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We describeGenesis, a language for the generation of synthetic programs.The language allows users to annotate a template program
to customize its code using statistical distributions and to generate program instances based on those distributions.This effectively
allows users to generate programs whose characteristics vary in a statistically controlled fashion, thus improving upon existing
program generators and alleviating the difficulties associatedwith ad hocmethods of program generation.We describe the language
constructs, a prototype preprocessor for the language, and five case studies that show the ability of Genesis to express a range of
programs. We evaluate the preprocessor’s performance and the statistical quality of the samples it generates. We thereby show that
Genesis is a useful tool that eases the expression and creation of large and diverse program sets.

1. Introduction

Large sets of programs are important in a number of areas
of computer science and engineering. For example, in super-
vised machine learning (ML) for performance autotuning, a
sufficiently large number of training programs are needed to
represent the desired program space. Similarly, in compiler
testing, successfully running test programs through a com-
piler increases confidence in its functionality and correctness.
Finally, in software testing, the adequacy of the testing
strategy of a program is measured by testing a large number
of faulty mutant versions of the program [1]. The percentage
of mutants for which errors are detected is used as a measure
of the adequacy of the testing.

However, the number of real programs available for
use is often limited. For compilers, it can be difficult to
build up a diverse set of programs that contain enough
functionality combinations and error scenarios. Similarly,
benchmark suites used to evaluate performance of software
and systems [2, 3] usually consist of only tens of programs
and are usually too small to build sufficiently large and diverse
training sets forMLmodels. Finally, a large number ofmutant
programs are needed to increase confidence in a testing
strategy. Thus, program generators are often used to produce
synthetic programs for use in such situations.

There are several existing program generators [4–6].
However, these generators suffer from limitations, in partic-
ular, the lack of user control over the generated code [4],
inflexible and restrictive use cases or target languages [6–8],
and difficulties with associated tools [6]. Ad hoc methods
of generating large program sets, such as the use of Perl or
Python scripts, also have their own limitations; the resulting
scripts are difficult to write, maintain, and extend.

Thus, in this work, we design, implement, and evaluate
Genesis, a program generation language that addresses the
above shortcomings. Genesis facilitates the generation of
synthetic programs in a statistically controlled fashion. It
allows users to annotate a template program to identify and
parameterize those segments of the program they wish to
vary, the values each parameter may take, and the desired
statistical distribution of these values across generated pro-
grams. The Genesis preprocessor uses the annotations to
generate programs based on a template program, with the
values of each parameter drawn from its corresponding
distribution.

Genesis is unique in that it allows the generation of
synthetic code with controlled statistical properties, which
is important in some application domains. The constructs
of the language provide a simple yet flexible means of
varying template code. They also allow for the hierarchical
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composition of generated code segments. This facilitates the
generation of large numbers of programs that are arbitrarily
long with only a handful of constructs. It also makes it easy
to create, modify, and extend existing Genesis programs.
Genesis is target-language agnostic in that it can be used
with template programs written in various programming
languages.

The goal of this paper is to provide a detailed description
of theGenesis language and to demonstrate its utility through
a number of case studies of problems in which large program
sets are needed. In addition, the paper provides an evaluation
of the performance of the Genesis preprocessor. The paper is
organized as follows. Section 2 gives an overview of Genesis
with a simple example to illustrate its basic use. Section 3 gives
a detailed description of the constructs of Genesis language.
Section 4 describes five case studies of using Genesis. The
current implementation of the Genesis preprocessor proto-
type is described in Section 5 and its evaluation in Section 6.
Finally, Sections 7 and 8 review related work and provide
some concluding remarks, respectively.

2. Overview of Genesis

The Genesis preprocessor takes two inputs: a template pro-
gram, expressed in a standard programming language, such
as C, Java, or C++, and a Genesis program, expressed using
the Genesis language, as shown in Figure 1. The template
program contains references to Genesis features, which are
code snippets that are to vary across generated instance
programs. The Genesis program defines the features using
code mixed with Genesis names. When a feature referenced
in the template program is processed by the preprocessor,
the names in its definition are replaced by values sampled
from user-specified distributions, producing an actual code
snippet that replaces the feature reference. The following
example helps to demonstrate this process.

for (int i = 0; i < n; ++i) {
:

t1 = x[c1⋆i+s1];
:

t2 = x[c2⋆i+s2];
:

}

The loop in this example, extracted from a GPU kernel,
makes two reads to an array, x, in each iteration. The
memory access constants c1, s1, c2, and s2 affect memory
performance, and it is desired to use them as features to
train a machine learning model. Thus, we wish to generate
a number of training programs that have different values of
these constants. For the sake of this example, it is desired to
uniformly distribute c1 and c2 over the range 1 to 4 and s1
and s2 over the range 0 to 7.

A Genesis program and a template program that could
be used to generate such training programs are shown on
the left side of Figure 1. The template program is essentially
the code from the example but with the memory accesses

replaced by references to the feature mem_access. The
feature itself is defined in the Genesis program, delimited
by begin genesis and end genesis, as the code snippet
x[${coef}⋆i+${offs}]. The two Genesis names coef and
offs are used in this code snippet. The values of coef
and offs are taken from the distributions coef_dist
and offs_dist as indicated by the sample constructs in
their definitions. The distributions themselves are defined by
Genesis’ distribution construct declared in the Genesis
program.

The generate statement in the Genesis program
instructs the preprocessor to generate 15 instances of the
template program. In each instance, the preprocessor
processes the feature mem_access twice, sampling the values
of each name from its respective distribution. The right side
of Figure 1 shows some examples of the programs produced.

3. The Genesis Language

3.1. Design. There are several design concerns that we faced
when designing Genesis. We briefly discuss some of these
concerns and rationalize the decisions we made.

One important design concern in Genesis is the choice
of its programming paradigm. We opt to use the imperative
paradigm [9] because the domains we expect Genesis to be
used in (i.e., compiler testing, automatic performance tuning,
etc.) mostly employ imperative languages, such as C, C++, or
OpenCL.Thus, the use of an imperative paradigm forGenesis
makes it easier to adopt it in these domains. Nonetheless,
fundamentally, there is no limitation preventing it from being
used with functional and/or declarative target languages.

A second design concern is whether to have Genesis as
a standalone language or embed it within a host language,
such as C. The latter option has the advantage of providing a
rich type system for Genesis variables and entities. However,
it would severely limit the portability of the language. By
designing Genesis as a preprocessor with simple data types, it
becomes applicable to many target programming languages
or even possibly nonprogramming ones (e.g., our image
layering applications described in Section 4.4).

Yet another design concern in Genesis is that of vari-
able scoping. We adopt a simple scoping scheme. Genesis
variables and entities defined in a feature are local to that
feature and can only be used within it. In contrast, Genesis
variables/entities that are defined in the global section of
a Genesis program (see Section 3.3 for the description of
Genesis sections) are global and can be used anywhere in
the Genesis program. Finally, variables defined within the
program section of Genesis are local to the current program
being generated. The choice of this scoping scheme leads to
natural semantics for the sampling of variables, as discussed
in Section 3.3.

Finally, an important design concern is the typing of
variables. While it is possible to envision a rich type set
and/or dynamic typing of variables that is common in various
languages, we elect to use a simple typing scheme in which
variables take one of four types: integer, float, string, or
Boolean. The type of a variable is inferred from the values
assigned to it.The choice of these types is driven by our initial
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for (int i = 0; i < n ; ++i) {

t1 = ${mem_access};

t2 = ${mem_access};

}

}

for (int i = 0; i < n ; ++i) {

}

}

begin genesis
global

end

end

generate 15

end genesis

for (int i = 0; i < n ; ++i) {

}

}

for (int i = 0; i < n ; ++i) {

t1 = x[2⋆i + 6];

t1 = x[2⋆i + 5];

t1 = x[1⋆i + 2];

t2 = x[4⋆i + 2];

t2 = x[3⋆i + 4];

t2 = x[1⋆i + 7];

}

}

Genesis program Instance programs

Processed
feature

Feature
de�nition

Genesis
names

Genesis
preprocessor

Sampled
Genesis name

Feature
references

Template program

value coef sample coef_dist
value offs sample offs_dist
x[${coef}⋆i + ${offs}]

distribution coef_dist = {1:4}
distribution offs_dist = {0:7}

...

...

...

...

... ...

...

...

...

...

...

...

...

...

...

...

...

...

...

feature mem_access

kernel void do_stuff() {

kernel void do_stuff() {

kernel void do_stuff() {

kernel void do_stuff() {

...

Figure 1: Overview of Genesis.

use studies of Genesis to generate programs for autotuning
and compiler testing. These four types are found sufficient to
express a large set of target programs of interest and, thus, we
opt to simplify the language and limit variable types to one of
the these four.

3.2. Genesis Constructs. Genesis provides several constructs
for describing instance programs. Genesis constructs are
designed to describe different code patterns, while keeping
the Genesis program readable to the user. The appearance of
a Genesis construct in a target program instructs the Genesis
preprocessor to interpret it as part of a Genesis program
and not to have it appear in the output instance program.
Thus, these constructs must not conflict with reserved words
and variables in the target program. We avoid such conflicts
in two ways. First, we introduce an escape character (the
backslash “\”) that can be used to treat the construct as part
of the target program and not as a Genesis construct. Second,
Genesis constructs that conflict with common programming
constructs (e.g., if and for) are named with a gen prefix, as
will be described below.

The remainder of this section describes the Genesis
constructs and illustrates themwith examples. For simplicity,
lines in code snippets beginning with print are generic print
statements in some target language and are not specific to
Genesis.

(i) The distribution construct specifies values and
their corresponding probabilities. For example,

distribution a_dist={1{0.7};2{0.2};
4{0.1}}

defines a distribution named a_dist with values:
1, 2, and 4, each with the probability shown in the
curly braces next to it. If the probabilities are omitted,
a uniform distribution is used. It is also possible
to define uniformly distributed ranges of values, for
example,

distribution s_dist = {1:10}

By default, distributions can contain integers and
strings. It is possible to use themodifier real to allow
real distributions, as in the following example:

distribution s_dist = {1:10;;real}

This distribution, s_dist, allows real values between
1 and 10.
Distributions can be defined usingGenesis values. For
example,

value upperBound sample {5:10}

distribution b_dist =
{1:${upperBound}}

defines a distribution named b_dist created with
a bound using upperBound, a previously sampled
Genesis value. Distributions are set once their defini-
tion line is processed and do not change during pro-
cessing.Distributions definedusingGenesis values do
not change if the Genesis value changes later on in
processing.
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(ii) The value construct defines a Genesis entity whose
value is sampled from a distribution. Values can be
propagated as constants to the instance programs or
can be used in the definition of other constructs. An
example of a value line is

value stride sample s_dist

This declares the Genesis entity with the given Gen-
esis name stride, whose value is sampled from
the distribution s_dist using the sample construct.
Thus, assuming the s_dist is defined above, stride
equally likely takes a value from 1 to 10 each time
it is sampled. A reference to stride in a feature
is replaced by the sampled value when the feature
is processed. The assigned distribution can also be
defined inline

value stride sample {1:10}

This distribution is functionally the same as the previ-
ous example.This allows for a simpler declaration but
removes the ability for reuse of the same distribution.
Instead of sampling from a distribution, a Genesis
value can also enumerate one. Thus,

value stride2 enumerate s_dist

makes stride2 take on every possible value of
s_dist, one per instance program. A program
instance that reaches an enumerate construct in
processing is split into multiple program instances
from that point onward, one for each value in the
enumerated distribution. As a result, values sampled
before an enumerate will be held constant across
these programs, while values sampled after may differ
across these programs. Alternatively, arrays can be
used for multiple sampling:

value stride[5] sample s_dist

This results in 5 strides, referred to in the code as
stride[0], stride[1]. . . up to stride[4].
Lastly, values can be set without sampling from a
distribution. For example,

value stride=2

declares the Genesis entity named stride and sets
its value to 2, equivalent to a Genesis value sampling
from a distribution containing only the value 2.

(iii) The varlist construct defines a pool of variables
for use in a processed feature and hence is a part
of the instance program. Along with the varlist
construct, the created pool of variables itself is also
called a varlist. A varlist is analogous to a distribution
as entities which can be sampled from. An example of
a varlist line is

varlist my_vars[5]

This defines a pool named my_vars of size 5. Five
variables in the target language, named my_vars1
to my_vars5, can be sampled from this varlist using
Genesis variables. The names of the variables in the
varlist can be changed using a name modifier, as
shown:

varlist my_vars[5] name(temp)

The given Genesis name of the varlist remains
my_vars, and this Genesis name is used to refer to
this varlist. It contains 5 variables ranging from temp1
to temp5. It is possible to create a pool of variables
using an existing varlist. For example,

varlist other_vars from my_vars

defines another pool of variables named other_vars
containing all the variables in the my_vars varlist.
This allowsmanipulation of two separate varlists with
the same set of my_vars variables. Varlists can be
referenced with an argument to query information
from the varlist. This includes the size of the varlist
(using (size)), the name used for the variables in
the varlist (using (name)), and a specific variable
name for a variable in a varlist (using a number). For
example,

value stride1 sample a_dist
varlist my_vars[5] name(foo)

The first varlist reference outputs 5, the varlist’s size.
The second reference outputs foo, the name used
in all the variables in the varlist. The third reference
outputs foo4, the specific name of the 4th variable in
the varlist.
The section inwhich varlists are declared indicates the
reinitialization rate of the varlists. Varlists declared
in the global section are created once for the entire
set of programs. The size of the Varlist and state of
variables are maintained between instance programs
in this case. Varlists declared in the program section
are reinitialized at the point of its declaration, and
thus, it returns to a full varlist with all its variables for
each instance program. Varlists declared in a feature
are local to that feature only and are reinitialized for
each processing of the feature.

(iv) The variable construct defines a Genesis name
whose value is sampled from a varlist and is propa-
gated as a variable name to the target program. For
example,

variable dest from my_vars

defines a Genesis entity named dest. Its value is
sampled from the previously defined varlist named
my_vars. For each sample, the variable used in the
instance program is a variable from my_vars1 to
my_vars5. An occurrence of ${dest} in a feature is
replaced by this variable name when the feature is
processed.
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(v) The feature construct defines a code snippet that
is built up using Genesis names or possibly other
features. For example,

feature computation

variable dest,src1,src2 from
my_vars
${dest}=${src1} ⋆ ${src2};

end

defines a feature named computation that has the
code snippet ${dest} = ${src1} ⋆ ${src2};. The
variable construct defines three Genesis variables
sampled from my_vars. Thus, each time the feature
computation is processed, the variables dest, src1,
and src2 are sampled to select three variables from
my_vars1 to my_vars5. The sampled values replace
the corresponding variable references in the code
snippet.
A feature is used in the template program or in other
features. A feature is processed on demand for each
feature reference. The resultant feature instance is
substituted into that feature reference only, and each
feature reference is substituted by a newly generated
feature instance.
A code snippet spanning multiple lines returned by
a feature can be condensed to a single line using
a singleline modifier before the name of the
feature. Multiple references to the same feature can be
compacted by using square brackets. For example,

${computation[5]}

processes computation five times and replaces this
reference with the five instances. A previously sam-
pled Genesis value can be used instead of an integer.
Features can also be stored and represented by a
Genesis name. In this case, features are explicitly
processed and stored, and any reference to this Gen-
esis name causes the already processed code to be
substituted similar to a Genesis value or variable. For
example,

feature stored_comp process
computation

processes a computation and stores the code snip-
pet in stored_comp. Thus, when a reference to
stored_comp is found, the code snippet previously
processed is substituted, without any further sam-
pling of its values and variables. Thus, using stored
features allows a user to separate processing from
replacement, allowing multiple replacements as nec-
essary from a single processing of a feature.
Features can also have arguments, passed by value.
For example,

feature access(offset)

my_vars1 = arr[${offset}];

end

defines a feature called access, where offset is
passed in, and its value is substituted into the code
snippet in the samemanner as a Genesis name.When
storing a feature, the arguments must be supplied
when the feature is processed.

(vi) The generate construct defines how many program
instances to generate. For example,

generate 5

indicates that 5 instance programs should be gener-
ated.The generate construct allows the definition of
global distributions:

generate 5 with

a_dist={1{0.7};2{0.1};4{0.1};
8{0.1}}
b_dist={1:6}

end

(vii) The genmath construct allows the evaluation of
expressions and updating of previously sampled val-
ues. Consider the following example:

value testValue sample {1:5}
. . . ${testValue}";
genmath testValue = ${testValue}+5
. . . ${testValue}";

This samples a testValue value from 1 to 5. After
replacing the value in the following line, it increases
the value of testValue by 5. The testValue refer-
ence in the last line is then replaced by the updated
value.

(viii) The add and remove constructs modify a varlist in
order to affect future samplings. For example,

variable dest1,src1,src2 from my_vars
${dest1} = ${src1} ⋆ ${src2};
remove dest1 from my_vars
variable dest2 from my_vars
${dest2} = ${src1} ⋆ ${src2};
add dest1 to my_vars

prevents dest1 and dest2 from sampling the same
variable by removing dest1’s sampled variable from
the my_vars varlist before dest2 is sampled.The add
readds dest1’s sampled variable back to my_vars so
that it can be selected by future samplings.

(ix) The genif construct is used for conditional gen-
eration of code snippets. Consider the following
example:

value conditionValue sample {1:3}
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genif ${conditionValue}==1

${computation}

end

The above code samples a value from 1 to 3 for
conditionValue. If the value sampled is 1, then
computation is processed and placed into the
instance program. Otherwise, this section of the
Genesis program is processed but produces no code
as a result. The genif construct does not generate if
statements in the instance program and is only used
to control the flow through the preprocessor.
Using genelsif constructs after a genif statement
allow for a second condition block that is only
evaluated if the first genif statement is evaluated
to be false. Also, genelse constructs allow a code
section to be processed if all preceding genif and
genelsif statements were evaluated to be false.

(x) The genloop construct facilitates repetitive genera-
tion. Consider the following example:

genloop loopvar:1:5

${access(${loopvar})}

end

This code produces 5 references to the feature
access, each with a different value from 1 to 5
passed in as an argument. Note that this does not
produce a loop in the instance program, but instead
5 consecutive versions of the code are produced when
the access feature is processed.
The genloop construct can also test Boolean con-
ditions, similar to a C while loop. Consider the
following example:

genloop ${testValue} < 5

genmath testValue = ${testValue}
+1
⋅ ⋅ ⋅ ${testValue};

end

This repeatedly generates code snippets that refer-
ence testValue. During each iteration, testValue
increases its value by one. This code stops processing
when testValue is greater than 5 when the Boolean
condition is checked at the beginning of the genloop
iteration.

(xi) The geninclude construct allows Genesis code in
another file to be used in the current Genesis pro-
gram. Usually, this construct is used with premade
library files provided with Genesis, which implement
useful feature definitions that may be useful across
multiple Genesis programs of the same target lan-
guage. For example,

geninclude gen_c.glb

makes those features defined ingen_c.glb available,
a library containing features that declare and
initialize variables in C programs. For example,
varlistdeclare is defined in gen_c.glb, which
initializes C variables in an indicated varlist.

(xii) The genassert construct makes an assertion of a
Boolean expression, similar to a genif statement. If
the expression is evaluated to be true, processing of
the instance program continues normally. However,
if it is false, processing stops for the current instance
program and the program is deleted. The prepro-
cessor then continues processing the next instance
program. For example,

value xCoord sample {1:5}
value yCoord sample {1:5}
genassert ${xCoord}⋆${yCoord}!=1

defines two Genesis values, sampled from 1 to 5. The
genassert construct calculates the product and asserts
that it is not 1 (i.e., 1 is not sampled for both values).
If the product is 1, the generation of that instance
program is aborted, and that program is not included
in the final set of instance programs.

3.3. Genesis Processing Flow. There are three sections in a
Genesis program: the global section, the program section,
and the feature definition section.The global section contains
Genesis constructs that are processed once for the entire
set of generated program instances. The program section
contains Genesis constructs that are processed once for every
instance program. The feature definition section contains all
the definitions of features. A feature is generally processed
once each time the feature appears in the template program.
Genesis names defined in the global and program sections
can be used in any feature. However, names defined within
a feature cannot be used outside that feature. This process is
illustrated graphically in Figure 2.

When a Genesis program is read, the preprocessor begins
with the global section, processing each statement sequen-
tially. Once the end of the global section is reached, the
generate statement is processed, creating multiple instance
programs, each a copy of the template program. For each
of those programs, the program section is sequentially pro-
cessed. When this processing is complete, each instance pro-
gram is scanned for feature references, and these features are
processed as described earlier. Processing all these references
results in the final, generated set of instance programs.

3.4. Genesis Sampling. The location of the declaration of a
Genesis entity affects the duration for which the entity keeps
its sampled value. This can be illustrated with the Genesis
program shown in Program 1. In this example, globalValue
is declared in the global section on line (3). Other Genesis
values are declared in the program section on lines (7)–(9).
featureValue is declared in a feature varSet on line (13).
Each sampled entity is referenced inside varSet on lines
(15)–(19), replaced with its sampled value when processed.
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Process global section

Process program section

Process template program

Sample/set global values, hold for all programs

Sample/set program values, hold for a whole program

Find and process references:
Sample and set feature values

Replace values in feature and replace feature

Generate instance
program

Repeated
per

instance
program

Parse and store Genesis program

Performed
once

Figure 2: Processing flow of sections in Genesis.

With the generate 2 statement on line (22) and the value
enumerator in the program section on line (8) enumerated
through 2 values, 4 instance programs are generated in 2 sets
of 2 programs each.

Thus, the global value globalValue is sampled once
and held constant through all 4 instance programs. Next,
setValue is sampled once per program set. While that value
is held constant, enumerator generates two program sets.
For each value of enumerator, holdValue is sampled inde-
pendently for each set. Next, while processing the template
program, featureValue is sampled once for each feature
reference to varSet. Thus, featureValue can be different
in each different feature reference within the same instance
program.

3.5. Using enumerate. The enumerate construct breaks
away from the notion of random sampling by allowing a
Genesis value to take on each value in a distribution exactly
once, one per instance program.When enumerate is used in
the Genesis program, the number of generated programs by
a generate <number> construct depends on the location of
the enumerated value.

Enumerated values can be placed in either the global
section or the program section, both of which affect the flow
of Genesis differently. Figures 3 and 4 illustrate the difference
between the two using a Genesis value enumerated through
3 values and a generate 3 statement. When a value being
enumerated is in the global section, as shown in Figure 3,

the preprocessor first processes the value using enumerate
before the generate construct, and the entity takes on all 3
possible values. When the global section finishes processing,
the preprocessor reads the generate construct with each of
the possible enumerated values. The preprocessor generates
3 programs with each possible value, creating a total of 9
programs. In this case, the preprocessor generates 9 total sets
of programs, with each set having 1 instance program and
with each enumerated value creating 3 sets.

When a value is being enumerated in the program
section, as shown in Figure 4, the preprocessor processes the
generate construct first, and the number in the generate
statement determines the number of instance program sets
to generate. For each instance program, the preprocessor
processes the program section once, and thus, when the pre-
processor processes the enumerated value for each instance
program, it turns that instance program into a program set.
Each program set contains a program for the 3 possible values
in the enumeration, resulting in 3 total sets of 3 instance
programs each.

Thus, the total number of programs generated is

𝑁 = 𝐸G ∗ 𝐺 ∗ 𝐸P, (1)

where𝑁 is the total number of programs generated, 𝐸G is the
number of enumerated values a Genesis value can take in the
global section,𝐺 is the number in the generate statement, and
𝐸P is the number of enumerated values a Genesis name can
take in the program section.
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(1) begin genesis

(2) global

(3) value globalValue sample sampleDist

(4) end

(5)
(6) program

(7) value setValue sample sampleDist

(8) value enumerator enumerate enumeratorDist

(9) value holdValue sample sampleDist

(10) end

(11)
(12) feature varSet

(13) value featureValue sample sampleDist

(14) #These will be outputted in each instance with Genesis names replaced

(15) #SAME ALWAYS: ${globalValue}
(16) #SAME THROUGH SET: ${setValue}
(17) #ENUMERATED: ${enumerator}
(18) #DIFFERENT PER PROGRAM: ${holdValue}
(19) #DIFFERENT IN PROGRAM: ${featureValue}
(20) end

(21)
(22) generate 2 with sampleDist = {1:100}, enumeratorDist = {1:2}
(23) end genesis

Program 1: Example of sampling in Genesis sections.

enumValue = 1 enumValue = 2 enumValue = 3

value enumValue enumerate {1:3}

generate 3 generate 3 generate 3

Create
1st
inst.

Create
2nd
inst.

Create
3rd
inst.

Create
1st
inst.

Create
2nd
inst.

Create
3rd
inst.

Create
1st
inst.

Create
2nd
inst.

Create
3rd
inst.

Generated program
Still processing

Generate line
Line in program section
Line in global section

t1 = x[1];

..

..

t1 = x[2];

..

..

t1 = x[3];

..

..

t1 = x[3];

..

..

t1 = x[3];

..

..

t1 = x[2];

..

..

t1 = x[2];

..

..

t1 = x[1];

..

..

t1 = x[1];

..

..

Figure 3: Effect of enumerate in global section.

Each program set need not contain the same number of
programs when using enumerate. For example, for

distribution firstDist = {1:5}

value upperBound sample firstDist

distribution dist2 = 1:${upperBound}

value enumValue enumerate dist2

⋅ ⋅ ⋅

generate 5

the number of possible values enumValue is enumerated
through is unknown until upperBound is sampled. If this
code is in the global section, upperBound is set once, and
each enumerated value of enumValue generates 5 programs.
However, if these enumerated values are put in the program
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enumValue = 2

enumValue = 3

enumValue = 3
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enumerate {1:3}
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Figure 4: Effect of enumerate in program section.

section instead, 5 instance program sets are generated, with
the number of programs in each set sampled independently.
In these cases, the total number of programs generated is

𝑁 = 𝐸P1 + 𝐸P2 + ⋅ ⋅ ⋅ + 𝐸P𝑛 (𝑛 = 𝐸G ∗ 𝐺) , (2)

where𝑁 is the total number of programs generated, 𝐸G is the
number of enumerated values a Genesis value can take in the
global section,𝐺 is the number in the generate statement, and
𝐸P𝑖 is the number of enumerated values a Genesis value can
take in the program section during the 𝑖th iteration.

One can think of the generate construct as a special case
of enumerate in which the enumerated values are unused.
Thus, it is possible to generate the same set of programs using
only the enumerate construct. Nonetheless, we opt to keep
generate as “syntactic sugar” to simplify the common case
where enumerate is not necessary.

4. Case Studies

In this section, we present five case studies to show the utility
of Genesis in different application domains. The case studies
demonstrate the Genesis language constructs, their use to
hierarchically define and compose code segments to generate
a rich set of synthetic codes, and the ease by which a Genesis
program can be extended to modify the manner in which the
code is generated.

4.1. Image Filtering. The first case study deals with the
generation of image filtering applications for training in
performance autotuning on GPUs. These applications typi-
cally have two perfectly nested loops that sweep over two-
dimensional images. Each element of an output image is
computed as a function of a subset of the pixels in an input
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image. Specific image filtering applications differ in the subset
and the function used to compute the output.

This case study focuses onmemory performance, which is
affected by the number and pattern of image accesses and the
pixel computations in the loop nest.Thus, wemodel the body
of the loop nest as one ormore read epochs followed by awrite
epoch, where an epoch is a sequence of computations followed
by a memory access. We wish to generate a number of such
programs where the number of read epochs, the number of
computations per epoch, and the pattern of memory accesses
all vary.

Program 2 shows the Genesis program used for this
purpose. The Genesis program defines five features. The
first describes a computation, which samples four different
variables from the varlist temp. The code snippet in this
feature computes a value using three of the sampled variables
and assigns it to the variable sampled by dest.

The read_access feature describes a memory read that
samples a destination variable and three values. The three
values and the loop iterators (it0 and it1) determine the
array element to read, which is stored in the destination
variable. Similarly, the write_access feature describes a
memory write, where a variable will be stored in a memory
location determined by the loop iterators, the inner trip
count, and a sampled offset value.

With these building blocks, an epoch feature can be
described. This feature consists of a number of computations
followed by a read or write access. The value numcomps is
sampled and, using a genloop, references the computation
feature numcomps times, after the set of computations is
either a read_access or a write_access depending on the
value of the epoch_type argument.

The template program, shown in Program 3, is a skeletal
OpenCL kernel that contains the loops that sweep over the
image and reference epochs, a feature containing multiple
references to the epoch feature. The template program
also contains two references to features that are defined in
the library gen_c.glb: varlistdeclare, which initializes
variables in a varlist, and keeplive, which touches every
element in a varlist to keep it live and writes to the supplied
location. The end result is the creation of 1000 instance
programs, each consisting of multiple read epochs and a
write epoch. Each instance program contains a variable
number of epochs, number of computations in each epoch,
and pattern of memory accesses.

4.2. Static ProgramCharacteristics. This case study is inspired
by the work on cTuning with its MilepostGCC compiler
[10], an autotuning compiler that extracts characteristics of
a program [11, 12], and uses them with a machine learning
model to tune programs for performance. Many of these
characteristics come from low-level properties of a program’s
intermediate representation such as the number of basic
blocks (BBs), the number of instructions per BB, the number
of back edges, and the number of BBs with two successors.
Thus, the goal of this case study is to use Genesis to generate
a large number of programs with varying values of these
characteristics as inputs to this tuning problem.We focus only
on varying the type and number of instructions per BB, the

number of BBs, and the number of successors to each BB. For
presentation purposes, each BB has a series of instructions,
namely, sum, copy, or load-from-memory, and ends with a
goto to the next BB.

Program 4 shows the Genesis program that can be
used to generate 1000 instance programs from the template
program shown in Program 5. The instructions that can be
sampled are described in features on lines (14)–(35). The
can_be_defined varlist keeps a list of temp variables that
are used in the instance program and can be sampled as dest.
The add and remove constructs in the instruction features
manipulate can_be_defined to ensure that no dead code
will be produced. The instruction sampling is performed in
the singleinsn feature on lines (37)–(46), where a random
instruction type is chosen using a sampled value andmultiple
genif statements.

The above code can be easily extended to generate a set
of programs where the number of BBs with two successors
will vary. The Genesis program in Program 4 is augmented
with the features in Program 6. Lines (1)–(10) describe the
top block with two successors. The group number is passed
in as an argument and used as a label on line (2). A number
of instructions are created on line (4). Lines (5)–(9) are the
code that gives this block two successors, where it can branch
to one of the two blocks succeeding it. The condition on line
(5) can be changed depending on the application.

Lines (12)–(18) describe a block with 1 successor. It
follows a similar format to the block with two successors.
An additional argument is passed in to determine which
of the two successor blocks is being created. Thus, no if
statements are needed before the goto statement on line
(17) as was needed on line (5). Lines (20)–(27) describe the
new codebody feature that replaces the one in Program 4.
The number of blocks with two successors is sampled. That
sampled value is used as a bound to a genloop statement,
which createsmany basic block groups. In each group, the top
block is created on line (23), the bottom left block is created
on line (24), and the bottom right block is created on line (25).

4.3. Stencil Code Generation and Optimization. This case
study is rooted in autotuning of stencil computations on
GPUs. We wish to create OpenCL kernels with a variety of
stencil types and apply different optimizations, configured
in different ways, to each kernel. Genesis can be used
to independently accomplish each of these two goals, but
what makes this example interesting is how both goals are
accomplished simultaneously. In particular, changing the
optimization parameters should not change the type of sten-
cil, and, as such, while exploring a variety of optimizations,
the stencil parameters must be held constant.

Stencil computations sweep through an array and for
each element of that array they perform a set of reads at
specific offsets from the element in question, they calculate
a weighted sum of the read values, and they write the
result to the corresponding element of an output array. The
stencil parameters that are to be varied in this example
are the number of spatial dimensions of the arrays, the
number of elements in the stencil (size), how far each read
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(1) begin genesis

(2)
(3) geninclude gen_c.glb
(4)
(5) global

(6) distribution epochdist = {1:10}
(7) distribution numvardist = {8;16;32}
(8) distribution compdist = {1:20}
(9) distribution coefdist = {0:7}
(10) distribution offsdist = {0:15}
(11) end

(12)
(13) program

(14) value numepochs sample epochdist

(15) value numvars sample numvardist

(16) varlist temp[${numvars}]
(17) end

(18)
(19) feature computation

(20) variable dest,src1,src2,src3 from temp

(21) ${dest} = ${src1} ∗ ${src2} + ${src3};
(22) end

(23)
(24) feature read_access
(25) variable dest from temp

(26) value coef1,coef2 sample coefdist

(27) value offs_r sample offsdist

(28) ${dest} = arr_in[${coef1} ∗ it0 + ${coef2} ∗ it1 + ${offs_r}];
(29) end

(30)
(31) feature write_access
(32) variable src from temp

(33) value offs_w sample offsdist

(34) arr_out[inner_tc∗it0 + it1 +${offs_w}]=${src};
(35) end

(36)
(37) feature epoch (epoch_type)
(38) value numcomps sample compdist

(39) genloop i:1:${numcomps}
(40) ${computation}
(41) end

(42) genif ${epoch_type} eq "read"

(43) ${read_access}
(44) genelse

(45) ${write_access}
(46) end

(47) end

(48)
(49) feature epochs

(50) genloop i:1:${numepochs}
(51) ${epoch("read")}
(52) end

(53) ${epoch("write")}
(54) end

(55)
(56) generate 1000

(57) end genesis

Program 2: Genesis program for image filtering.
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(1) void filter(unsigned int outer_tc, unsigned int inner_tc, global float ∗arr_in,
global float ∗arr_out, global int ∗result){

(2)
(3) ${varlistDeclare(int, temp)}
(4)
(5) for (int it0 = get_local_id(0); it0 < outer_tc; it0 += get_local_size(0)){
(6) for (int it1 = get_local_id(1); it1 < inner_tc; it1 += get_local_size(1)){
(7) ${epochs}
(8) }
(9) }
(10)
(11) ${keepLive(∗result, temp)}
(12)
(13) }

Program 3: Template program for image filtering.

element can be from the center element (radius), and the
weights. The optimization parameters that will be explored
are the workgroup size and the number of workgroups, which
control the division of work across GPU threads, as well as
whether or not the kernel uses local memory, an on-chip
cache that is shared across threads in a workgroup.

In the distribution definitions for this example, declared
in the global section shown in Program 7, the first four
distributions correspond to the properties of the stencil itself
while the next five distributions relate to the optimization
configurations.

The goal is to produce a variety of programs sampled from
the first four distributions and to apply every combination
of the values from the second set of distributions to each
program. In order to do this, values taken from the first set
of distributions use the sample construct, while those from
the second set use the enumerate construct, as shown in
the program section in Program 8. Hence, the first set of
values will be kept constant in order to preserve the stencil
parameters while the second set of values enumerate through
all the optimization parameters.

In this way, the sampled values of dim, size, radius, and
the various offsets and weights will remain constant while
all combinations of the values for the other five parameters
are generated. These values are then used in various features
such as the reads feature shown in Program 9.The values for
the offsets and weights will remain the same every time this
feature is processed for a given base program, but depending
on the value of use_local, a different final argument will be
passed to the read feature thereby producing varying final
code.

When the Genesis preprocessor is run with these inputs
and, for example, a generate 5 statement, it creates 360
instance programs consisting of 5 different base programs
each with 72 different configurations. An example of two of
the instance programs is shown in Program 10 and 11. In
this case, both instance programs are from the same base
program but in Program 10 local memory was not used while
in Program 11 it was. As can be seen, despite their different
optimizations, the version that uses local memory performs
the same stencil calculation as the version that does not, albeit

with some extra indirection. Note that, in this example, for
brevity, only some of the Genesis code was shown.

4.4. Image Layering. This case study is motivated by face
detection software [13] that use machine learning techniques
to detect faces in images. A large set of images with faces
of different sizes, shapes, and location within an image are
needed to train a machine learning model. Genesis can be
used to synthetically generate such images using a set of face
images as building blocks. A target synthetic image can be
generated by placing a variable number of face images in the
target image at different positions and with different scale.
The face images can be viewed as layers on the top of one
another and on the top of a background target image. Thus,
based on their location, the face images can partially occlude
one another as faces are layered, with the top layer being the
most visible.

Program 12 shows an example Genesis program that can
be used for this purpose. The example assumes that each
background image is a 1024 × 1024 pixel image but makes no
assumptions on the face images used to overlay.The template
program has a single line with a reference to the top-level
feature createImage, indicating that the entire code should
vary:

${createImage}

The distributions are laid out in the global section on
lines (3)–(9) of Program 12. These distributions control
the number of background images, the number of faces to
overlay, the filename of the face image, the locations the face
images are placed on the target image, and the size of the
face image. The feature definition of createImage on lines
(38)–(43) contains four lines: a reference to the loadImage
feature, a value numberFaces determining the number of
faces to load, a reference to the overlayFace feature (using
the sampled value numberFaces to indicate how often faces
are overlaid), and a reference to the storeImage feature.The
three features referenced are for loading an image, placing a
face onto an image, and storing an image, respectively.

Loading an image as a background (feature loadImage
on lines (14)–(25)) is done by first sampling a value from
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(1) begin genesis

(2) global

(3) distribution insn_type_dist = {"sum","cp","ld"}
(4) distribution insns_dist = {1:20}
(5) distribution bb_dist = {2:5}
(6) distribution offs_dist = {0:7}
(7) end

(8)
(9) program

(10) varlist temp[5]
(11) varlist can_be_defined from temp

(12) end

(13)
(14) feature suminsn

(15) variable src1, src2 from temp

(16) add src1,src2 to can_be_defined
(17) variable dest from can_be_defined
(18) remove dest from can_be_defined
(19) ${dest} = ${src1} + ${src2};
(20) end

(21)
(22) feature cpinsn

(23) variable src from temp

(24) add src to can_be_defined
(25) variable dest from can_be_defined
(26) remove dest from can_be_defined
(27) ${dest} = ${src};
(28) end

(29)
(30) feature ldinsn

(31) value offs sample offs_dist
(32) variable dest from can_be_defined
(33) remove dest from can_be_defined
(34) ${dest} = arr[${offs}];
(35) end

(36)
(37) feature singleinsn

(38) value insntype sample insn_type_dist
(39) genif ${insntype} eq "sum"

(40) ${suminsn}
(41) genelsif ${insntype} eq "cp"

(42) ${cpinsn}
(43) genelsif ${insntype} eq "ld"

(44) ${ldinsn}
(45) end

(46) end

(47)
(48) feature codebody

(49) value numblocks sample bb_dist
(50) genloop loopvar:1:${numblocks}
(51) T${loopvar}:
(52) value numinsns sample insns_dist
(53) genloop insn:1:${numinsns}
(54) ${singleinsn}
(55) end

(56) genif ${loopvar}!=${numblocks}
(57) value dest = ${loopvar}+1
(58) ${gotoinsn(${dest})}
(59) end

(60) end

(61) end

(62)
(63) feature gotoinsn(dest)

Program 4: Continued.
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(64) goto T${dest};
(65) end

(66)
(67) generate 1000

(68) end genesis

Program 4: Genesis program for program characteristics.

(1) void basic_block_code(float ∗arr){
(2) ${codebody}
(3) }

Program 5: Template program for program characteristics.

backgroundDist. Depending on the sampled value, the
filename from which the background is loaded varies. The
feature overlayFace on lines (26)–(33) is referenced multi-
ple times in storeImage.This feature samples two locations,
a height value and a width value. It also samples a size
multiplier and a number to indicate which face to load.These
values are then placed into an abstract place command
and returned and replaced in storeImage. This feature is
referenced multiple times to load and place multiple layered
faces.

The abstract command to store the image to file, gener-
ated by feature storeImage on lines (35)–(37), is performed
at the end of the generated commands.The feature is defined
as a single resultant code snippet with no references and
thus is the same across all instance programs. The definition
requires no sampling, showing that features do not need
varying parts if so desired. When the preprocessor reads the
Genesis program and template program, it generates 1000
image layering instance programs as indicated by the generate
statement.

Different output filename names can be realized by
modifying the storeImage to keep a global counter value
and use genmath to increment it after every reference. Using
a value defined in the global section counter, the modified
feature storeImage looks as follows:

feature storeImage

genmath counter = ${counter}+1
load outputFile to "output${counter}
.jpg"

end

4.5. Task Graphs. This case study is motivated by studies on
using Dynamic Voltage and Frequency Scaling (DVFS) to
conserve energy in applications [14, 15]. In many of these
studies, the applications are modelled as a task graph in
which nodes represent computations and edges represent
dependence among these computations. Given a task graph,
computations not on the critical path are slowed down using

1 3 4

7 2

5

Figure 5: A simple MARE example. Equivalent task graph.

DVFS to save energy (e.g., [15–18]). Often, the proposed
techniques are sensitive to the structure and properties of
the task graph. Thus, it is desirable to have a large set of
task graphs that are diverse in their topology, task execution
times, and dependence to better assess a proposed technique.
Genesis provides a flexible and convenient way to generate
such task graphs.

We express task graphs using the MARE programming
model [19], which is used to express tasks and their depen-
dence on Qualcomm SoC platforms. A MARE program
consists of tasks, each of which must be created, have its
dependencies on previous tasks expressed, and then be
launched.This process is demonstrated in Program 13, which
provides a snippet of MARE code used to realize the task
graph shown in Figure 5.

Genesis is well suited for the task of generating synthetic
MARE programs as it allows a user to easily create task
graphs with varying depth, width, and connectivity. Program
14 shows an excerpt from a Genesis file used to produce
such programs. On lines (1) and (4), the depth of the graph
and the width of each layer are sampled from user-defined
distributions. On line (10), the number of fan-in for a given
node is sampled from another user-defined distribution.

Genesis also makes the problem of handling task depen-
dency simple. As a level of the graph is built, its tasks are
each represented as variables that are added to the varlist
this_level (line (34) of Program 14). Once an entire level
has been completed, that varlist is added to two other varlists
(lines (38)–(43)), one tracking all tasks andone tracking those
without fan-out (as any newly created tasks have no fan-out).
When a new task is created, its fan-in can be chosen among
all those tasks from previous levels by simply sampling from
the varlist of all tasks (line (17)). By removing the sampled
task from the no-fan-in varlist at this time (line (20)), we can



Scientific Programming 15

(1) feature basicBlockWith2Successors(groupNumber)

(2) T${groupNumber}:
(3) value numinsns sample insns_dist
(4) ${singleinsn[numinsns]}
(5) if (dest1 > 0) {
(6) ${gotoinsn(${groupNumber}L)}
(7) } else

(8) ${gotoinsn(${groupNumber}R)}
(9) }
(10) end

(11)
(12) feature basicBlockWith1Successor(groupNumber,type)

(13) T${loopValue}${type}:
(14) value numinsns sample insns_dist
(15) ${singleinsn[numinsns]}
(16) value dest = ${loopValue} + 1

(17) ${gotoinsn(${dest})}
(18) end

(19)
(20) feature codebody

(21) value numBlocksWith2Successors sample bb_dist
(22) genloop loopValue:1:${numBlocksWith2Successors}
(23) ${basicBlockWith2Successors(loopValue)}
(24) ${basicBlockWith1Successor(loopValue,L)}
(25) ${basicBlockWith1Successor(loopValue,R)}
(26) end

(27) end

Program 6: Genesis feature creating BBs with sampled values.

(1) global
(2) distribution dim_dist = {1:2}
(3) distribution size_dist = {1:9}
(4) distribution radius_dist = {0:5}
(5) distribution weight_dist = {1:3}
(6)
(7) distribution wg_size_y_dist = {1, 4, 16}
(8) distribution wg_size_x_dist = {1, 4, 16}
(9) distribution num_wgs_y_dist = {8, 16}
(10) distribution num_wgs_x_dist = {8, 16}
(11) distribution use_local_dist = {0, 1}
(12) end

Program 7: Stencil code distributions.

also track which tasks have no fan-out. This allows for the
creation of a join task at the end of the program which uses
all remaining tasks with no fan-out to ensure the results of all
tasks are used. The creation of this joining task is shown in
Program 15.

5. Implementation

Genesis was implemented as a standalone preprocessor in
Perl, and thus, Genesis is not limited to a specific target
language. Using a scripting language such as Perl as opposed
to a proper lexer and parser reduced development time while
keeping the implementation flexible as the language evolved.

The preprocessor works in three phases. During the first
phase of file parsing, the preprocessor reads a Genesis pro-
gram and builds an internal representation of the constructs
present. Each line is stored in a separate array based on its
Genesis construct type, such as value or variable, and given
a distinct ID. Each feature is stored in memory, with each
Genesis line in that feature represented by the construct type
and ID. The template program is also read and stored during
this phase.

In the second phase of instance generation, the informa-
tion stored is used to generate the desired number of instance
programs. First, the global section is processed.Then, for each
of the generated instance programs, the program section is
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(1) program

(2) value dims sample dim_dist
(3) value size sample size_dist
(4) value radius sample radius_dist
(5) value n_radius = −1∗${radius}
(6) distribution offset_dist = {${n_radius}:${radius}}
(7) value y_offset[${stencil_size}]
(8) value x_offset[${stencil_size}]
(9) value weight[${stencil_size}]
(10) genloop i:1:${stencil_size}
(11) genmath y_offset[${i}] sample offset_dist
(12) genmath x_offset[${i}] sample offset_dist
(13) genmath weight[${i}] sample weight_dist
(14) end

(15)
(16) value wg_size_y enumerate wg_size_y_dist
(17) value wg_size_x enumerate wg_size_x_dist
(18) value num_wgs_y enumerate num_wgs_y_dist
(19) value num_wgs_x enumerate num_wgs_x_dist
(20) value use_local enumerate use_local_dist
(21) end

Program 8: Stencil code sampling and enumeration.

(1) feature reads

(2) genloop i:1:${size}
(3) genif ${use_local} == 1

(4) ${read(${y_offset[${i}]},${x_offset[${i}]},${weight[${i}]},local_in)}
(5) genelse

(6) ${read(${y_offset[${i}]},${x_offset[${i}]},${weight[${i}]},input)}
(7) end

(8) end

(9) end

(10)
(11) feature read (y_offset,x_offset,weight,array)
(12) temp += ${weight} ∗ ${array}
(13) genif ${dims} == 2

(14) [y+${y_offset}]
(15) end

(15) [x+${x_offset}];
(17) end

Program 9: Feature reads with offsets and weights.

processed and a copy of the template program is created. The
code in each copy is scanned for any feature references as
regular expressions. For each feature reference, the feature is
processed and using similar regular expressions, the resulting
code snippet replaces the reference. Random sampling of
Genesis entities is done using the rand() function provided
by Perl. Once all feature references in the template program
are detected and replaced, the instance program is written to
an output file in the third and final phase: file output. The last
two phases are done iteratively to generate the set of instance
programs.

The preprocessor can produce a comment block at the
beginning of each generated file that includes the sampled

values for each Genesis entity used to generate that instance
program. Since Genesis is language agnostic, the user must
provide a comment character when running Genesis to
produce this comment block in each file. The preprocessor
can also display statistical information, such as how often
each value in a distribution is sampled for a Genesis entity
across all instance programs. Using these values, the pre-
processor can also output an analysis of the sampled values
using Pearson’s chi-squared test [20], which helps the user of
Genesis determine the amount of deviation an actual set of
sampled values has from its declared distribution.

In some cases, instance programs can fail to generate.
For example, an instance program can fail to generate if a
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(1) __kernel void stencil(global double (∗input), global double (∗output), local double ∗
local_in) {

(2) int x_gid = get_global_id(0);
(3) int x_lid = get_local_id(0);
(4)
(5) int x_base = x_gid / 4 ∗ 16;
(6) int x_start = x_base + x_lid ∗ 1;
(7)
(8) for (int x_block = x_start; x_block < x_base + 16; x_block+= 4) {
(9) int x = x_block;
(10) double temp = 0;

(11) temp += 1 ∗ input[x+1];
(12) temp += 2 ∗ input[x+0];
(13) output[x] = temp;

(14) }
(15) }

Program 10: Example of generated stencil code. Instance program without local memory.

(1) __kernel void stencil(__global double (∗input), __global double (∗output), __local double

∗local_in) {
(2) int x_gid = get_global_id(0);
(3) int x_lid = get_local_id(0);
(4)
(5) int x_base = x_gid / 4 ∗ 16;
(6) int x_start = x_base + x_lid ∗ 1;
(7)
(8) :
(9) //For brevity, the code that loads from global memory into local memory is omitted

(10) :
(11)
(12) for (int x_block = x_start; x_block < x_base + 16; x_block+=4) {
(13) int x = x_block;
(14) double temp = 0;

(15) temp += 1 ∗ local_in[x−x_base+1+2];
(16) temp += 2 ∗ local_in[x−x_base+0+2];
(17) output[x] = temp;

(18) }
(19) }

Program 11: Example of generated stencil code. Instance program with local memory.

user attempts to sample from an empty varlist. When this
happens, the program is not generated and that program
instance number is skipped.The preprocessor then continues
onto the next instance program. Our Perl preprocessor
implementation reports the number of programs generated,
the number of program sets, and which programs failed to
generate.

Our implementation provides logging information to the
terminal, at various levels of verbosity, controlled by the user.
Further, it reports usage errors as well as errors that cause the
generation of an instance program to fail. It also reports a host
of warnings [21]. The implementation allows for the user to
specify a naming scheme for the instance output programs:
an output filename followed by a sequence number for each
instance. The current implementation prototype does not

allow for the target program to be split across multiple files.
However, this is not a fundamental limitation of Genesis and
can be incorporated into a future release.

6. Evaluation

In this section, we describe our evaluation of Genesis. We
verify the correctness of our implementation using a large
number of test programs [21]. In addition, we conduct an
evaluation of the performance of the Perl preprocessor using
the case studies of Section 4. We also assess the statistical
quality of data sampling of Genesis values to demonstrate
how faithful the sampled data is to the declared distributions.

We collect the runtime and sampling data by run-
ning Genesis programs and template programs through the
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(1) begin genesis

(2)
(3) global

(4) distribution backgroundDist = {1:3}
(5) distribution numFacesDist = {1:10}
(6) distribution facesDist = {1:1000}
(7) distribution locationDist = {0:1023}
(8) distribution sizeDist = {1:10}
(9) end

(10)
(11) program

(12) end

(13)
(14) feature loadImage

(15) value background sample backgroundDist

(16) value background_image
(17) genif ${background} == 1

(18) genmath background_image = "grass.jpg"

(19) genelsif ${background} == 2

(20) genmath background_image = "field.jpg"

(21) genelsif ${background} == 3

(22) genmath background_image = "house.jpg"

(23) end

(24) load "${background_image}" to outputFile

(25) end

(26)
(27) feature overlayFace

(28) value heightValue sample locationDist

(29) value widthValue sample locationDist

(30) value sizeValue sample sizeDist

(31) value face sample facesDist

(32) place facefile${face}.jpg at height ${heightValue} and width ${widthValue} with size

${sizeValue}x
(33) end

(34)
(35) feature storeImage

(36) store outputFile to "output.jpg"

(37) end

(38)
(39) feature createImage

(40) ${loadImage}
(41) value numberFaces sample numFacesDist

(42) ${overlayFace[${numberFaces}]}
(43) ${storeImage}
(44) end

(45)
(46) generate 1000

(47) end genesis

Program 12: Image layering Genesis program.

preprocessor on an Intel Core i7-4930K CPU running at
3.40GHz, with 32GB of memory and running Perl 5.18.2.

6.1. Preprocessor Performance. We generate instance pro-
grams in powers of 10 from 10 to 100,000 using the Genesis
and template programs of the case studies in Section 4
and measure the runtime of each run of the preprocessor.
Each experiment is run 10 times and results are averaged.
Figure 6 shows the runtime as a function of the number

of generated instance programs (the number of generated
instance programs for the stencil generation case study starts
at 1000). The graph shows that runtime scales linearly with
the number of generated instance programs in all cases.
The image filtering, stencils, and program characteristics
case studies contain nested genloop constructs, while the
image layering Genesis programs contain a single genloop
construct with fewer Genesis entities. Thus, the time to
generate programs for the former group is an order of
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(1) auto task1 = mare::create_task(task_type_0);
(2) task1−>launch(array1);
(3) auto task3 = mare::create_task(task_type_0);
(4) task3−>launch(array3);
(5) auto task4 = mare::create_task(task_type_0);
(6) task4−>launch(array4);
(7)
(8) auto task7 = mare::create_task(task_type_2);
(9) task4−>then(task7);
(10) task1−>then(task7);
(11) task7−>launch(array7,array4,array1);
(12) auto task2 = mare::create_task(task_type_1);
(13) task1−>then(task2);
(14) task2−>launch(array2,array1);
(15)
(16) auto task5 = mare::create_task(task_type_3);
(17) task2−>then(task5);
(18) task3−>then(task5);
(19) task7−>then(task5);
(20) task5−>launch(array5,array2,array7,array3);
(21) task5−>wait_for( );

Program 13: A simple MARE example. MARE code (created using Genesis).
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Figure 6: Runtimes of the preprocessor.

magnitude higher than the time for the latter. Nonetheless,
even for large numbers of generated instance programs, the
time remains in the tens of minutes, leading us to conclude
that the time taken to generate programs is reasonable.

The time to generate programs can be broken down
into three components: reading and parsing the Genesis
program, generating instance programs, and writing instance
programs to files. This breakdown is shown in Table 1 for
the image filtering case study. Reading the Genesis program
is done once for each invocation of the preprocessor, and
thus the runtime in this phase remains constant and almost
negligible. The other two phases grow linearly as the number
of programs generated increases and constitute the bulk of the
runtime with the instance program generation component
dominating. However, this component is also the most

Table 1: Breakdown of program generation time for image filtering.

Programs File
parsing (s)

Instance
gen. (s)

File output
(s)

10 0.0013 0.52 0.0004
100 0.0013 5.20 0.0043
1000 0.0013 51.37 0.043
10000 0.0013 512.91 0.52
100000 0.0013 5134.51 6.36

amenable to parallelization since the generation of each
instance is independent. Such a parallel approach is left to
future work.

6.2. Statistical Sampling. We evaluate the statistical quality
of the sampled data using Pearson’s chi-squared goodness
of fit test [20]. The chi-squared (𝜒2) test is an indicator
of how well a sampled distribution differs from a declared
distribution. A 𝜒2 value is calculated from the samples, where
a higher resultant 𝜒2 value indicates a greater deviation
from the declared distributions, and a lower value gives
greater confidence that the sampling came from the desired
distribution without bias.

A calculated 𝜒2 value can be converted to a 𝑃 value,
the probability of observing a sample statistic as extreme as
that 𝜒2 value for many degrees of freedom. The degree of
freedom is one less than the number of possible outcomes in
a distribution [22]. A 𝑃 value of 0.05 is commonly accepted
as a threshold for significant deviance [22]; a sampling with
a 𝑃 value greater than 0.05 is considered reasonable while a
sampling with a 𝑃 value lower than 0.05 is expected to have
some bias. Thus, a calculated 𝜒2 value can be compared to a
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(1) value depth sample depth_dist
(2) genloop d:1:${depth}−1
(3) varlist this_level[0]
(4) value width sample width_dist
(5) genloop w:1:${width}
(6) variable new_task from tasks

(7) remove new_task from tasks

(8)
(9) genif ${d} != 1

(10) value num_fanin sample fanin_dist
(11) genif num_fanin > ${all_tasks(size)}
(12) genmath num_fanin = ${all_tasks(size)}
(13) end

(14) ${create_task(${new_task}, ${num_fanin})}
(15) varlist fanin[0] name(array)
(16) genloop i:1:${num_fanin}
(17) variable input_task from all_tasks
(18) add input_task to fanin

(19) remove input_task from all_tasks
(20) remove input_task from no_fanout_tasks
(21) ${express_dependence(${input_task}, ${new_task})}
(22) end

(23) value array_count
(24) genmath array_count = ${num_fanin} + 1

(25)
(26) /// Write the launch call (omitted for brevity)

(27) /// And add the fanin back to all_tasks
(28) . . .
(29) genelse

(30) /// Create a node with no fanin (omitted for brevity)

(31) . . .
(32) end

(33)
(34) add new_task to this_level
(35) end

(36)
(37) /// Add this_level to all_tasks and no_fanout_tasks
(38) genloop w:1:${width}
(39) variable transfer_task from this_level
(40) add transfer_task to all_tasks
(41) add transfer_task to no_fanout_tasks
(42) remove transfer_task from this_level
(43) end

(44) end

Program 14: Varying depth, width, and connectivity.

critical value, defined as the 𝜒2 value that has a 𝑃 value of 0.05
for a given degree of freedom. Thus, samplings that have 𝜒2
higher than the critical value have a 𝑃 value lower than 0.05.

We report the results for our first case study with 1000
instance programs. Table 2 gives the seven Genesis values
in the case study, their distributions, and their degrees of
freedom. For a single run to generate the 1000 instance
programs, the resulting 𝜒2 values and their corresponding 𝑃
value are shown for the generated Genesis values. In all cases,
the 𝑃 value is much larger than 0.05, leading us to conclude
that bias due to sampling is unlikely.

Tables 3, 4, 5, 6, and 7 show the same result over 10
runs of the generation of 1000 instance programs for each
of the five case studies. The tables show the maximum and
minimum 𝜒2s calculated across the 10 runs and the critical
value of each distribution. For example, in the image filtering
case study and over the 10 runs, 66 out of 70 𝜒2 values, or
94.3%, are below their critical value, implying an unbiased
sampling. Similarly, for the other case studies, almost all of
runs result in 𝜒2 below the corresponding critical value. This
leads us to conclude that the statistical quality of sampling
from distributions is as expected.



Scientific Programming 21

(1) variable last_task from tasks

(2) remove last_task from tasks

(3) value num_no_fanout = ${no_fanout_tasks(size)}
(4) ${create_task(${last_task}, ${num_no_fanout})}
(5) add last_task to all_tasks
(6) varlist last_fanin[0] name(array)
(7) genloop t:1:${num_no_fanout}
(8) variable parent_task from no_fanout_tasks
(9) add parent_task to last_fanin
(10) remove parent_task from no_fanout_tasks
(11) ${express_dependence(${parent_task}, ${last_task})}
(12) end

(13) /// Write the launch call (omitted for brevity)

(14) . . .
(15) ${last_task}−>wait_for();

Program 15: Creation of a final task that depends on all tasks with no fan-out.

Table 2: Test results for one run of the image filtering Genesis program.

Variable Distribution Deg. of freedom 𝜒2 𝑃 value
numEpochs Uniform 1–10 9 7.26 0.61
numComps Uniform 1–20 19 21.88 0.29
numVars 8, 16, 32 2 3.30 0.19
coef1 Uniform 0–7 7 3.57 0.83
coef2 Uniform 0–7 7 5.83 0.56
offs_r Uniform 0–15 15 19.76 0.18
offs_w Uniform 0–15 15 10.88 0.76

Table 3: Test results for value distributions for image filtering.

Variable Distribution Min 𝜒2 Max 𝜒2 Critical value 𝜒2s over critical
numEpochs Uniform 1–10 5.02 20.96 16.92 20.96
numComps Uniform 1–20 8.17 35.05 30.14 35.05
numVars 8, 16, 32 0.18 3.30 5.99 None
coef1 Uniform 0–7 3.19 13.92 14.07 None
coef2 Uniform 0–7 3.07 13.86 14.07 None
offs_r Uniform 0–15 8.54 20.32 25.00 None
offs_w Uniform 0–15 8.99 31.20 25.00 29.98, 31.20

Table 4: Test results for value distributions for stencils.

Variable Distribution Min 𝜒2 Max 𝜒2 Critical value 𝜒2s over critical
weight_cube Uniform 1–10 1.94 10.47 16.92 None
weight_star (1) Uniform 1–10 4.91 12.73 16.92 None
weight_star (2) Uniform 1–10 3.82 14.91 16.92 None
weight_star (3) Uniform 1–10 5.27 17.09 16.92 17.09
weight_diamond Uniform 1–10 4.12 13.53 16.92 None
weight_thumbtack Uniform 1–10 4.13 14.48 16.92 None
weight_no_corners Uniform 1–10 6.00 14.85 16.92 None

Table 5: Test results for value distributions for static program characteristics.

Variable Distribution Min 𝜒2 Max 𝜒2 Critical value 𝜒2s over critical
offs Uniform 0–7 2.13 12.13 14.07 None
insntype “sum”, “cp”, “ld” 0.00 4.53 5.99 None
numBlocks Uniform 2–5 0.38 9.96 7.81 9.96
numInsns Uniform 1–20 8.00 27.19 30.14 None
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Table 6: Test results for value distributions for image layering.

Variable Distribution Min 𝜒2 Max 𝜒2 Critical value 𝜒2s over critical
background Uniform 1–3 0.09 5.70 5.99 None
heightValue Uniform 0–1023 945.63 1087.02 1098.52 None
widthValue Uniform 0–1023 968.11 1067.90 1098.52 None
sizeValue Uniform 1–10 2.34 17.11 16.92 17.11
face Uniform 1–1000 937.60 1031.54 1073.64 None
numberFaces Uniform 1–10 3.82 19.10 16.92 19.10

Table 7: Test results for value distributions for task graphs.

Variable Distribution Min 𝜒2 Max 𝜒2 Critical value 𝜒2s over critical
depth Uniform 3–5 0.01 4.90 5.99 None
width Uniform 2–5 1.07 12.12 7.81 12.12
num_fanin Uniform 1–3 0.22 6.20 5.99 6.20

7. Related Work

Our work related to program generators. CSmith [4] is a tool
to generate C programs and is used to find bugs in compilers
through stress testing. The generated programs are not fully
described by the user and are generally random. CodeSmith
Generator [5] creates visual basic code using templates.
However, it does not provide sampling like Genesis and,
consequently, does not generate multiple similar versions
of a program with different characteristics. TestMake [6]
generates test harnesses for programs. In contrast, Genesis
generates whole programs that vary in their characteristics.

Christen et al. [23] describe a domain-specific language
for describing stencil codes and optimizations that can be
applied to them. The language is used in Patus, which is an
autotuning framework for stencils. Patus uses the program
description to generate stencils optimized in different ways
for use in their heuristic search for good performing code.
Thus, to some extent, our work bears resemblance to theirs.
Nonetheless, Genesis is not limited to stencils, although it
has been used to describe stencils and their optimizations
in a case study. Further, unlike Genesis, the Patus language
does not control the random distribution of optimizations
parameters.

Voronenko et al. [8] automate the generation of vector-
ized and multithreaded linear transform libraries, providing
users with optimized code for this domain of applications.
Similar to Patus, the specific domain of thiswork is in contrast
to Genesis, which can be used in any domain.

Bazzichi and Spadafora [24] create an automatic gener-
ator for compiler testing that produces a set of programs
covering the grammatical constructions of a context-free
grammar language. However, it does not give the user control
over the programs generated beyond selecting a random seed.

Kamin et al. [25] created Jumbo, which generates code for
Java during the actual running of the program. Poletto et al.
[26, 27] have also added language and compiler support to
generate code during runtime. In contrast, Genesis generates
code but does it during compilation and not runtime. Genesis
also generates multiple programs when it is run taken from
statistical samples instead of runtime information.

Genesis uses variables whose values are randomly sam-
pled in order to customize generated programs based on
given distributions. Hardware description languages, such as
Verilog [28] and SystemVerilog [29], also use randomly gen-
erated values for variables. For example, the rand keyword in
the declaration of a variable in a Verilog program randomly
assigns the variable of a value from a specified range with a
given distribution. However, unlike Genesis, these variables
are used to randomly vary inputs and signals for the purpose
of generating test vectors for hardware verification.

Our work also relates to other approaches that describe
programs, such as Program Description Language [30], and
approaches that customize programs, including lexical [31]
and syntactic [32–34] preprocessors. In contrast to all these
works, Genesis describes and generates multiple programs
whose code is customized using user-specified statistical
distributions.

The work presented here extends the authors’ initial pre-
sentation of Genesis [35] through more detailed description
of the constructs and the processing flow of the language, the
use of new case studies, and expansion of the experimental
evaluation.

8. Conclusion and Future Work

WepresentedGenesis, a language to express and generate sta-
tistically controlled program sets for use in multiple domains
and applications. It differs from previous preprocessors by
providing the unique ability to sample fromdistributions. It is
not restricted to a specific output language and is also flexible
enough to express sets of programs with varying lengths and
characteristics. We presented five case studies in different
domains to illustrate the utility of Genesis and its ability
to easily express programs with different characteristics. We
designed and implemented a prototype preprocessor for
Genesis, which is released into the public domain as an
open source artifact (https://github.com/chiualto/genesis).
We evaluated the preprocessor’s performance and demon-
strated the statistical quality of the samples it generates. We
believe that Genesis is a useful tool that eases the expression

https://github.com/chiualto/genesis
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and creation of large and diverse program sets, which can
provide large benefits for its users.

This work can be extended in several directions. More
case studies can be used to assess if there is a need to
extend the Genesis constructs to increase functionality or
usability.The language itself can be extended, for example, by
adding return values for features.The efficiency and memory
footprint of the preprocessor can be improved, in particular
via the parallelization of the program instance generation
phase. It may also be beneficial to migrate the preprocessor
into a compiler. Finally, language-specific features may be
introduced. For example, if the instance programs being
generated are known to be written in OpenCL, it might be
possible to generate the host program to allow the user to run
the programs and get runtime information directly after using
Genesis.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was funded by research grants from NSERC and
Qualcomm.

References

[1] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit test
coverage and adequacy,” ACM Computing Surveys, vol. 29, no.
4, pp. 366–427, 1997.

[2] C. Bienia, Benchmarking modern multiprocessors [Ph.D. disser-
tation], Princeton University, 2011.

[3] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The
SPLASH-2 programs: characterization and methodological
considerations,” in Proceedings of the 22nd Annual International
Symposium on Computer Architecture (ISCA ’95), pp. 24–36, S.
Margherita Ligure, Italy, June 1995.

[4] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and under-
standing bugs in C compilers,” in Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’11), pp. 283–294, San Jose, Calif, USA,
June 2011.

[5] CodeSmith Tools LLC, CodeSmith Generator, http://www
.codesmithtools.com/product/generator.

[6] A. Markus, “Generating test programs with TestMake,” in
Proceedings of the SecondEuropeanTcl/TkUserMeeting, pp. 127–
138, TU Hamburg-Harburg, June 2001, http://flibs.sourceforge
.net/article_testmake.pdf.

[7] J. Schimmel, K. Molitorisz, A. Jannesari, and W. F. Tichy,
“Automatic generation of parallel unit tests,” in Proceedings of
the 8th International Workshop on Automation of Software Test
(AST ’13), pp. 40–46, IEEE, San Francisco, Calif, USA,May 2013.

[8] Y. Voronenko, F. De Mesmay, and M. Püschel, “Computer gen-
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