Adware Banking Riskware SMS Benign Malware

Sample category

4 3 5 1 5 5

(b)

Figure 5: Boxplot of packet count for sessions and flows among sample categories: (a) boxplot for session distribution; (b) boxplot for flow
distribution.

Table 3: Malware detection and classification evaluation metrics.

Term Abbreviation Definition
True positive TP No. of samples correctly classified into class C

True negative TN No. of samples correctly not classified into class C

False positive FP No. of samples incorrectly classified into class C

False negative FN No. of samples incorrectly not classified into class C

Precision p TP/(TP + FP)

Recall r TP/(TP + FN) also known as sensitivity
F-measure F1 2rp/(r + p)

Accuracy Acc. Percentage of samples correctly classified

6 Security and Communication Networks



dataset. From the dataset, we created a binary classification
scenario for both flow- and session-based network inter-
actions. For flow-based binary classification, 81149 Benign
and 322768 malicious flows were generated. For session-
based binary classification, 41145 Benign and 178341
malicious sessions were generated. Table 4 shows the results
of PICAndro against Precision, Recall, F-measure, and
Accuracy parameters. Following conclusions are drawn
from it:

(i) For binary classification, both flow- and session-
based scenarios perform satisfactorily on dataset
with accuracy (greater than 99%)

(ii) For 2-class classification, all scenarios with different
image sizes perform considerably well with reference
to evaluation parameters

RQ1 answer: PICAndro can effectively detect malware
samples with high accuracy.

4.1.2. RQ2: Can PICAndro Effectively Classify Malware
Samples into =eir Classes? ,e problem of classifying
malicious samples into respective malware classes is pop-
ularly known as malware type detection/classification. For
performance evaluation of PICAndro, we considered a 5-
class classification scenario for both flow- and session-based
network interactions. Classes considered were Adware,
Banking, Benign, Riskware, and SMS type. For session-based
classification, 23566 Adware, 30066 Banking, 41145 Benign,
114150 Riskware, and 10559 SMS class unique sessions were
generated. For flow-based classification, 46435 Adware,
54000 Banking, 81149 Benign, 201570 Riskware, and 20763
SMS class unique flows were generated. Table 4 shows the
results of PICAndro against Precision, Recall, F-measure,
and Accuracy parameters for RQ2. Following conclusions
are drawn from it:

(i) Proposed work performs satisfactorily on dataset
with accuracy greater than 98.5% and F-measure
greater than 98%

(ii) For 5-class classification, all scenarios with different
image sizes perform considerably well with reference
to evaluation parameters

RQ2 answer: PICAndro can effectively classify malicious
samples into their class/type with high accuracy and F-
measure.

4.1.3. RQ3: Which Network Interaction among Flow and
Session Is Better for Network Traffic-Based Detection? In the
proposed work, we study the effectiveness of network in-
teractions for network traffic classification. Multiple works
on packet-based classification (malware and intrusion de-
tection) exist in the literature. We try to identify which
network interaction amongst flow and session does better
network representation. For both binary and 5-class clas-
sification, flow-based detection outperforms the session-
based approach. For each image representation of size

20× 20, 25× 25, 28× 28, and 30× 30, the flow-based ap-
proach shows better performance in terms of Precision,
Recall, F-measure, and Accuracy. Only for a single scenario
in 5-class classification with the image size of 25× 25, ses-
sion-based network interaction shows slight improvement
over the flow-based one. Accuracy curve for training and test
dataset for best results in each scenario is shown in Figure 6.
Following conclusions can be drawn from it:

(i) For binary classification, flow-based detection
(99.12% accuracy and 97.76% F-measure) outper-
forms session-based (99.09% accuracy and 97.57% F-
measure) approach

(ii) For 5-class classification, flow-based detection
(98.91% accuracy and 98.49% F-measure) outper-
forms session-based (98.56% accuracy and 98.05% F-
measure) approach

RQ3 answer: flow network interaction is better for
network traffic-based detection.

4.1.4. RQ4:Which Image Size Is Most Effective for Representing
Network Interactions? In the proposed work, we study the
effectiveness of network representation in the form of
N ×N images. Multiple works exist on image-based mal-
ware detection approaches, where code segments are
represented as images. We try to identify which image size
does better network representation. Figure 7 illustrates the
confusion matrix from 5-class classification of dataset
based on flow-based network interactions represented as
20 × 20 images. Following conclusions can be drawn from
it:

(i) For 5-class classification, 20× 20 image representa-
tion outperforms other image sizes.

(ii) For 2-class classification, 20× 20 image representa-
tion outperforms other image sizes. ,e 28× 28
image representation during flow-based scenario
also performs equally well on one instance.

RQ4 answer: image size 20× 20 is most effective for
representing network interactions.

5. Discussion

In this section, we compare our proposed system against
state-of-the-art Android malware detection systems using
network traffic. ,e efficiency and performance of the
proposed solution are compared with those of previous
studies in Table 5. It lists features employed solving Android
malware detection problems using network traffic, fur-
thermore the dataset used, techniques, and performance.
,e previous evaluation demonstrates the efficacy of our
method in detecting recent malware using their network
traffic.

Our proposed approach suffers from few limitations.
Dynamic analysis is being used to execute the sample APK in
the emulator. As dynamic analysis suffers from code cov-
erage issues, random events in the emulator were generated
using the Monkey tool to explore components of each

Security and Communication Networks 7



Table 4: Comparative analysis of 2-class and 5-class classification by PICAndro using flow-based and session-based network granularity.

Classification type Network granularity Image size Precision Recall F-measure Accuracy

2 class

Flow

20× 20 98.97 96.59 97.76 99.12
25× 25 96.49 94.95 95.71 98.29
28× 28 98.54 97.00 97.76 99.10
30× 30 98.33 96.85 97.58 99.04

Session

20× 20 98.41 96.75 97.57 99.09
25× 25 95.80 94.20 94.99 98.10
28× 28 94.49 93.62 94.05 97.79
30× 30 95.54 95.64 95.59 98.33

5 class

Flow

20× 20 98.51 98.46 98.49 98.91
25× 25 97.07 96.74 96.88 97.74
28× 28 97.61 97.58 97.59 98.28
30× 30 97.99 97.86 97.92 98.43

Session

20× 20 98.17 97.94 98.05 98.56
25× 25 97.14 97.07 97.10 98.01
28× 28 97.36 97.19 97.27 98.09
30× 30 97.45 97.21 97.33 98.15

Bold value highlights best performance results.

20 60 8040 1000
Iterations

train
test

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Ac
cu

ra
cy

(a)

20 60 8040 1000
Iterations

train
test

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Ac
cu

ra
cy

(b)

20 60 8040 1000
Iterations

train
test

0.86

0.84

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

(c)

20 60 8040 1000
Iterations

train
test

0.88

0.90

0.92

0.94

0.96

0.98

Ac
cu

ra
cy

(d)

Figure 6: Accuracy graph of PICAndro over 100 iterations for training and test samples: (a) session-based 2-class classification; (b) flow-
based 2-class classification; (c) session-based 5-class classification; (d) flow-based 5-class classification.

8 Security and Communication Networks



activity.,is increases the probability of triggeringmalicious
behavior. However, it is possible that some of the malicious
code segments were not triggered. A stateful input generator
for emulation can be explored in future to gain advanced
code coverage and real-world traffic.

6. Conclusion

Malware is an increasing threat to smartphone users.
Antivirus scanners are evaded by ever-evolving malware
with hardening methods. We introduce Android mal-
ware detection methods using network interactions
(flows and sessions generated by packet inspection)
represented as images. Evaluation of the proposed ap-
proach demonstrates its potential as it outperforms
existing approaches and identifies malicious interactions
with few false alarms. It shows improved performance
with the accuracy of 99.12% and 98.91% for malware
detection and malware class detection, respectively. In
the future, the PICAndro framework can be extended to
include other static and dynamic features (for example,
system call, API, permissions, and network statistical
information) than network features alone. Visual image
analysis for malware families can also be explored for
identification.

Data Availability

No data were used to support this study.

Conflicts of Interest

,e authors declare that they have no conflicts of interest.

Acknowledgments

,is work was supported by the National Research Foundation
of Korea (NRF) grant funded by the Korea government (MSIT)
(No. 2020R1A2C101218712) andwas supported by theNuclear
Safety Research Program through the Korea Foundation of
Nuclear Safety (KoFONS) using the financial resource granted
by the Nuclear Safety and Security Commission (NSSC) of the
Republic of Korea (No. 2101058).

References

[1] I. Kholod, A. Shorov, and S. Gorlatch, “Efficient distribution
and processing of data for parallelizing data mining in mobile
clouds,” Journal of Wireless Mobile Networks, Ubiquitous
Computing, and Dependable Applications (JoWUA), vol. 11,
no. 1, pp. 2–17, 2020.

[2] B. Schacht and P. Kieseberg, “An analysis of 5 million
openpgp keys,” Journal of Wireless Mobile Networks, Ubiq-
uitous Computing, and Dependable Applications (JoWUA),
vol. 11, no. 3, pp. 107–140, 2020.

[3] D. Caputo, L. Verderame, A. Ranieri, A. Merlo, and
L. Caviglione, “Fine-hearing google home: why silence will
not protect your privacy,” Journal of Wireless Mobile Net-
works, Ubiquitous Computing, and Dependable Applications
(JoWUA), vol. 11, no. 1, pp. 35–53, 2020.

Adware Banking Benign Riskware SMS

SM
S

Ri
sk

w
ar

e
Be

ni
gn

Ba
nk

in
g

Ad
w

ar
e

Predicted Label

Tr
ue

 L
ab

el

1.0

0.8

0.6

0.4

0.2

0.0

Sc
al

e

0.020.98 0.005 0 0

0.960.013 0.023 0 0

0.0110.0032 0.98 0.0017 0.00012

00 0.00024 1 0

00 0 0 1

Figure 7: Confusion matrix obtained from 5-class classification of dataset based on network flow features represented by 20× 20 images.

Table 5: Comparison of the proposed work with state-of-the-art network traffic-based malware detection solutions in Android.

Author Year Network features Dataset Technique Accuracy
Arora et al. [13] 2014 Traffic statistics Android MalGenome Decision tree 93.75
Malik and Kaushal [14] 2016 DNS queries Android MalGenome Web of trust matching —
Wang et al. [15] 2017 URL text semantics Self collected SVM 99.15
Zulkifli et al. [16] 2018 Traffic statistics Drebin, Contagio Decision tree 98.4
Abuthawabeh and Mahmoud [17] 2019 Conversation level CICAndMal2017 ExtraTree classifier 87.75
Sanz et al. [18] 2020 TCP/IP header Self collected Random forest 90
Proposed Work 2021 Flow and session CICMalDroid2020 CNN 99.12

Security and Communication Networks 9



[4] N. C. ,ang and M. Park, “Detecting malicious middleboxes
in service function chaining,” Journal of Internet Services and
Information Security (JISIS), vol. 10, no. 2, pp. 82–90, 2020.

[5] V. Chebyshev, “Mobile malware evolution 2020,” 2021,
https://securelist.com/mobile-malware-evolution-2020/
101029/.

[6] R. Feng, S. Chen, X. Xie, G. Meng, S. W. Lin, and Y. Liu, “A
performance-sensitive malware detection system using deep
learning on mobile devices,” IEEE Transactions on Informa-
tion Forensics and Security, vol. 16, pp. 1563–1578, 2020.

[7] V. Sihag, A. Mitharwal, M. Vardhan, and P. Singh, “Opcode
n-gram basedmalware classification in android,” in Proceedings
of the 2020 Fourth World Conference on Smart Trends in
Systems, Security and Sustainability (WorldS4), pp. 645–650,
IEEE, London, UK, July 2020.

[8] S. Talegaon and R. Krishnan, “Administrative models for role
based access control in android,” Journal of Internet Services
and Information Security (JISIS), vol. 10, no. 3, pp. 31–46,
2020.

[9] A. L. Marra, F. Martinelli, F. Mercaldo, A. Saracino, and
M. Sheikhalishahi, “D-bridemaid: a distributed framework for
collaborative and dynamic analysis of android malware,”
Journal of Wireless Mobile Networks, Ubiquitous Computing,
and Dependable Applications (JoWUA), vol. 11, no. 3, pp. 1–
28, 2020.

[10] M. S. M. Pozi and M. H. Omar, “A kernel density estimation
method to generate synthetic shifted datasets in privacy-
preserving task,” Journal of Internet Services and Information
Security (JISIS), vol. 10, no. 4, pp. 70–89, 2020.

[11] V. Sihag, M. Vardhan, and P. Singh, “Blade: robust malware
detection against obfuscation in android,” Forensic Science
International: Digital Investigation, vol. 38, Article ID 301176,
2021.

[12] J. Li, L. Zhai, X. Zhang, and D. Quan, “Research of android
malware detection based on network traffic monitoring,” in
Proceedings of the 2014 9th IEEE Conference on Industrial
Electronics and Applications, pp. 1739–1744, IEEE, Hangzhou,
China, June 2014.

[13] A. Arora, S. Garg, and S. K. Peddoju, “Malware detection
using network traffic analysis in android based mobile de-
vices,” in Proceedings of the 2014 Eighth International Con-
ference on Next Generation Mobile Apps, Services and
Technologies, pp. 66–71, IEEE, NW Washington, DC, USA,
September 2014.

[14] J. Malik and R. Kaushal, “Credroid: android malware de-
tection by network traffic analysis,” in Proceedings of the 1st
acm workshop on privacy-aware mobile computing, pp. 28–36,
New York, NY, USA, July 2016.

[15] S. Wang, Q. Yan, Z. Chen, B. Yang, C. Zhao, and M. Conti,
“Detecting android malware leveraging text semantics of
network flows,” IEEE Transactions on Information Forensics
and Security, vol. 13, no. 5, pp. 1096–1109, 2017.

[16] A. Zulkifli, I. R. A. Hamid, W. M. Shah, and Z. Abdullah,
“Android malware detection based on network traffic using
decision tree algorithm,” Advances in Intelligent Systems and
Computing, Springer, in Proceedings of the International
Conference on Soft Computing and Data Mining, pp. 485–494,
January 2018.

[17] M. K. A. Abuthawabeh and K. W. Mahmoud, “Android
malware detection and categorization based on conversation-
level network traffic features,” in Proceedings of the 2019
International Arab Conference on Information Technology
(ACIT), pp. 42–47, IEEE, Al Ain, UAE, December 2019.

[18] I. J. Sanz, M. A. Lopez, E. K. Viegas, and V. R. Sanches, “A
lightweight network-based android malware detection sys-
tem,” in Proceedings of the 2020 IFIP Networking Conference
(Networking), pp. 695–703, IEEE, USA, June 2020.

[19] Z. Yuan, Y. Lu, and Y. Xue, “Droiddetector: android malware
characterization and detection using deep learning,” Tsinghua
Science and Technology, vol. 21, no. 1, pp. 114–123, 2016.

[20] T. Kim, B. Kang, M. Rho, S. Sezer, and E. G. Im, “A multi-
modal deep learning method for android malware detection
using various features,” IEEE Transactions on Information
Forensics and Security, vol. 14, no. 3, pp. 773–788, 2018.

[21] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, “Dl-droid: deep
learning based android malware detection using real devices,”
Computers & Security, vol. 89, Article ID 101663, 2020.

[22] V. Sihag, M. Vardhan, P. Singh, G. Choudhary, and S. Son,
“De-lady: deep learning based android malware detection
using dynamic features,” Journal of Internet Services and
Information Security (JISIS), vol. 11, no. 2, pp. 34–45, 2021.

[23] N. Zhang, Y.-a. Tan, C. Yang, and Y. Li, “Deep learning feature
exploration for android malware detection,” Applied Soft
Computing, vol. 102, Article ID 107069, 2021.

[24] E. C. Bayazit, O. K. Sahingoz, and B. Dogan, “Neural network
based android malware detection with different ip coding
methods,” in Proceedings of the 2021 3rd International Con-
gress on Human-Computer Interaction, Optimization and
Robotic Applications (HORA), pp. 1–6, IEEE, Ankara, Turkey,
June 2021.

[25] Y. Ding, X. Zhang, J. Hu, and W. Xu, “Android malware
detection method based on bytecode image,” Journal of
Ambient Intelligence and Humanized Computing, pp. 1–10,
2020.

[26] F. Mercaldo and A. Santone, “Deep learning for image-based
mobile malware detection,” Journal of Computer Virology and
Hacking Techniques, vol. 16, pp. 1–15, 2020.

[27] H. M. Ünver and K. Bakour, “Android malware detection
based on image-based features and machine learning tech-
niques,” SN Applied Sciences, vol. 2, no. 7, pp. 1–15, 2020.

[28] A. Darwaish, F. Näıt-Abdesselam, C. Titouna, and S. Sattar,
“Robustness of image-based androidmalware detection under
adversarial attacks,” in Proceedings of the ICC 2021-IEEE
International Conference on Communications, pp. 1–6, IEEE,
Xiamen, China, July 2021.

[29] S. Wang, Z. Chen, Q. Yan, B. Yang, L. Peng, and Z. Jia, “A
mobile malware detection method using behavior features in
network traffic,” Journal of Network and Computer Applica-
tions, vol. 133, pp. 15–25, 2019.

[30] M. Zaman, T. Siddiqui, M. R. Amin, and M. S. Hossain,
“Malware detection in android by network traffic analysis,” in
Proceedings of the 2015 international conference on networking
systems and security (NSysS), pp. 1–5, IEEE, Dhaka, Bangla-
desh, January 2015.

[31] H. Wu, “A systematical study for deep learning based android
malware detection,” in Proceedings of the 2020 9th interna-
tional conference on software and computer applications,
pp. 177–182, 2020.

[32] C. Johnson, B. Khadka, R. B. Basnet, and T. Doleck, “Towards
detecting and classifying malicious urls using deep learning,”
Journal of Wireless Mobile Networks, Ubiquitous Computing,
and Dependable Applications (JoWUA), vol. 11, no. 4,
pp. 31–48, 2020.

[33] M. Yang and Q. Wen, “Detecting android malware by ap-
plying classification techniques on images patterns,” in Pro-
ceedings of the 2017 IEEE 2nd International Conference on

10 Security and Communication Networks

https://securelist.com/mobile-malware-evolution-2020/101029/
https://securelist.com/mobile-malware-evolution-2020/101029/


Cloud Computing and Big Data Analysis (ICCCBDA),,
pp. 344–347, IEEE, New York, NY, USA, February 2017.

[34] V. Sihag, M. Vardhan, and P. Singh, “A survey of android
application and malware hardening,” Computer Science Re-
view, vol. 39, Article ID 100365, 2021.

[35] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, “Copperdroid:
automatic reconstruction of android malware behaviors,” in
Proceedings of the Network and Distributed System Security
Symposium, San Diego, California, USA, March 2015.

[36] A. F. A. Kadir, N. Stakhanova, and A. A. Ghorbani, “An
empirical analysis of android banking malware,” Protecting
Mobile Networks and Devices: Challenges and Solutions,
Vol. 209, CRC Press, , Boca Raton, Florida, 2016.

[37] S. Mahdavifar, A. F. A. Kadir, R. Fatemi, D. Alhadidi, and
A. A. Ghorbani, “Dynamic android malware category clas-
sification using semi-supervised deep learning,” in Proceed-
ings of the 2020 IEEE Intl Conf on Dependable, Autonomic and
Secure Computing, Intl Conf on Pervasive Intelligence and
Computing, Intl Conf on Cloud and Big Data Computing, Intl
Conf on Cyber Science and Technology Congress (DASC/
PiCom/CBDCom/CyberSciTech), pp. 515–522, IEEE, Calgary,
AB, Canada, August 2020.

[38] C. Mobile, “Mobile malware mini dump. EB/OL].[2016-6-
12],” 2013.

[39] F. Wei, Y. Li, S. Roy, X. Ou, andW. Zhou, “Deep ground truth
analysis of current android malware,” in Proceedings of the
International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, pp. 252–276,
Springer, Berlin, Heidelberg, July 2017.

Security and Communication Networks 11


