
Research Article
A Highly Parallel and Scalable Motion Estimation
Algorithm with GPU for HEVC

Yun-gang Xue, Hua-you Su, Ju Ren, Mei Wen, Chun-yuan Zhang, and Li-quan Xiao

School of Computer, National University of Defense Technology, Changsha 410073, China

Correspondence should be addressed to Yun-gang Xue; xueyungangyun@163.com

Received 13 March 2017; Revised 13 August 2017; Accepted 10 September 2017; Published 12 October 2017

Academic Editor: Christoph Kessler

Copyright © 2017 Yun-gang Xue et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We propose a highly parallel and scalable motion estimation algorithm, named multilevel resolution motion estimation (MLRME
for short), by combining the advantages of local full search and downsampling. By subsampling a video frame, a large amount
of computation is saved. While using the local full-search method, it can exploit massive parallelism and make full use of the
powerful modern many-core accelerators, such as GPU and Intel Xeon Phi. We implanted the proposed MLRME into HM12.0,
and the experimental results showed that the encoding quality of the MLRMEmethod is close to that of the fast motion estimation
in HEVC, which declines by less than 1.5%. We also implemented the MLRME with CUDA, which obtained 30–60x speed-up
compared to the serial algorithm on single CPU. Specifically, the parallel implementation of MLRME on a GTX 460 GPU canmeet
the real-time coding requirement with about 25 fps for the 2560×1600 video format, while, for 832×480, the performance is more
than 100 fps.

1. Introduction

Progress in science and technology is bringing about a grow-
ing demand for video quality and thus the development of the
video codingmethods.High Efficiency Video Coding (HEVC)
in Bross et al. [1] is the state-of-the-art video coding standard
based onH.264/AVC inWiegand et al. [2].HEVCdoubles the
data compression ratio and improves the compressed video
quality at the cost of introducing approximately 4 times the
computational complexity compared to that of H.264/AVC.
Moreover, HEVC aims at higher resolution video sequences,
leading to a rapid increase in the encoding complexity of
video sequence. Thus the high computational complexity
posts a challenge for real-time video coding with HEVC.

As a vital part of video encoding, motion estimation
(ME) is the process of determining motion vector (MV) that
describes the position transformation of a pixel block
between the current frame and its adjacent frame, named
reference frame, in a video sequence. Since a pixel block may
be slightly different in the current frame and reference frame,
itsMV is defined by the displacement between the pixel block
in the current block and its matching block in the reference

frame. Here, thematching block is themost similar one to the
current block.

ME is the most time-consuming component of HEVC,
using more than 50% of the execution time in Purnachand
et al. [3]. In order to decide the final partition modes of one
Coding Tree Unit (CTU), ME needs to be invoked as many as
425 times in the HEVC test model (HM) in Wang et al. [4].
Therefore, the design of ME algorithms is a hotspot in
academia and industry, and lots of ME algorithms have
been proposed in recent years. The full-search method is the
simplest and most straightforward way, which checks every
position of searching windows in the reference frames. This
method can get the global optimal result and thus the best
encoding quality. However, its computational complexity is
too huge to be applied to an encoding algorithm. Fast search
algorithms greatly reduce the computational complexity
with a slight decline in the encoding quality, and typical ones
include the three-step search (TSS) of Koga et al. [5], the
four-step search (FSS) method of Po and Ma [6], the dia-
mond search (DS) method of Zhu and Ma [7], the cross-dia-
mond search (CDS) method of Cheung and Po [8], the hex-
agonal search (HS) method of Hamosfakidis and Paker [9],

Hindawi
Scientific Programming
Volume 2017, Article ID 1431574, 15 pages
https://doi.org/10.1155/2017/1431574

https://doi.org/10.1155/2017/1431574

2 Scientific Programming

Interprediction

Current frame
(reconstructed)

/next reference frame

Motion
Estimation

Current frame

Motion
compensation

Intraprediction

Transform
and Quant

DeQuant
and Inv. transform

Filters

Entropy
coding

Split into LCUs

Reference frame

(e.g, 64 × 64 pixels)

−

+

Fn

F

n−1

F

n

Figure 1: HEVC framework.

the hybrid unsymmetrical multi-Hexagon-grid search (UM-
HexagonS) method of Zhu et al. [10], the enhanced hexagonal
search (EHS)method of Zhu et al. [11], the enhanced predictive
zonal search (EPZS)method of Tourapis [12], and the test zone
search (TZS) method of Purnachand et al. [3].

Multicore or many-core processors are now popular, and
particularly many-core platforms give us a good chance to
release the computing stress ofmany compute-intensive algo-
rithms, including ME. Although the full-search method is
highly parallel, its computational complexity is too huge for
real applications even using the many-core processors. On
the contrary, fast ME algorithms do not possess sufficient
parallelismdue to the complicated data dependencies, so they
cannot make full use of the modern many-core processors,
such as graphics processing unit (GPU).

To have a good trade-off among the encoding quality,
computational complexity, and parallelism, an innovative
ME algorithm, namedmultilevel resolution motion estimation
(MLRME), is proposed in this paper. At the expense of a
slight decline of the encoding quality, the new algorithm has
abundant parallelism, which can make full use of the pow-
erful computational capacity of modern many-core process-
ors.

The rest of this paper is organized as follows: the second
section presents a review of background and the relatedwork.
The third section details the proposed MLRME method and
a related characteristics analysis. In the fourth section, we
describe the parallel implementation and optimization on
GPU. The experimental results and corresponding analysis
are shown in the fifth section.

2. Background and Related Work

2.1. HEVC. The HEVC framework incorporates six impor-
tant modules, including Intraprediction, Interprediction
(motion estimation and motion compensation), Transform
and Quant, DeQuant and Inverse Transform, Filters and
Entropy Coding, shown in Figure 1. It is known that there
exist plenty of similar pixel blocks within one frame and

among adjacent frames, and the similar pixel blocks can be
regarded as information redundancy in the digital video.
These six modules work together to reduce the redundancy
and compact the storage of the video sequence. The Predic-
tionmodules, including the Intraprediction and the Interpre-
diction, help finding matching block, the most similar pixel
block, for current pixel block. The Intraprediction works in
the same frame, while the Interprediction works among the
current frame and its adjacent frames, which are called refer-
ence frames.The Prediction modules can generate predictive
data of current pixel blocks based on its matching block. The
difference between the current pixel block and its predictive
pixel block is usually much smaller than that of current pixel
block because of the similarity. The Transform and Quant
module aims to make the difference data smaller and smaller,
which are as close as zero. The Entropy Coding module
can compress the result data of the Transform and Quant
module into an encoded bit-stream, which is rather short.
The DeQuant and Inverse Transform module is the inverse
process of the Quant and Transformmodule, which produces
the difference data from the result data of Transform and
Quant module. The sum data of difference data and the
matching block are almost the same as the current pixel block
but are slightly different because of the Quant module. The
Filter module can improve the quality of the reconstructed
data by smoothing out artifacts resulting from block method
and quantization.The final data after filtering are the decoded
video data, which can be used as the reference frame of the
next frame.

HEVC processes the frame as a series of basic pixel
blocks rather than the whole frame. The basic pixel block is
called LCU (largest coding unit), and its size is usually set as
64 × 64 in HEVC. The input video frame is firstly split into
nonoverlapped LCUs, as shown in Figure 2(a). A LCU needs
to be further partitioned during the encoding procedure.
A highly flexible hierarchy of unit representation for LCU
Sullivan et al. [13] is provided byHEVC, including three block
concepts, CTU (coding tree unit), CU (coding unit), and PU
(predictive unit). A LCU can be recursively subdivided into

Scientific Programming 3

A picture

LCU LCU LCU

LCU LCU LCU

CU

CU
CU CU

CU CU

CU CU

CU CU
Mode 0 Mode 1 Mode 2 Mode 3

Mode 4 Mode 5 Mode 6 Mode 7

(a) A picture partitioned into LCUs

(b) Quad-tree partitions (c) PU modes

· · ·

· · ·

...
...

Figure 2: The partitioned process of a picture.

square CUs by a quad-tree till 8 × 8, as shown in Figure 2(b).
Therefore, there are several sizes for a CU, including 64 × 64,
32 × 32, 16 × 16 and 8 × 8. A CU can also be further split by
eight partition modes, described in Figure 2(c). Thus a CU
can be divided into one, two, or four parts and each part is a
PU, which is the basic unit delivering themotion information
related to ME. It should be noticed that the partition of a CU
is not recursive.

2.2. Motion Estimation in HEVC. For each PU of a LCU
in HEVC, the ME algorithm aims to find out the matching
block in a search window of the reference frame. In order to
score a pixel block, the ME algorithm uses 𝐽MV (Lagrangian
cost function) and finds the pixel block with the smallest
𝐽MV value as the matching block of current PU. 𝐽MV is de-
fined:

𝐽MV = SAD (MV) + 𝜆𝑀 ∗ 𝑅 (MV − PMV) , (1)

where SAD (sum of absolute difference) is a widely used
matching function. The SAD of two𝑁 ×𝑁 blocks is defined
as follows:

SAD (𝑂, 𝑅) =
𝑁

∑
𝑖=1

𝑁

∑
𝑗=1

𝑂 (𝑖, 𝑗) − 𝑅 (𝑖, 𝑗) . (2)

𝜆𝑀 is a Lagrangian factor, and MV (motion vector) is the
displacement between the current block and its matching
block. PMV (predicted motion vector) is a synthetic vector
from the MVs of the neighboring PUs. 𝑅(MV − PMV)
denotes the required bitrates to encode the value of (MV −
PMV).

2.3. Related Work. The full-search algorithm, being one of
the basic ME methods, searches all positions in a search
region of the reference frame, where each position stands for
a pixel block. Aiming to reduce the number of search points,
researchers have proposed various fast ME methods, which
only search a small part of positions in the search window
with a certain pattern or search the positions which are likely
to generate the optimal MV. Some good ones are adopted
in H.264/AVC, such as UMHexagonS, EPZS, and TZS. The
TZS algorithm is also adopted in the encoder standard of the
HEVC reference software [14].

Though fast and practical on a single CPU, most fast ME
algorithms, including HS, EPZS, and TZS, cannot satisfy the
high parallelism demand of a many-core processor. There-
fore, most of the parallel ME research work is on many-core
concentrates on the full-search method, which is inherently
highly parallel. In Chen and Hang [15]; Cheng et al. [16];
Lee and Oh [17]; Monteiro et al. [18], the parallel full-
search method is implemented on the GPU platform, and
about 10–100x speed-ups are, respectively, obtained com-
pared with the serial full-search method on single core of
a CPU. Although the speed-up of the full-search method is
high on GPU platform, its performance advantage is not
obvious compared with serial fast search method in HEVC
or H.264/AVC on single core of a CPU. This is because the
computational complexity of the full-search method is far
higher than that of the fast method in HEVC/H.264.AVC.

The design of HEVC considers the parallelism to adapt
to the multicore architecture, and three features for parallel
processing are proposed, including tiles, entropy slice, and
wavefront parallel processing. Therefore, quite a number of
parallel approaches are proposed to accelerate the whole
HEVC encoder on the multicore platform. InWang et al. [4],
the authors propose a slice parallelization approach to divide
a frame into as many as the number of available processor
cores, and obtain 9.8 speed-up on a 12-core processor. In Ahn
et al. [19], the researchers implement a fast HEVC encoder
based on the multicore platform using load-balanced algo-
rithm, slice-level parallelization, frame-level interpolation
filter, and SIMD implementation for those computationally
intensive parts. About 10x speed-up is achieved compared
to the HEVC test model software with acceptable loss of
encoding quality. In Yan et al. [20], the researchers make use
of the DAG- (directed acyclic graph-) based order to paral-
lelize CTUs and employ the ILPM (Improved Local Parallel
Method) within each CTU to exploit the CTU-level and PU-
level parallelism and finally obtain 30–40x speed-up for 1920
× 1080/2560 × 1600 video sequences on a 64-core processor
compared with that on one core of that.

As for the multicore and many-core systems with power-
ful single core, such as multicore CPU, Tile, and MIC, HEVC
ME algorithm can get a fine speed-up by making full use
of the various levels of parallelism, such as tiles, wavefront,
slice-level, small-scale SIMD, CTUs, and PUs. However, these
kinds of parallel approaches are difficult to be applied on
GPU, because of the complicated control statements and
limited degree of parallelism. In order to be well applied
on many-core processor with thousand computing cores, an
algorithm should have as high a degree of parallelism as

4 Scientific Programming

that of the platform. Hierarchical Motion Estimation (HME)
is a good choice in fast ME algorithm, whose degree of
parallelism is close to that of full-search method.

HME in Kuhn et al. [21]; Tedmori and Al-Najdawi [22];
Nijad [23];Namet al. [24] algorithmcombines the advantages
of large blocks in a high resolution frame with small blocks
in a low resolution frame. In HME, the original frame is
subsampled into multiple low resolution frames, and the full-
searchmethod is performed on all the resolution frames from
low to high. The computational complexity of the HME is
slightly higher than some of the other fast search methods
but much less than full-search method. On the other hand,
the encoding quality of HME is better than that of other
fast algorithms. Moreover, the HME algorithm implies rich
parallelism if the data dependency can be relaxed. We have
applied HME in X264 and implemented parallel algorithm
using CUDA on multiple GPUs, Chen et al. [25].

3. Multilevel Resolution Motion Estimation

The traditional fast search methods pay more attention to
reducing the computational complexity rather than the high
parallelism demand of many-core processors. This leads to
three major problems: (1) strong data dependency exists
among neighboring blocks, since the processing of the cur-
rent block depends on the results of its previous adjacent
blocks; (2) the memory access is unpredictable as a result of
searching the most likely positions of search window; (3) the
convergence rates of different blocks are inconsistent because
of the strategy of terminating as early as possible. These
troubles hinder the application of the traditional fast search
methods on themany-core platformon account of the limited
degree of parallelism.

In order to overcome these problems, we propose a
scalable and parallel algorithm, taking the flexible block
structure of HEVC into account, which can also be regarded
as an improved HME method. The new ME algorithm is
namedMLRMEand incorporates enough parallelism tomeet
the need of many-core processors.The main idea of MLRME
is to relieve the data dependency among neighboring LCUs
and exploit rich parallelism by the following means: (1)
multilevel resolution frames are generated. (2)The full search
method, rather than fast search methods, is applied on each
resolution frame. (3) Coarsely best MV (cbMV), rather than
the best MV of previous blocks in the original frame, is
selected as the central point of searchwindows for the original
resolution frame. (Here, the cbMV of a block refers to the
bestMV in the half-resolution frame rather than the bestMV
in the original resolution frame or quarter-resolution frame,
although there exists the best MV in each resolution frame.)
These means above greatly increase the degree of parallelism
ofMLRME but may cause the encoding quality to drop at the
same time. In order to address this new problem, multiple
cbMVs are adopted for each block. Therefore, the MLRME
method can perform ME for all LCUs of the current picture
in parallel while keeping good encoding quality by combining
the methods of relaxing the data dependency and adopting
multiple cbMVs.

3.1. Procedure. The MLRME method can contain multiple
layers of different resolutions, and the number of layers
impacts on the computational complexity and search accu-
racy. Given a certain resolution of the original frame, more
layers inMLRME reduce the computational complexity at the
cost of lower search accuracy. In our work, the resolution of
the target videos varies from 832 × 480 to 2560 × 1600, and
thus three levels of resolution are adopted in the MLRME.
For higher resolution video, such as 3840 × 2160, we can
add one more subsampling layer to obtain total four different
resolutions. In the rest of this article, our discussion is mainly
based on MLRME with three resolutions.

The procedure of MLRME is briefly shown in Figure 3.
The left part of Figure 3 shows the subsampling process from
bottom to top. The right part depicts the main search steps
of MLRME from top to bottom. In order to facilitate the
analysis, the proposed MLRME method is summarized into
the following five steps.

The initial step is to generate the half-resolution frame
and the quarter-resolution frame. The half-resolution frame
is created by subsampling from the original frame, and
the quarter-resolution frame is produced from the half-
resolution frame in a similar way. Herein, a subsampled pixel
in a lower resolution frame is generated from the correspond-
ing higher resolution frame by using the arithmetic average
value of four neighboring pixels, as shown in the left of
Figure 3 from the bottom layer to top layer.

In the second step, two substep searches are performed to
find the cbMV of each LCU in the lower resolution frames.
The first substep is to locate the matching position in the
search window of the quarter-resolution reference frame.The
center of the search window can be calculated by mapping
the center of the current LCU into the quarter-resolution
frames.Then the size of the search window is reduced 4 times
in the 𝑥 and 𝑦 direction, respectively, when compared with
their size in the original frame. For the second substep, the
cbMV can be calculated by searching in the corresponding
search window of the half-resolution reference frame, whose
center is indicated by the best MV in the quarter-resolu-
tion.

In the third step, the best MV for every partition of
each LCU in full-resolution frame is worked out based on
cbMVs. For a LCU with size 64 × 64 in HEVC, there are
many hundreds of possible subblocks. Since most partitions
of a LCU overlap with the others, there exits much repeated
work when computing the SAD of each subblock. In order to
avoid repeated computations, the SADs of smallest subblocks
with size 4 × 4 are worked out first. Then, the SADs of other
larger subblocks can be calculated based on the smaller ones.
Figure 4 shows this process of using the blocks with size of
4 × 4 to calculate the SADs of blocks with size of 16 × 16. In
HEVC, the SADs of all subblocks from sizes of 4×4 till 64×64
can be worked out by this way.

The fourth step computes the final CU partitions of each
LCU, including the CU size and CU depth. After that, the
optimal partition size and depth of each LCU can be selected
by comparing the 𝐽MV value of different partitions among
various partitioned layers and selecting the smallest one. The

Scientific Programming 5

Full-resolution
frame

Half-resolution
frame

Quarter-resolution
frame

0
1

2

0

0

1

3

0 Current coding block

1 Best candidate at each level

Predictive motion vector from higher level

Search range
Motion vector at each level

2

Figure 3: Process schematic of the proposedMLRME.The grey blocks in the left part of the figure show the subsampling process from bottom
to top. The right part of the figure shows the main search steps of MLRME from top to bottom.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

8 × 8

4 × 4

16 × 16

Figure 4: The processing of computing SAD from small blocks to large block.

6 Scientific Programming

number of final partitions is considerably smaller than the
number of all possible partitions.

In the final step, the quarter-pixel precisionMV is figured
out for each PU based on its integer-pixel MV (the best MV
in original frame). HEVC also adopts quarter-pixel precision
MV, which leads to lower bitrates at the cost of higher
computational complexity.The resolution of original frame is
improved by interpolating half pixel with an 8-tap filter and
quarter-pixel with a linear filter. OurMLRMEmethod adopts
this method to obtain the quarter-pixel precision MV of
each finally partitioned block, which is selected in the fourth
step.

3.2. Computational Complexity. In order to analyze the com-
plexity of the MLRME method, some basic assumptions
are needed: (1) three-level resolution pictures are used. (2)
The full-search method is adopted to search in each level
resolution frame to guarantee the best search result and
parallelism. (3)Different search ranges are applied in different
levels of resolution frames to control the number of search
positions. Denote the resolution of input video by𝑊×𝐻 and
the search range of full-search algorithm by 𝑀 × 𝑁. Then,
in MLRME, the search ranges are respectively𝑀/4 × 𝑁/4 in
the quarter-resolution frame and the half-resolution frame,
and 3 × 3 in the full-resolution frame. (4) For any block with
size 𝑚 × 𝑛 (largest one with size 16 × 16 in h.264/AVC and
64 × 64 in HEVC), its size is, respectively, 𝑚/4 × 𝑛/4 in the
quarter-resolution frame and 𝑚/2 × 𝑛/2 in half-resolution
frame.

The computation work of MLRME includes three major
parts. (The following equations represent the computation
needed for one LCU.)Thefirst part is subsampling to generate
the quarter-resolution frame and half-resolution frame. The
number of operations is presented in (3); the second part is
coarse search in the subsampled frame to obtain cbMV. The
complexity is exhibited in (4); the last part is to obtain the
best MV at the full-resolution level. The complexity is shown
as (5). Therefore, the total work of the MLRME method for
one LCU approximates the sum of the three main parts,
demonstrated in (6). Here the cost of refining the best MV
by using subpixel is not included, which is identical with that
in HEVC and only occupies a small proportion of the total
computation.

(𝑊 × 𝐻) +𝑊/2 × 𝐻/2
(𝑊 ×𝐻) /𝑚𝑛 = 5𝑚𝑛4 (3)

(𝑀4 ×
𝑁
4) × [2 × (

𝑚
4 ×
𝑛
4) − 1] + (

𝑀
4 ×
𝑁
4)

× [2 × (𝑚2 ×
𝑛
2) − 1] =

5𝑀𝑁𝑚𝑛
128 −

𝑀𝑁
8

(4)

(5 × 3 × 3) × (2𝑚 × 𝑛 − 1) = 90𝑚𝑛 − 45 (5)

5𝑚𝑛
4 + (
5𝑀𝑁𝑚𝑛
128 −

𝑀𝑁
8) + (90𝑚𝑛 − 45) ≈ 91𝑚𝑛

+ 5𝑀𝑁𝑚𝑛128 .
(6)

The complexity of the full-search method is shown as

(𝑀 × 𝑁) × (2𝑚 × 𝑛 − 1) ≈ 2𝑀𝑁𝑚𝑛. (7)

The ratio of the MLRME method to the full-search
method is shown as

91𝑚𝑛 + 5𝑀𝑁𝑚𝑛/128
2𝑀𝑁𝑚𝑛 = 5256 +

45
𝑀𝑁. (8)

Given that the search window in H.264/AVC is 32 × 32,
the ratio of computational complexity is 6.3%. If the search
window in HEVC is 128 × 128, the ratio of computational
complexity is about 3%. It is evident that a larger search
window favors MLRME with respect to computational com-
plexity.

3.3. Parallelism. The classic fast search methods are efficient
and accurate by using the similarity of pixel values of adjacent
blocks. The well-known reason is that the pixel values of
adjacent blocks are close and the best MVs of adjacent
blocks are good approximate. However, the classic fast search
methods are unsuitable for parallel processing due to the
data dependency among blocks.Theprocessing of the current
block relies on its previous neighboring blocks, including its
left, upper-left, upper, and upper-right blocks in the original
frame. As one of the fast search methods, HME inherits the
same merits and faults. The rest of this subsection shows
the data dependence in HME and the way to break the
dependence among neighboring blocks in MLRME.

Figure 5 shows the dependency relationship during the
procedure for block 12. Data dependency in HME can be
found in Figure 5(a) while those in MLRME are shown
in Figure 5(b). The number for each block indicates the
processing order of these blocks in a serial program. The
same color blocks represent the same blocks in different
resolutions. They are always processed in the order from top
to bottom, such as 1 → 2 → 3, 4 → 5 → 6, 7 → 8 → 9,
and 10 → 11 → 12 in Figure 5(a), and 1 → 5 → 9,
2 → 6 → 10, 3 → 7 → 11, and 4 → 8 → 12 in
Figure 5(b). These data dependencies are inevitable for the
method withmultiple resolution frames but have no effect on
the parallelism among different blocks. In Figure 5, these data
dependency relationships are shown by dashed lines.

For HME, in Figure 5(a), block 12 depends upon block 11,
block 11 relies on block 10, and block 10 directly depends upon
blocks 3, 6, and 9.Therefore, block 12 indirectly depends upon
blocks 3, 6, and 9, which are the neighbors of block 12 in the
original frame. Namely, block 12 cannot be processed until its
neighbors, block 3, 6, and 9, have been processed. Taking the
other dependencies into consideration, the processing order
can only be strictly serial: 1 → 2 → 3 → 4 → 5 → 6 → 7 →
8 → 9 → 10 → 11 → 12. The parallelism of HME is thus
limited by the data dependency among different blocks in the
original frame, which are shown by solid lines.

The proposedMLRME algorithm successfully overcomes
the shortage by only using cbMVs as the center of search
windows for the current block in the original frame. The
method does not use the correlation among adjacent blocks,
which can improve the search efficiency. As is shown in

Scientific Programming 7

10

12

11

3

9

6

8

52

7
1 4

(a) Data dependency in HME

12

8

4

9

11

10

7

65

3
1 2

(b) Data dependency in our MLRME

Figure 5: Data dependency among blocks in HME method and the proposed MLRME. The number represents the processing sequence of
all blocks in multiple resolution frames.

Table 1: Parallelism analysis of MLRME algorithm.

Step Content Max parallelism

1

Subsample into half-resolution
image 𝑊𝐻/4

Subsample into quarter-resolution
image 𝑊𝐻/16

2

Search for the best MV in
quarter-resolution image 𝑊𝐻𝑀𝑁/(16𝑛2)
Search for the best MV in
half-resolution image 𝑊𝐻𝑀𝑁/(16𝑛2)

3 Search for the best MV in
full-resolution image 45𝑊𝐻/𝑛2

4 Decide the CU and PU partition of
LCU 𝑊𝐻/𝑛2

5 Refine the best MV by using
subpixel 9𝑊𝐻/𝑛2

Figure 5(b), block 12 depends upon blocks 5, 6, and 8, while
blocks 5, 6, and 8, respectively, depend upon their subsam-
pling blocks 1, 2, and 4. However, blocks 1, 2, and 4 no longer
depend upon any other blocks. Thus the blocks in the same
resolution frame can be processed in parallel from top to
bottom, such as (1, 2, 3, 4) → (5, 6, 7, 8) → (9, 10, 11, 12).The
parallelism of the MLRME algorithm is exploited through
this way. According to the steps of MLRME, the best MVs
of all LCUs in the quarter-resolution frame can be found out
first in parallel, and then the cbMVs of all LCUs in the half-
resolution frame can be obtained based on the search results
in quarter-resolution frame. Finally, the best MV of blocks in
the full-resolution frame can be worked out in parallel based
on cbMVs.

A quantitative analysis of the parallelism of MLRME is
shown in Table 1 step by step; presuming that the resolution
of the input video is 𝑊 × 𝐻, the LCU size is 𝑛 × 𝑛 and the
search window is𝑀×𝑁.

From Table 1, it can be concluded that the MLRME
algorithm is suitable for a many-core processor, such as GPU

with thousands of cores, because of high parallelism. The
maximum parallelism of most steps can achieve 𝑂(𝑊𝐻),
which can satisfy the parallelism demand of many-core
processor. Only the parallelism of step 4 is relatively low but
can still reach hundreds.

3.4. Multiple Search Windows. As in the third step of the
MLRME, the best MV for every final partition of LCU in the
full-resolution frame is computed based on cbMVs. Since the
cbMVmay not be as accurate as the predictive MV in classic
fast ME methods, more cbMVs are employed to improve the
search results in MLRME.

As shown in Figure 6(a), there are at most nine directly
related cbMVs for eachLCU.A cbMVcorresponds to a search
window. It is obvious that using all nine cbMVs brings the
best result as well as the most computational complexity. In
the MLRME method, five candidates, including cbMVs of
the current LCU and its upper, left, and right neighboring
LCUs, are used, as shown in Figure 6(b). The reasons for
choosing five candidates, rather than nine ones, are as follows:
(1) five candidates require about half of the computational
complexity. (2)These five candidates can achieve very close
results with nine candidates. It is known that the search
windows provided by neighboring candidates are overlapped
with each other in most cases. For example, in Figure 6(a),
the search window provided by cbMV of upper-left LCU is
overlapped with search windows provided by cbMVs of the
upper LCU and left LCU. On the other hand, the corner
candidates are farther away from the center LCU than the
direct adjacent candidates. Therefore, the corner candidates
are not adopted for the sake of reducing the computational
complexity. The efficiency of the MLRME with five search
windows is showed in Section 5.2.

Given the search sizes in each resolution frame, we can
work out the total search range for each block. According
to the MLRME method, we assume that the search sizes in
each resolution frame are given as follows: (1) the quarter-
resolution frame has one search window with size 2𝑎1 × 2𝑏1;(2) the half-resolution frame also owns one search window

8 Scientific Programming

Upper-left

LCU

Upper

LCU
Upper-right

LCU

Left

LCU

Cur

LCU

Right

LCU

Bottom-left

LCU

Bottom

LCU

Bottom-

right

LCU

(a) All candidates

Upper

LCU

Left

LCU

Cur

LCU

Right

LCU

Bottom

LCU

(b) Our selected candidates

Figure 6:The candidates from subsampled frames. (a) All available candidates in subsampled frame. (b)The selected candidates inMLRME.

b1

a1

(a) Search window size in quart-resolution resolution
frame

b2

a2

(b) Search window size in half-resolution frame

....
a3

b3

(c) Search window size in full-resolution frame

Figure 7: The sizes of search windows in each layer.

with size 2𝑎2 × 2𝑏2; (3) the full-resolution frame has five
search windows with the same size 2𝑎3 × 2𝑏3, as shown in
Figure 7; (4) the distance between two LCUs in the original
frame is n. Since one pixel in the quarter-resolution and half-
resolution frames, respectively, represents four pixels and two
pixels in the full-resolution frame, the total search range

can reach ℎ𝑡 × V𝑡, when mapping back to the full-resolution
frame:

ℎ𝑡 = 2 × (4𝑎1 + 2𝑎2 + 𝑎3 + 𝑛) = 326
V𝑡 = 2 × (4𝑏1 + 2𝑏2 + 𝑏3 + 𝑛) = 326.

(9)

Scientific Programming 9

A picture

LCU
0

LCU
1

LCU
nm

LCU
0

LCU
1

LCU
nmBlock level parallel

Pix level parallel/

subblock level parallel

LCU
m − 1

LCU
(n − 1) m + 1

LCU
(n − 1) m + 2

· · ·

· · ·

· · ·

· · ·

· · ·
· · ·

· · ·

· · ·

· · ·· · ·· · ·

· · ·
· · ·

· · ·

· · ·

· · ·

...

...
...

...
...

· · ·
· · ·

· · ·

· · ·

...
...

...
...

...
...

...
...

...

Figure 8: The parallel model.

According to the assumptions in Section 3.2, the values of
the parameters are assigned as follows:
𝑎1 = 16, 𝑏1 = 16; 𝑎2 = 16, 𝑏2 = 16; 𝑎3 = 3, 𝑏3 = 3;𝑛 = 64.

For a full-HD video with resolution 1920×1080, the final
search range can, respectively, cover 1/6 and 1/3 of the full
frame in horizontal and vertical directions. Therefore, the
MLRME method can capture the fast moving objects, which
pass the video bymore than 6 frames in horizontal directions
and 3 frames in vertical directions.

In the classic fast ME methods, the position of search
window can inherit from the best MVs of previous adjacent
blocks, so its search range can reach farther from the original
position of the current block. Namely, the search range
of MLRME is smaller than classic method in some cases.
Despite all that, Section 5.1 shows MLRME achieves close
encoding quality to the ME method in HEVC test model.
Actually, the search range of MLRME is large enough to
capture overwhelming majority of moving objects, because
such fast moving objects which can pass the video from one
side to the other within 6 frames are few in video sequences.

4. CUDA Implementation and
Optimization of MLRME

In this section, we implement MLRME for GPU and employ
some optimizations to the parallel program.

Parallel programs based on CUDA include serial codes
and parallel kernels. The serial codes run on the host side,
and the CUDA kernels run onGPUs in the single-instruction-
multiple-thread (SIMT) style NVIDIA [26].TheGPU threads
can be regarded as having two layers, the first layer ismade up
of blocks. The threads belonging to different blocks cannot
communicate with each other. The other layer consists of
threads in each block, which can share data through high
speed shared memory.

4.1. The Parallel Model. In the basic CUDA implementation
of MLRME, a kernel is created for each step, which is simple
and clear. There are five kernels. For each step, output data
mainly is the SAD value and motion vector of each CU size.
Motion vector of each CU size in lower resolution frame is
the input data in higher resolution frame. By this way, the
search start position in higher resolution frame is decided by
the output motion vector in lower resolution frame.

In each kernel, a LCU is processed by a thread block in
every step of theMLRMEalgorithm. Figure 8 shows our basic
parallel strategy. The number of thread blocks remains the
same as the number of LCUs in a frame for all steps of the
MLRME method. In fact, the number of LCUs is constant in
a video sequence with the same resolution. The basic parallel
implementation of each LCU is shown as the lower part of
Figure 8, where all the threads in the same block deal with all
partitions of a LCU.The number of threads per block may be
adjusted according to the computation content of each step.

10 Scientific Programming

Search window

Current LCU

Search position 0ear
Search position 1
rch
ear
Search position 2

h position 0
1rch position 1

2n 2earch positioo 2
Search position 3

(a) Overlapped data access among
threads

Search window 1

LCU 0 LCU 1

Search window 0

Thread
block 0

Thread
block 1

(b) Overlapped data access among
blocks

Figure 9: Overlapped data access modes.

4.2. Optimizations. In order to utilize the computation power
of a GPU efficiently, we have employed some optimizations to
the parallel MLRME, including the following.
(1) Take full advantage of the shared memory of the GPU

memory hierarchy. Many intermediate results and repeated
access data can be shared between threads to reduce the
overheads of global memory access. It should be noticed
that the input/output data, only accessed once, do not need
to be carried into the shared memory. For example, in the
second step of searching for cbMV, one thread calculates
the SAD value of one search position. When computing the
SADs in the same search windows, there are many repeatedly
accessed data, which are contained in multiple nearby search
positions, as shown in Figure 9(a). Namely, every pixel value
will be accessed more than once by different threads, and
these threads can be in the same thread block or in the
different thread blocks. In the case of the same thread block,
pixel data should be transported from GPU’s global memory
to the sharedmemory for reducing the access cost.Therefore,
data of one search window for one LCU are loaded into the
shared memory of the corresponding thread block, as shown
in Figure 9(b).
(2) Reduce the overhead of kernel launching by merging

small kernels. There is another advantage: avoiding interme-
diate results to be written to and read from global memory.
These optimizations greatly enhance the performance. For
example, we merge kernels 1, 2, 3 of basic CUDA imple-
mentation of MLRME into one big kernel of optimization
of MLRME. Namely, in the optimization of MLRME, three
kernels finally remain in the optimization ofMLRME. Kernel
1 of optimization of MLRME includes steps 1, 2, 3. Kernel
2 includes step 4. Kernel 3 includes step 5 While merging
kernels 1, 2, 3, we have tested different thread configuration
in a thread block and selected the optimal one: 8 × 8. The
performance with different thread number of each thread
block, including 4 × 4, 8 × 8, and 16 × 16, is tested. The
result shows the 8 × 8 thread block configuration leads to
best performance. Table 1 shows the maximum parallelism of
each step, which is rather rich in our programming, especially
for high resolution video. Therefore, we merged steps 1, 2, 3
into one kernel which is easy, since we just take care of
the smallest maximum parallelism step. In fact, the smallest
maximum parallelism step can meet our demand. When we
merge the small kernel together, it seems natural because of
rich parallels and the same search range.

Table 2: Test video sequences.

Resolution Sequence 1 Sequence 2 Sequence 3

832 × 480 BasketballDrill
(BD)

BQMall
(BQ)

Keiba
(Kb)

1280 × 720 KristernAndSara
(KAS)

FourPeople
(FP)

SlideEditing
(SE)

1920 × 1080 Kimonol
(Kmn)

ParkScene
(PS)

Tennis
(Tnn)

2560 × 1600 PeopleOnStreet
(POS)

Traffic
(Tff) —

5. Experimental Results

The experimental hardware environments are described as
follows. Three GPUs are used to evaluate the performance
of the CUDA program of the proposed MLRME algorithm,
including NVIDIA Geforce GTX 460, C2050, and K40c.
These three GPUs consist of 336, 448, and 2880 streaming
processors, respectively. The host is equipped with an Intel
i7 2600 CPU with 4 cores, and the Ubuntu 14.04 operating
system is used. For NVIDIAGPU programming, CUDA IDE
6.5 is used. The video sets involve four resolutions, and each
resolution includes two or three different video sequences, as
shown in Table 2. The video sequences are downloaded from
the official test set of HM.When encoding, the frames are set
as one I frame followed by nine P frames for each ten frames.

5.1. Encoding Quality. In order to evaluate the encoding
quality of the MLRME algorithm, we implant it in HM12.0
and compare with the average PSNR of the fast search
method in HM12.0. PSNR of Huynh-Thu and Ghanbari [27]
is one of the most widely used objective measurements to
evaluate the encoding quality of different encoders. Figure 10
shows the average PSNR with different methods for different
video sequences, where we use 5 candidates of cbMVs. The
subpicture represents the results with different quantization
parameters (QP) (increasing the QP leads to fewer bitrates at
the cost of losing more information). A higher PSNR value
represents better quality of video coding. We can see that the
proposed MLRMEmethod with five or nine search windows
causes no distinct decline of the video coding quality com-
pared with the fast method in HEVC. The decrease of the
average PSNR is less than 1.5%.

Scientific Programming 11

BD BQM Kb FP KAS SE Kmn PS Tnn POS Tff

Fast search

Our MLR search‐9 windows
Our MLR search‐5 windows

40.00
41.00
42.00
43.00
44.00
45.00
46.00
47.00

PS
N

R
(d

B)
QP = 22

37.00

38.00

39.00

40.00

41.00

42.00

43.00

PS
N

R
(d

B)

BD BQM Kb FP KAS SE Kmn PS Tnn POS Tff

Fast search

Our MLR search‐9 windows
Our MLR search‐5 windows

QP = 27

34.00
35.00
36.00
37.00
38.00
39.00
40.00
41.00

PS
N

R
(d

B)

BD BQM Kb FP KAS SE Kmn PS Tnn POS Tff

Fast search

Our MLR search‐9 windows
Our MLR search‐5 windows

QP = 32

32.00

33.00

34.00

35.00

36.00

37.00

38.00

PS
N

R
(d

B)

BD BQM Kb FP KAS SE Kmn PS Tnn POS Tff

Fast search

Our MLR search‐9 windows
Our MLR search‐5 windows

QP = 37

Figure 10: PSNR of the fast search and the MLRME search with 5 candidates for QP values of 22, 27, 32, and 37.

5.2. The Efficiency of Multiple Search Windows Method. The
efficiency of multiple windows includes two aspects: encod-
ing quality and computational complexity. In Figure 10, the
PSNR of our MLRME with nine or five search windows has
been showed,where the PSNRvalues of themare very close. It
demonstrates that the five searchwindows can achieve almost
as good quality as that with the nine search windows. On the
other hand, it is quite clear that the computational complexity
of our MLRME with five search windows is smaller than that
with nine search windows. In order to get the exact value
of its computational complexity, we test the running time of
their serial codes on CPU, and the results are displayed in
Figure 11. The experimental results show that our MLRME
with 5 searchingwindows can save 20 percent of running time
in comparisonwith that with 9 searchingwindows on a single
core of the CPU.

5.3. Parallel Performance on GPU. As previously mentioned,
for each LCU in a frame, the ME algorithm needs to be
invoked hundreds of times in the HEVC test model (HM),
so much of complicated invoking ME impedes the effective
measurement of its precise execution time in HM.Therefore,
we extract the single ME out from the whole test model HM
when we need to measure the running time of ME. In this
article, we adopt two steps to evaluate the parallel perfor-
mance on GPU and can indirectly compare the performance
ofMLRME onGPUwith the fast ME in HEVC on single core

Our MLRME‐9 windows (CPU)
Our MLRME‐5 windows (CPU)

0
200
400
600
800

1000
1200
1400
1600
1800

Ru
nn

in
g

tim
e (

m
s)

BD BQM Kb FP KAS SE Kmn PS Tnn POS Tff

Figure 11: The running time of our MLRME with five search
windows compared with that with nine search windows on a single
core of the CPU.

of CPU. The first step is to measure the serial execution time
of HM12.0 with MLRME as the ME algorithm and compare
the performance with the original HM12.0; both are based
on a single core of the CPU. The second step is to compare
the performance of full-search method and MLRME on
GPU and their serial performance on a single core of the
CPU.

12 Scientific Programming

Table 3: Encoding time (in seconds).

Method Fast ME MLRME Increase
BD 90.636 101.556 12%
BQM 76.814 87.796 14%
Kb 102.336 114.269 12%
KAS 137.717 140.691 2%
FP 144.456 159.166 10%
SE 150.681 166.794 11%
Kmn 544.253 565.013 4%
PS 403.182 423.771 5%
Tnn 602.348 625.887 4%
POS 1176.273 1251.465 6%
Tff 1205.733 1289.681 7%

Video resolution

GTX460
C2050
K40

0

20

40

60

80

Sp
ee

d-
up

832 × 480 1280 × 720 1920 × 1080 2560 × 1600

Figure 12: The average speed-up of video sequences with different
resolutions on three GPUs compared withMLRME on a single core,
including data transfer time.

At first, we evaluate the execution time of HM12.0 with
the fast search method and the MLRME method. Table 3
shows the execution time of encoding 10 frames on a single
core of the CPU. We can see that the execution time of the
whole encoding algorithm with the serial MLRME method
is longer than that of the fast search method, increased by
2%–14%. The major reasons include the following: (1) the
complexity of the MLRME method is higher than the fast
ME in HM12.0; (2) the heuristic search and early termination
mechanism of the fast ME help reducing the search time.The
experimental results show the computational complexity of
ourMLRME is higher than that of the fastmethod inHM12.0,
but the difference is not very big.

5.4. The Proportion of Computation and Communication.
In order to evaluate the parallel efficiency of MLRME, the
CUDA program, respectively, executes on the three GPUs
mentioned above. For each test video sequence, the average
speed-up on these three GPUs is obtained, while the perfor-
mance on a single core of the CPU is used as the baseline.
For each resolution, we test two or three video sequences,
respectively, on these three GPUs and a single core of the
CPU. The results are shown in Figures 12 and 13, where
Figure 12 includes data transfer time, but Figure 13 does not

0
20
40
60
80

100
120

Sp
ee

d‐
up

Video resolution
832 × 480 1280 × 720 1920 × 1080 2560 × 1600

GTX460
C2050
K40

Figure 13: The average speed-up of video sequences with different
resolutions on three GPUs compared withMLRME on a single core,
not including data transfer time.

include data transfer time. We find that the MLRMEmethod
can achieve about 30–60x speed-up on a GPU compared
to that on a single CPU core when considering the data
transfer time. If ignoring data transfer time, the speed-up
can reach 35–100x. Figure 13 also shows that the speed-
up increases from GTX 460 to K40c, since the number of
streaming processors increases. This suggests the MLRME
method is highly parallel and scalable. According to the result
of Figure 12 and considering that the fast ME in HEVC is
faster than MLRME on single core of CPU, our parallel
MLRMEonGPU can achieve about 25–50x speed-up. In fact,
the parallel MLRME on these GPUs can reach the processing
rate with about 25 fps for all test video sequences.

We can also conclude that the speed-up of different reso-
lutions is different on the same GPU.The speed-up increases
from 832 × 480 to 1920 × 1080, since the number of LCUs
can provide increasing parallelism to satisfy the parallelism
demand of the GPU. Then, the speed-up decreases from
1920 × 1080 to 2560 × 1600, and we believe that this anomaly
is due to remaining inefficiencies in data access, which will be
an issue for future improvements.

The parallel full-search method has been implemented
and optimized on the GPU platform in many previous
researches, and about 10–100x speed-ups are, respectively,
obtained compared with the serial full-search method on
single core of a CPU. Therefore, we do some experiments
to compare with traditional full-search algorithm. We test
four kinds of programs, including full search on a single core
of the CPU, full search on GPU K40, our MLR method on
a single core of the CPU, and our MLR method on GPU
K40. For all the four programs, we test them with our test
video sequences, and the data transfer time is not considered.
The performance of full-search algorithm on single CPU
core is regarded as the baseline; we can obtain the speed-
up of the other three program, as is shown in Figure 14.
We can find that the speed-up of the full search on GPU is
60–150x, and the speed-up of our MLR method on a single
core of the CPU can also reach about 40x. That means the
performance of full-search method on GPU is just about
twice the performance of ourMLRmethod on a single core of
theCPU.We can also notice that the performance of ourMLR

Scientific Programming 13

1 1 1 162 96 128 14437 40 43 45

1169

1920

2805
3150

Video resolution

Full search (CPU)
Full Search (GPU)

Our MLR (CPU)
Our MLR (GPU)

0
500

1000
1500
2000
2500
3000
3500

Sp
ee

d‐
up

832 × 480 1280 × 720 1920 × 1080 2560 × 1600

Figure 14: The speed-up of full search on GPU K40, our MLR on a single core of the CPU, our MLR on GPU K40 with different resolutions,
compared with the performance of full search on a single core of the CPU, not including data transfer time.

GTX460

Kernel
Memory

0
10
20
30
40
50
60
70
80
90

100

(%
)

8
3
2
×
4
8
0

1
2
8
0
×
7
2
0

1
9
2
0
×
1
0
8
0

2
5
6
0
×
1
6
0
0

C2050

Kernel
Memory

0
10
20
30
40
50
60
70
80
90

100

(%
)

8
3
2
×
4
8
0

1
2
8
0
×
7
2
0

1
9
2
0
×
1
0
8
0

2
5
6
0
×
1
6
0
0

K40C

Kernel
Memory

0
10
20
30
40
50
60
70
80
90

100

(%
)

8
3
2
×
4
8
0

1
2
8
0
×
7
2
0

1
9
2
0
×
1
0
8
0

2
5
6
0
×
1
6
0
0

Figure 15: The proportion of kernel computation and data communication with different resolutions on different GPUs.

method on GPU is the highest and excellent, whose speed-
up can reach 1000–3000x compared to the baseline. Namely,
the performance of our MLR method on GPU is over 20x
compared to the performance of the full-search method on
GPU.That is whywe try our best to improve the parallelism of
the fast search algorithm, and we can obtain very high speed-
up.

We collect separately the computing time and data trans-
mission time on the three GPUs. Figure 15 shows the pro-
portion of computing kernel and data communication with
different resolutions on GTX 460, C2050, and K40c. The
proportion of data transmission increases with the increasing
GPU performance because the time of computing part
becomes shorter and shorter. For the K40c GPU, the propor-
tion of data transmission reachesmore than 30%.Therefore it
is important to optimize data transmission as far as possible
in a system with the work mode of CPU-GPU, when an
algorithm has obtained high enough parallelism. In our
experiments, we simply transfer data fromCPU toGPU, then
compute it on GPU, and finally return result data back to
CPU.This is an unwise method. We can do some research on
overlapping of data transmission and computing in the future

work. It becomes more and more significant and valuable
after overcoming the problem of parallelism.

6. Conclusion

Based on HME, we have proposed a parallel and scalable
ME algorithm, named the MLRME method. The crucial
improvements put emphasis on relaxing the data dependency
among neighboring LCUs and adopting multiple search
windows to keep quality by just selecting search candidates
from a lower resolution picture. We presented our proposed
MLRME method in detail and analyzed its computational
complexity and parallelism step by step. We can see two
important advantages of the MLRME algorithm: acceptable
complexity and high parallelism, which are suitable for the
many-core architecture. We also implanted MLRME into
HM12.0 to evaluate the encoding quality compared to the
fast search method of HM12.0. The results on several test
sequences showed that the loss of PSNR of the picture coded
by MLRME is less than 1.5% compared to the results with
the fast ME in HEVC. We demonstrated the efficiency of our
MLRME with five search windows when compared with that

14 Scientific Programming

with nine search windows. Moreover, we implemented and
optimized MLRME on GPU to demonstrate its high paral-
lelism and scalability. The experiments showed that MLRME
can achieve about 30–60x speed-up on GPU compared to its
serial method on a single core of the CPU. Moreover, it is
faster than the fast ME algorithm in HEVC on single core of
CPU by a factor of 25 to 50, and the parallel MLRME imple-
mentation on a GTX 460 GPU canmeet the real-time coding
requirement of about 25 fps for the 2560×1600 video format,
while, for 832 × 480, the performance is more than 100 fps.
Therefore, the MLRMEmethod can meet the requirement of
real-time processing onGPU.We also separately collected the
computing time anddata transmission time on the threeGPU
platforms.The proportion of data transmission cost increases
when the GPU performance enhanced, which demonstrates
the importance of optimizing data transmission on CPU-
GPU platform, when an algorithm has achieved high enough
parallelism.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors gratefully acknowledge support from National
Natural Science Foundation of China under NSFC no.
61502509, 61402504, and 61272145; National High Technol-
ogy Research and Development Program of China (The 863
Program) under Grant no. 2012AA012706; Research Fund for
the Doctoral Program of Higher Education of China under
SRFDP Grant no. 20124307130004.

References

[1] B. Bross, W. Han, J. Ohm, G. Sullivan, Y. K. Wang, and T. Wie-
gand, “High efficiency video coding (hevc) text specification
draft 10,” Standard Draft, No. JCTVC-L1003. Joint Video Team
(JVT) of ISO/IEC MPEG and ITU-T VCEG, 2013.

[2] T.Wiegand,G. Sullivan, andA. LuthraW,Draft itu-t recommen-
dation and final draft international standard of joint video spec-
ification (itu-t rec. h.264/iso/iec 14 496-10 avc. Standard Draft,
No. JVTG050. Joint Video Team (JVT) of ISO/IEC MPEG and
ITU-T VCEG, 2003.

[3] N. Purnachand, L. N. Alves, and A. Navarro, “Fast motion esti-
mation algorithm for HEVC,” in Proceedings of the 2012 IEEE
2nd International Conference on Consumer Electronics - Berlin,
ICCE 2012, pp. 34–37, Berlin, Germany, September 2012.

[4] X.Wang, S. Li, M. Chen, and J. Yang, “Paralleling variable block
size motion estimation of HEVC on CPU plus GPU platform,”
in Proceedings of the 2013 IEEE International Conference on
Multimedia and ExpoWorkshops, ICMEW 2013, San Jose, Calif,
USA, July 2013.

[5] T. Koga, K. linuma, A. Hirano, and T. Ishiguro, “Motion com-
pensated inter frame coding for video conferencing,” in Pro-
ceedings of the NTC 81, vol. 4, pp. 961–965, 1981.

[6] L.-M. Po andW.-C. Ma, “A novel four-step search algorithm for
fast blockmotion estimation,” IEEETransactions onCircuits and
Systems for Video Technology, vol. 6, no. 3, pp. 313–317, 1996.

[7] S. Zhu and K.-K. Ma, “A new diamond search algorithm for
fast block-matching motion estimation,” IEEE Transactions on
Image Processing, vol. 9, no. 2, pp. 287–290, 2000.

[8] C.-H. Cheung and L.-M. Po, “A novel cross-diamond search
algorithm for fast block motion estimation,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 12, no. 12, pp.
1168–1177, 2002.

[9] A. Hamosfakidis and Y. Paker, “A novel hexagonal search
algorithm for fast block matching motion estimation,” Eurasip
Journal on Applied Signal Processing, vol. 2002, no. 6, pp. 595–
600, 2002.

[10] C. Zhu, X. Lin, and L.-P. Chau, “Hexagon-based search pattern
for fast block motion estimation,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 12, no. 5, pp. 349–355,
2002.

[11] C. Zhu, X. Lin, and L. P. Chau, “An enhanced hexagonal search
algorithm for block motion estimation,” in Proceedings of the
ISCAS 2003. International Symposium on Circuits and Systems,
pp. II-392–II-395, Bangkok, Thailand, 2003.

[12] A. M. Tourapis, “Enhanced predictive zonal search for single
and multiple frame motion estimation,” in Proceedings of the
Viual Communications and Image Processing 2002, pp. 1069–
1079, FL, USA, January 2002.

[13] G. J. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand, “Overview
of the high efficiency video coding (HEVC) standard,” IEEE
Transactions on Circuits and Systems for Video Technology, vol.
22, no. 12, pp. 1649–1668, 2012.

[14] Hevc reference software, https://hevc.hhi.fraunhofer.de/svn/
svn HEVCSoftware/tags/HM-12.0/ .

[15] W.-N. Chen and H.-M. Hang, “H.264/AVC motion estima-
tion implmentation on compute unified device architecture
(CUDA),” in Proceedings of the 2008 IEEE International Con-
ference on Multimedia and Expo, ICME 2008, pp. 697–700,
Hanover, Germany, June 2008.

[16] R. Cheng, E. Yang, and T. Liu, “Speeding up motion estimation
algorithms onCUDA technology,” inProceedings of the 2ndAsia
Pacific Conference on Postgraduate Research in Microelectronics
and Electronics, PrimeAsia 2010, pp. 93–96, Shanghai, China,
September 2010.

[17] D.-K. Lee and S.-J. Oh, “Variable block size motion estima-
tion implementation on compute unified device architecture
(CUDA),” in Proceedings of the 2013 IEEE International Con-
ference on Consumer Electronics, ICCE 2013, pp. 633-634, Las
Vegas, NV, USA, January 2013.

[18] E.Monteiro, B. Vizzotto, C. Diniz, B. Zatt, and S. Bampi, “Apply-
ing CUDA architecture to accelerate full search block matching
algorithm for high performance motion estimation in video
encoding,” in Proceedings of the 23rd International Symposium
on Computer Architecture and High Performance Computing,
SBAC-PAD 2011, pp. 128–135, bra, October 2011.

[19] Y.-J. Ahn, T.-J. Hwang, D.-G. Sim, and W.-J. Han, “Implemen-
tation of fast HEVC encoder based on SIMD and data-level
parallelism,” Eurasip Journal on Image and Video Processing, vol.
2014, article no. 16, 2014.

[20] C. Yan, Y. Zhang, J. Xu et al., “Efficient parallel framework
for HEVC motion estimation on many-core processor,” IEEE
Transactions on Circuits and Systems for Video Technology, vol.
24, no. 12, pp. 2077–2089, 2014.

[21] P. M. Kuhn, G. Diebel, S. Herrmann et al., “Complexity and
PSNR-comparison of several fast motion estimation algorithms
for MPEG-4,” in Proceedings of the Applications of Digital Image
Processing XXI, pp. 486–499, San Diego, Calif, USA, July 1998.

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-12.0/
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-12.0/

Scientific Programming 15

[22] S. Tedmori and N. Al-Najdawi, “Hierarchical stochastic fast
searchmotion estimation algorithm,” IET Computer Vision, vol.
6, no. 1, pp. 21–28, 2012.

[23] A. N. Nijad, “A novel hierarchical search algorithm for video
compression,” in Proceedings of the International Conference on
Advances in Computer and Electrical Engineering (ICACEE), pp.
46–50, Manila, Philippines, 2012.

[24] K. M. Nam, J. S. Kin, R. H. Pari, and Y. S. Shin, “A fast hierarchi-
cal motion vector estimation algorithm using mean pyramid,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 5, no. 4, pp. 344–351, 1995.

[25] D. Chen, H. Su,W.Mei, L.Wang, andC. Zhang, “Scalable Paral-
lel Motion Estimation on Muti-GPU system,” in Proceedings of
the 2nd International SymposiumonComputer, Communication,
Control and Automation, China, Feburary 2013.

[26] NVIDIA, Nvidia Cuda Compute Unified Device Architecture-
Programming Guide Version 2.0. Guidebook, NVIDIA Corpo-
ration, 2003.

[27] Q. Huynh-Thu and M. Ghanbari, “Scope of validity of PSNR in
image/video quality assessment,” Electronics Letters, vol. 44, no.
13, pp. 800-801, 2008.

Submit your manuscripts at
https://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

