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Cloud computing as a powerful technology of performing massive-scale and complex computing plays an important role in
implementing geological information services. In the era of big data, data are being collected at an unprecedented scale. Therefore,
to ensure successful data processing and analysis in cloud-enabled geological information services (CEGIS), we must address the
challenging and time-demanding task of big data processing. This review starts by elaborating the system architecture and the
requirements for big data management. This is followed by the analysis of the application requirements and technical challenges
of big data management for CEGIS in China. This review also presents the application development opportunities and technical
trends of big data management in CEGIS, including collection and preprocessing, storage and management, analysis and mining,

parallel computing based cloud platform, and technology applications.

1. Introduction

In the era of big data, the data-driven modeling method
enables us to exploit the potential of massive amount of
geological data easily [1-3]. In particular, by mining the
data scientifically, one can offer new services that bring
higher values to customers. Furthermore, it is now possible
to implement the transition from digital geology to intelli-
gent geology by integrating multiple systems in geological
research through the use of big data and other technologies
[4].

The application of geological cloud makes it possible
to fully utilize structured and unstructured data, including
geology, minerals, geophysics, geochemistry, remote sens-
ing, terrain, topography, vegetation, architecture, hydrology,
disasters, and other digitally geological data distributed in
every place on the surface of the earth [4, 5]. Moreover,
the geological cloud will enable the integration of data
collection, resource integration, data transmission, informa-
tion extraction, and knowledge mining, which will pave
the way for the transition from data to information, from

information to knowledge, and from knowledge to wisdom.
In addition, it provides data analysis, mining, organization,
and management services for the scientific management of
land resources, prospecting breakthrough strategic action
and social services, while conducting multilevel, multiangle,
and multiobjective demonstration applications on geological
data for government decision-making, scientific research,
and public services [5].

Big data technologies are bringing unprecedented oppor-
tunities and challenges to various application areas, especially
to geological information processing [2, 6, 7]. Under these
circumstances, there are some advancements achieved in the
development of this area [8, 9]. Furthermore, from various
disciplines of science and engineering, there has been a
growing interest in this research field related to geological
data generated in the geological information services (GIS).
We analyze the number of those documents indexed in “Web
of Science” [10]. In Figures 1 and 2, we can easily find that, in
the past ten years, the number of those documents in which
“geological data” is in the “Title” and in the “Topic” are both
increasing, respectively. Hence, the analysis for geological
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FIGURE 1: The trend of the number of documents in which “geolog-
ical data” is in the “Title” from 2007 to 2016.
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FIGURE 2: The trend of the number of documents in which
“geological data” is in the “Topic” from 2007 to 2016.

data in GIS is an interesting and important research topic
currently.

Considering the development status of cloud-enabled
geological information services (CEGIS) and the applica-
tion requirements of big data management analysis, this
article describes the significant impact and revolution on
GIS brought by the advancement of big data technologies.
Furthermore, this article outlines the future application
development and technology development trend of big data
management analysis in CEGIS.

The remainder of this article is organized as follows.
In Section 2, we provide a review on CEGIS, with an
emphasis on the descriptions for the system architecture and
those requirements from big data management. Then, the
challenges for big data management in CEGIS are presented
in Section 3. Furthermore, the key technologies and trends
on big data management in CEGIS are analyzed in Section 4.
Finally, conclusion is drawn in Section 5.

2. Review on Cloud-Enabled Geological
Information Services

The construction of geological cloud differs from the current
big data analysis based on Internet and Internet of Things
(IoT). Having a deep understanding of data characteristics is
necessary to collect, process, analyze, and interpret data in
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different fields, because the nature and types of data vary in
different fields and in different problems. Geology is a data
intensive science and geological data are characterized with
multisource heterogeneity, spatiotemporal variation, correla-
tion, uncertainty, fuzziness, and nonlinearity. Therefore, the
geological cloud has a certain degree of confidentiality and
it is highly domain-specific; meanwhile, it is developed on
the basis of a large amount of geological data accumulated
over a long period of time [5, 11]. There are many real-time
data generated from some issues like geological disasters and
geological environment. The geological cloud includes core
basic data, which can be divided into three parts: existing
structured database, some unstructured data, and public
application data. Therefore, it is important to take good
advantage of the existing traditional structured data, use the
big data technologies to deal with the relevant unstructured
data, and also consider the peripheral public data.

Geological big data are multidimensional, and they
consist of both structured and unstructured data [12]. The
technical methods of big data analysis differ greatly from
those of professional databases. Long-term geological survey,
geological study, and years of geological information accu-
mulation have formed a rich and professional database, which
is an important fundamental assurance for land and resources
science management, geological survey, and geological infor-
mation public service [13]. This “professional cloud” objec-
tively requires the technology research and development,
such as construction of professional local area network,
data sharing platform, and geological big data visualization
services. Hence, the construction of geological cloud is closely
related to land resource management, deployment decision,
and the application demand of public service. The key tech-
nologies of research and development include the following:
unstructured data extraction and mining analysis, structured
and unstructured data mixed storage and management, big
data sharing platform, data transmission, and visualization
[11].

Generally, the construction of geological cloud is a long-
term systematic project. This means that it is required to
follow the basic principles of “standing on the reality, focusing
on the future” and “focusing on the long-term and overall
situation, embarking on the current and local situation,” in
order to achieve the analysis and application of geological
cloud public data and core data gradually in accordance with
the technical route of big data analysis; thus the construction
of geological cloud will be implemented eventually. For the
earth, the land and resources management should cover
many respects, including human behavior, climate change,
development and utilization of various resources, natural
disasters, environmental pollution, and the ecosystem cycle.
Then, the introduction of big data technologies can integrate
this type of resource information to provide the ability of
uniformly dealing with the problems related to the entire
earth information resources, which has a significant effect on
the strategic planning of land and resources management [3].

The geological cloud is an important part in the science
system for geological data research. The ultimate goal for
developing geological cloud is to better describe and under-
stand the complex earth system and geological framework,
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FIGURE 3: The system architecture of geological cloud.

provide the scientific basis for the description of the land
surface and the biodiversity characteristics of the earth, and
improve the ability to deal with complex social problems.

2.1. System Architecture. Because the business service func-
tions of each country are different, the system architecture of
the geological cloud would vary. In the following, we present
a system architecture in Figure 3 [14], using China as an
example.

The geological cloud combines the geological survey
Intranet and the geological survey Extranet. It enables the
sharing and management of computing resources, storage
resources, network resources, software resources, and geolog-
ical data resources [15].

Geological cloud can be summarized with the following
characteristics [14].

(i) “One Platform: The Geological Cloud Management
Platform.” It uniformly manages computing
resources, storage resources, network resources,
software resources, and geological data resources.

(ii) “Two Networks: The Geological Survey Intranet and
the Geological Survey Extranet.” Here, the Intranet is
constructed by creating a network that is physically
isolated from the Internet. The Intranet is developed
on the basis of the existing geological survey network
and each node is linked through a dedicated line or
bare fiber. All of the internal business management
systems, software systems, and data are deployed
on the Internet, providing services to 28 local units
and those users of more than 350 geological survey
projects. Facilitated by the public geological survey
network, the geological survey business management
system, geological data information service system,
and public geological data can be deployed on the
Extranet accessed by the general public. The com-
munication between the Intranet and the Extranet,

including data exchange and audit, can be carried out
by single-directional light gate.

(iil) “One Main Node and Three Domain-Specific Nodes.”
One main node is constructed in China Geologi-
cal Survey Development Research Center. In addi-
tion, three domain-specific nodes—namely, marine
node, geological environment node, and aviation geo-
physical exploration and remote sensing node—are
constructed, respectively. Each node is configured
with the corresponding servers, storage equipment,
network equipment, management platform, large-
scale specialized data processing software system and
various customized applications. Each node would
store huge amounts of geological data and conform
to current data security standards. The master node
and the domain-specific nodes are linked via optical
fibers. The master node will consist of 200 computing
nodes with 3 PB storage capacity and will be equipped
with some geological data processing software system.
The master node will be hosted in a medium-sized
supercomputing center and it will provide support for
the three-dimensional seismic exploration data pro-
cessing and other large-scale computing. The three
domain-specific nodes are to maintain their scale in
the near future to facilitate reasonable scheduling and
efficient utilization of information resources and data
resources.

On the Extranet, it deploys a system for geological
survey business management and auxiliary decision-making.
The system provides a real-time tracking and management
function for geological survey projects and various resources.

Main users of the geological cloud include institutional
users, geological survey project users, and the general public
users. The institutional users can store the current geological
database and newly collected data in the geological cloud
through the geological survey business network and can
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FIGURE 4: Schematic diagram of big data analysis.

obtain the geological data of other institutions from the cloud
as needed. The geological survey project users can access
the cloud geological background data through 4G or satellite
lines and can collect data through data the collection system.

2.2. Requirement from Big Data Management. The construc-
tion of geological cloud must meet customer demand. Big
data technologies are then used as the means to implement
the geological cloud.

The types and quantity of geological data have been
continuously growing over the years. Geological data include
all kinds of electronic documents, structured, semistruc-
tured, and unstructured data, such as various databases (map
database, spatial database, and attribute database), pictures,
tables, video, and audio. Generally speaking, those important
data may be buried in the massive data without the guidance
for requirements. Hence, the first step is to understand the
user requirements and then gain the capability of large-scale
data processing. This is followed by data mining, algorithm,
and analysis, which will ultimately generate value. Big data
technologies in the field of geography must meet different
needs from people at different levels, including the public
demand of the geologic data services and professional data
demand for geological research institutions, as well as related
enterprises and government departments [16].

On the basis of big data analysis technologies, a complete
data link is formed connecting data, information, knowledge,

and service, through the use of advanced cloud computing
system, [oT, and big data processing flow. It is shown in
Figure 4 [5].

3. Challenges for Big Data
Management in Cloud-Enabled
Geological Information Services

Geological big data are generated regarding various layers of
the earth, the history of the conformation and evolution of
the earth, and the material composition of the earth and its
changes. It also involves the exploration and utilization of
mineral resources. In the current geological work, the collec-
tion, mining, processing, analysis, and utilization of various
complex type data are closely related to those general big data.
The “4V” characteristics of big data—namely, Volume, Veloc-
ity, Variety, and Veracity—also apply to geological big data.

3.1. Volume. Currently, there is no consensus on the size of
geological data. Geological big data are a collection of data,
including geology, minerals, remote sensing, geophysical
exploration, geochemical exploration, surveying, and map-
ping, which are interconnected and integrated. In terms of the
number of mines, there are at least 70000 in China, and some
official documents and popular science books indicate that
there are more than 200000 deposits and minerals that have
been found. The information is huge and cannot be processed
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using conventional tools. For example, an Excel spreadsheet
cannot contain all the information of 70000 mining areas.
Then, it is difficult to classify and rank the 200000 mines, so
it is necessary to rely on the concepts and technologies of big
data [17].

Especially in recent years, images, video, and other types
of data have emerged on a large scale. With the application
of 3D scanning and other devices, the data volume has
been increasing exponentially. The ability to describe the
data is more and more powerful, and the data are gradually
approximated to the real world. In addition, the large amount
of data is also reflected in the aspect that the methods and
ideas used by people to deal with data have undergone
a fundamental change. In the early days, people used the
sampling method to process and analyze data in order to
approximate the objective with a small number of subsample
data. With the development of technologies, the number of
samples gradually approaches the overall data. Using all the
data can lead to a higher accuracy, which can explain things
in more detail [18].

Recently, the China geological survey system has built
databases including regional geological database (cover-
ing the 1:2500000, 1:1000000, 1:500000, 1:250000, and
1:200000 regional geological map; the national 1:200000
natural sand; the isotope geological dating; and the lithos-
tratigraphic unit database), basic geological database (cov-
ering the national rock property database and national geo-
logical working degree database), mineral resources database
(covering the national mineral resources, the national min-
eral resources utilization survey mining resources reserves
verification results, the national survey of large and medium-
sized mines, the prospect of mineral resources, the survey of
the resources potential of major solid mineral resources in
China, and the geological and mineral resources database),
oil and gas energy database (covering the oil and gas basins
in China, the geological survey results of the national oil
and gas resources, the national petroleum and geophysical
exploration, national shale gas, national coal bed methane,
national natural gas hydrate, and other databases), geophys-
ical database (covering 1:1 million, 1:500000, 1:250000,
1:200000, and 1:50000 gravity, national regional grav-
ity, national aeromagnetism, national ground magnetism,
national electrical survey, seismic survey, national aviation
radioactivity, and national logging database), geochemi-
cal database (covering the databases of national 1:250000
and 1:20 geochemical exploration, national multiobjective
geochemical and national land quality evaluation results),
remote sensing survey database (covering national aeronau-
tical remote sensing image, China resources satellite data,
space remote sensing image, national mine environmental
remote sensing monitoring, national high score satellite, and
other databases), drilling database (covering the national
geological borehole information, the national important
geological borehole, the Chinese mainland scientific drilling
core scanning image library, and so on), hydraulic cycle
hazards database, data literature database, special subject
database (covering the national mineral resources poten-
tial evaluation database, the important mineral “three-rate”
investigation and evaluation database), work management

database (covering the national exploration right, mining
right, mining right verification, geological information meta-
data database, and many others) [17].

For those databases, they are still expanding and con-
summating, and their practical values have not yet been
tully reflected. However, the vast majority of researchers are
virtually impossible to have all of the above data, at most,
using their own accumulated data. Anyway, even if their
accumulated data, both on the quantity and on type, is incom-
parable by 10 years and 20 years ago, they are, in fact, in the era
of the “relatively big data.” From 1999 to 2004, for example,
in “the Chinese mineralization system and regional metalor-
ganic evaluation” project, although there are 202 national
academic experts that participated in it, they only master
data of 4500 properties (all kinds of minerals). From 2006 to
2013, the study of “national important mineral and regional
mineralization laws” was conducted; meanwhile, the mining
area covered only by the mineral resources research institute
was 30600. Therefore, the increase of information and the
amount of data are unprecedented in the last ten years.

3.2. Variety. From the formal point of view, the geological big
data have many characteristics, including multidimensional-
ity, multiscale, and multitenses. And they contain structured,
semistructured, and unstructured data and usually are stored
in forms of text, graphics, images, databases (including image
database, spatial database, and attribute database), tables,
videos, and audios in a fragmented state. For example, a
large number of field outcrop description data, borehole
core description data, and all kinds of geological survey,
exploration report, and a large number of geological maps,
drawings, and photos were stored and managed in the form
of paper for a long time; even the numerous relational
databases and spatial databases were primarily used to store
and manage structured data that are tabulated and vectorized,
while the text descriptions, records, and summaries were
directly stored. Very few standardized processing and struc-
tural transformations were performed. Furthermore, there is
no tool available to effectively integrate storage and manage
structured, semistructured, and unstructured data.

3.3. Velocity. The increase of geological data is very fast,
especially in remote sensing geology, aviation geophysical
exploration, regional geochemical exploration, and other
fields, due to the introduction of new technologies and
new methods. Meanwhile, high speed processing is also a
characteristic of big data. In addition to the need of analyzing
data in real time, people also need to describe the results
of data mining and processing through the use of several
data processing techniques, such as image and video, while
requiring effective and efficient handling skills. For example,
the detection of the deep earth information not only needs
to obtain parameters of the seismic wave reflection and
refraction but also needs to conduct quick processing, so as
to timely predict whether earthquake will occur and forecast
the time, location, and intensity. In this way, we can avoid
the disaster effectively. When applying a variety of data to
a particular mountain, one should learn which ones have



spatial limitations and which are not related to spatiality,
so that one deduces the metallogenic law and guides the
prospecting better [17].

3.4. Veracity. For the understanding of the value of big data,
most people consider it low value density. It means that the
real useful information in the vastamount of data is very little.
Taking video as an example, the useful data may be only a
second or two in the continuous monitoring process. While
big data is high value, it does not need to be invested too
much; just collecting information from the Internet can bring
business value. Therefore, big data has the characteristics
of low value density and high business value. The same is
true for geological big data. So far, there has been a lot of
information about geophysical prospecting, but only a few
have been confirmed, and the discovered mines were less. But
once a breakthrough was made, its socioeconomic value was
enormous, such as the lithium polymetallic deposit in Tibet
and the newly discovered Jima copper polymetallic deposit in
the outskirts of Sichuan [17].

In addition, the spatial attribute and temporal attribute of
geological data also bring a big challenge to data accuracy.
Any geological data have spatial attribute, and their values
are reflected in the spatial law of distribution of mineral
resources. For this reason, in the process of establishing
the metallogenic series, exploring the metallogenic law, and
constructing the mathematical model, the spatial attribute
of the metallogenic model should be considered. Obviously,
every metallogenic series has its spatial attribute. Geological
data also has the time attribute, which is very different from
physical, chemical, and other natural sciences. One of the
fundamental pillars of geology is the geological time scale.
The rocks, strata, and deposits of different geological periods
have different distribution characteristics and regularity, so
those data have their own time attribute.

It is obvious that those characteristics of geological big
data mentioned above impose very challenging obstacles
to the data management in CEGIS. The challenges related
to geological big data management can be summarized as
follows:

(i) It is quite difficult to describe and model geological
big data, since there are few effective characteris-
tics description mechanisms and object modeling
approaches under the cloud computing environment.

(ii) There remain many technical issues that must be
addressed to fully manage, mine, analyze, integrate,
and share those geological big data, in consideration
of those complex characteristics, including multi-
source heterogeneous data, highly spatiotemporal
variation, high-volume and high-correlation data,
and many others.

(iii) Many issues appear in achieving decision support,
such as data incompleteness, data uncertainty, and
high-dimensionality of data.

The broad range of challenges described here make good
topics for research within the field of big data management in
CEGIS. They are analyzed in the next section.

Scientific Programming

4. Key Technologies and Trends on Big Data
Management in Cloud-Enabled Geological
Information Service (CEGIS)

With the rapid advancement of big data technologies, some
key technologies are accordingly developed for big data
management in CEGIS. Specifically, a schematic diagram of
those key technologies is shown in Figure 5. Then, in this
section we present an analysis on those key technologies.
Meanwhile, the trends along this direction are also discussed.

4.1. Geological Big Data Collection and Preprocessing. Geolog-
ical big data collection and preprocessing aim to categorize
those geological big data obtained from geological data,
geological information, and geological literature.

4.1.1. Geological Data Collection Access. In addition to the
traditional collection ways, it is also required to carry out
large-scale network information access and provide real-
time, high concurrency, and fast web content acquisition,
combining with the application characteristics in the cloud
environment. Currently, considering that the growth rate of
geological information generated from the network is very
fast, the big data analysis system should obtain relevant data
quickly.

4.1.2. Quality and Usability Characteristics of Geological Data.
It needs to distinguish and identify valuable information
through intelligent discovery and management technologies.
Because the information value density contained in different
data sources differs from each other, filtering out the useless
or low-value data source can effectively reduce the data stor-
age and processing costs. Then, it can also further improve
the efficiency and accuracy of analysis.

4.1.3. Geological Data Entity Recognition Model. According
to the subject domain of geology, the distributed data are
extracted to form a data warehouse, after conducting the
operation of processing and integration. When extracting
data in the field of geology, it needs to use entity modeling
method to abstract entities from the vast numbers of data,
so as to find out the relationship between those entities. This
approach ensures that the data used in warehouse data can
be consistent and relevant in accordance with the data model
[19]. These recognized data are directly input into the system,
stored as metadata, which could be used for data management
and analysis.

4.1.4. Aggregation of Geological Big Data. Generally, dif-
ferent data sources and even the same data source may
generate data with different formats. As mentioned above,
because these structural, semistructured, and unstructured
multimodal geological big data are integrated together, the
data heterogeneity is obvious in big data analysis. Then,
data aggregation as the key technology in achieving data
extraction and transformation [20] enables data sharing and
data fusion between heterogeneous data sources. Through



Scientific Programming

Multi-Source Heterogeneous Data
Multimodal Data

Highly Spatio-Temporal Variation
High-Volume and High-Correlation Data
Low-Value-Density Data

Complex and Uncertain Data

Characteristics: “4V”
(Volume, Variety, Velocity, Veracity)

Geological Big Data

Big Data Flow

Applications
\
\
\\
Analysis and Mining \
\\ \\
NN
Storage

|
| Z
N
N
NN
Key Technologies

Preprocessing

-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

hY
[ Lo
i
7
e e

Collections

Highly Performable Big Data
Cloud Computing Platform

W
Sy =
~ N

~

Big Data Management /

FIGURE 5: Schematic diagram of key technologies for big data management in CEGIS.

the use of heterogeneous information aggregation technolo-
gies, the unified data retrieval and data presentation could
be achieved. On the basis of it, after aggregating those
distributed heterogeneous data sources, they are extracted
and converted to achieve the functions of automatically
constructing subject domain database and data warehouse
[21].

4.1.5. Management of Geological Big Data Evolution Tracking
Records. In order to effectively utilize geological big data, it
needs to track the evolution of big data during the whole life
cycle of GIS, with the purpose of achieving the traceable big
data management.

Here, we provide an example of aggregating and collect-
ing geological big data in CEGIS. Figure 6 illustrates this
process. While developing CEGIS, all kinds of geological
data should be processed. Through the use of geological
cloud, big data are collected, and then they are aggregated to
achieve some key functions in geological information service
platform, including catalog sharing, intelligent searching,
data products release, and collaborative service.

4.2. Geological Big Data Storage and Management. From
the data collection perspective, geological data can be
divided into field survey data, drilling and engineering explo-
ration data, remote detection data, analytical test data, and
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comprehensive study data. From the angle of comprehensive
application fields, they can be also divided into regionally
geological survey data, energy and mineral resources evalu-
ation and exploration survey results data, geological disaster
monitoring and early warning data, geological environment
survey and evaluation results data, and marine geological
survey and evaluation data. From the data formality point
of view, they can be divided into picture data, text report
data, tabular data, and image data. These data are collected
by different units.

Facing these complex geological big data mentioned
above, the traditional relational database will be difficult to
handle them, while the distributed storage system can be used
to store such huge amounts of data and manage them. Then,
the data system places the massive data in many machines,
which avoids such limitation of storage capacity, and also
brings many problems that have not occurred before in stand-
alone systems. Hence, some distributed data storage solutions
have accordingly emerged, including Hadoop, Spark, and
other nonrelational database systems (like HBase, MongoDB,
and many others) [22]. These different solutions satisfy
the specific requirements from different applications. When
applying to the analysis of big data, different solutions can
be employed according to the specific needs of different
intelligence analysis. Furthermore, different solutions can be
combined to meet specific needs. Actually, there have been
some attempts to develop combination strategies for dis-
tributed storage model, varying in the big data management
performance requirement, and the complexity of collected
big data that are supported by the distributed storage system
[23]. Hence, there is still a room for improvement and
optimization of geological big data storage, while designing

a hybrid distributed storage model through the use of cloud

advantages of flexibly scalable deployment, to meet the users’

requirement for geological big data resource management

with satisfactory data durability and high availability [23].
Here, the hot research topics include the following:

(i) For geological applications, the load optimization
storage should be implemented to achieve the cou-
pling for data storage and application and the cou-
pling for distributed file system and the new storage
system.

(ii) Based on the application characteristics of distributed
databases, more studies could be conducted on the
application of new databases NoSQL and NewSQL in
geological survey work.

With the development of big data technologies, more and
more mature distributed data storage solutions will emerge
and will be applied to big data analysis [24, 25].

Specifically, in the management of geological big data,
the implementation of data query—for example, spatial
query—has been a long-term focus. Generally, considering
those advantages with unified modeling language (UML) and
computer-aided software engineering (CASE) methodology,
the spatial database could be accordingly designed and
implemented to characterize and realize the object-oriented
spatial vector big data firstly [26]. And then, in the developed
spatial database, the function of self-generating codes would
be achieved to realize two-way spatial query between graphic-
objects and property data [26]. Moreover, in consideration of
the complex characteristics of geological big data, the spatial
query is achieved finally through the use of Flex technology in
ArcGIS Server software platform [27]. Practically speaking,
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in this technology, the spatial query could be implemented
through two functions, including “Query” and “Find” query
methods [28].

4.3. Geological Big Data Analysis and Mining. In terms of geo-
logical data analysis and mining, it needs to combine geolog-
ical data, geological information, and geological literatures,
through the analysis of geological application demand of
real-time mining, to explore geological big data environment
analysis and mining algorithm, in an effort to fully achieve
the goal of intelligent mining for geological big data.

Figure 7 shows a schematic diagram of discovering geo-
logical knowledge through analyzing and mining geological
big data. It can be easily found that geological big data analysis
and mining play an important role in achieving the final goal.
More relevant research work related to it mainly involves the
following aspects.

4.3.1. Geological Big Data Analysis. Considering the special
applications, geological big data technologies would apply big
data concepts to analyze the metallogenic rules by making
full use of various data related to ore, to recognize deposit
metallogenic series, to summarize the metallogenic regulari-
ties and express in an appropriate way (like voice, image, and
many others), and to establish the scientifically mathematical
model. The model then uses new exploration data to predict
future data and to guide geological prospecting.

In addition, it is necessary to pay special attention to
the analysis of new geological big data information collected
from social medium and networks [29]. These include the
geological text information flow data from microblog web
sites, the geological multimedia data from media sharing
web sites, the geology-related user interaction data on social
networking web sites, and many others [30]. These mul-
tisource data complement traditional big data. Specifically,
such data should be addressed with the help of multilingual
information processing, multilingual machine translation,
and social network cross-language retrieval [31]. Big data
analysis of such data is a key to deep use of geological data in
a broader dimension. With the maturity of big data analysis
technologies, it becomes possible to analyze and extract
valuable information from these data [32] and to provide
effective solutions for geological big data applications.

4.3.2. Geological Big Data Mining. Data mining is to extract
the unknown and useful knowledge and information from
the massive multilevel spatiotemporal data and attribute data,
using statistics, pattern recognition, artificial intelligence,
set theory, fuzzy mathematics, cloud computing, machine
learning, visualization, and relevant techniques and methods.
Data mining could reveal the relationship and evolution
trend behind the geological big data, achieve the automatic
or semiautomatic acquisition of the new knowledge, and
provide the decision basis for resource prediction, prospect-
ing, environmental assessment, and disaster prevention and
mitigation [33]. Therefore, the knowledge is obtained directly
from known geological data to provide relevant decision
support [34]. In consideration of the amount of data, it may

deal with terabytes or even petabytes of data, as well as
multidimensional data, all kinds of noise data and dynamic
data. Because data mining algorithms will directly influence
the outcome of the discovered knowledge, selecting the most
appropriate algorithms and parallel computing strategy is the
key to data mining.

Effective data mining also could reduce manual inter-
vention during information processing and make use of
methods and tools of big data intelligent analysis [35, 36].
Recently, there has been a growing interest in the geological
big data mining through the use of some novel computational
intelligent methods—for example, rough set [37] and fuzzy
aggregation [38]. Moreover, with the development of those
neural network based machine learning algorithms in recent
years, some popular methods, including extreme learning
machine [39, 40], approximate dynamic programming [41],
and kernel learning [42], could be used to further improve
mining effectiveness for geological big data in the future.

4.4. Highly Performable Big Data Cloud Computing Platform.
Highly performable big data cloud computing platform is the
foundation for big data analysis. It enables parallel computing
for large-scale incremental real-time data and large-scale
heterogeneous data [43-46].

With the advent of massive data storage solution,
many big data distributed computing frameworks have
been proposed. Among them, Hadoop, MapReduce, Spark,
and Storm are the most important distributed computing
frameworks. These frameworks have different characteristics
and solve different problems in applications [47-50]. The
Hadoop/MapReduce is often used for offline complex big
data processing, the Spark is often employed in offline fast
big data processing, and the Storm is often available for
real-time online big data processing. Different computing
frameworks have their different advantages and disadvan-
tages. Hadoop/MapReduce is easy to program, and it is with
satisfactory scalability and fault tolerance. In addition, it is
suitable for offline processing of massive data with petabyte
level, but it does not support real-time computation and flow
calculation. Spark is a memory-based iterative computing
framework. By placing intermediate data in memory, Spark
can achieve higher iterative calculation performance. The
programming model of Spark is more flexible than that
of Hadoop/MapReduce, but Spark is not suitable for those
applications in which the fine-grained updates are conducted
asynchronously. Hence, Spark may be unavailable for those
application models that require incremental changes. Storm
is suitable for stream data processing. It can be used to handle
a stream of incoming messages and can write the processed
result to a specified storage device. Another major application
of Storm is real-time data processing where data are not
necessary to be written into storage devices, which usually
results in low time delay. Hence, Storm is particularly suitable
for scenarios where real-time online analysis is required to
obtain results for big data analysis.

An application example is geological big data aggregation
mining framework based on Hadoop [16]. Geological big
data aggregation mining platform research is based on the



10

Scientific Programming

A
~
————
o Filtering
Original data

geological

data
~ ‘
T
—
Geological
knowledge
~

Evaluating
results

I
|
|
|
Loy
I
I
|
|

Practicability of machine learning and statistical algorithms i
Feasibility of intelligent mining !
I
I
I

Preprocessing Converting

data —P data

A

Analyzing and
mining data

Effectiveness of online analysis and mining

FIGURE 7: Schematic diagram of discovering geological knowledge through analyzing and mining geological big data.

China geological survey data network, and it uses the Hadoop
technology to improve and modify existing platform, to make
it suitable for big data applications, and to provide a platform
for the pilot applications. The geological survey grid platform
can be updated in three layers—that is, the virtual layer,
the computing layer, and the terminal application layer. The
virtual layer is the virtualization of computer resources based
on Hadoop distributed file system (HDES) virtualization
technology, which is the foundation of cloud computing and
cloud services. The computing layer mainly uses MapReduce
method to implement the analysis algorithms for geological
big data. Currently, the geological big data technologies
mainly use the block calculation strategy to achieve parallel
analysis through the utilization of the characteristics of
Hadoop, in an effort to speed up the analysis and processing
of geological data. The terminal application layer is designed
to display the results and receive user feedback to improve
system availability.

MapReduce has been used to perform morphological cor-
relation analysis, which involves the analysis of geochemical
data processing and the study of the correlation between mul-
tielements. Figure 8 shows the pattern correlation between
elements. It can be seen from Figure 8 that the elements of
Mn, Co, and Be are similar in the distribution of morphology.
Therefore, from a qualitative point of view, the correlation
is relatively high. Moreover, after testing, the proposed
prototype system is running three times more quickly than
the existing common computing platform, showing that the
geological big data is applicable to the Hadoop platform.
Furthermore, some applications of using MapReduce could
be found in [51].

4.5. Applications of Geological Big Data Technologies

4.5.1. Exploration of Metallogenic Law. The metallogenic law
is the human regular knowledge of the temporal and spatial
distribution of mineral resources, and its cognitive level,
ability, and scope are all related to the size of data, the type
of data, and the way of data processing. Therefore, to deduce
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FIGURE 8: Correlation among three element morphologies.

the metallogenic law, it is necessary to fully understand the
massive data about spatial distribution, reserves and produc-
tion in mineral origin, the geological structure of the mineral
origin, and related geological survey data. Then, it is to
conduct the regular speculation and objectivity expression of
these geological big data, so that one can identify the essential
reasons for the distribution of mineral origin. Actually, using
geological big data technologies could help to translate data
into new understanding or knowledge and help to guide the
future geological prospecting work.

4.5.2. Smart Prospecting. The types of deposits vary, and
the formation of them is related to certain geological back-
grounds and geological effects, respectively. The geological
backgrounds include tectonic unit and stratigraphic unit,
deep upper mantle and lithosphere conditions, and paleo-
geography and palaeoclimate environment on the surface of
the earth. Geological effects include tectonism, magmatism,
sedimentation, metamorphism, and weathering. Theses geo-
logic backgrounds and effects in the wide range of space,
and in the long geologic history, are a dynamic change
and repeated stack, and large deposits can be formed only
in a variety of favourable conditions. Long-term scien-
tific research and experience accumulation formed mineral
deposit and mineralization prediction subject. Professionals
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are guided by certain theories and methods to adopt quanti-
tative or qualitative methods to predict prospecting with the
existing knowledge and experience.

However, in view of the difficulties of geological data shar-
ing and the limitations of calculation tools and calculation
methods, most of the known deposits in the past are indepen-
dent of each other. In the future, we can use geological data
to connect several adjacent deposit exploration data, conduct
unified analysis and specialized processing, determine the
“digital” characteristics of the distribution of metallogenic
materials, find out metallogenic potential, delineate the
abnormal area and prospective area, and promote geological
prospecting. Furthermore, geological data informatization
and standardization could be improved [52].

4.5.3. Service of People’s Livelihood Geology. After entering
the 2lst century, geological work is more closely related
to economic development, and geological work plays an
important role in every aspect of social and economic life.
Agricultural geology, urban geology, environmental geology,
tourism geology, disaster geology, and other works have been
strengthened, and the service area has also been expanded
[53]. Meanwhile, the public demand for geological informa-
tion is increasingly urgent [54].

In order to meet the social demand for geological data,
China Geological Survey carried out the construction of
geological cloud, which built cluster geologic data service
system with the National Geological Information Center
and the Provincial Geological Information Center as the
backbone nodes, conducted the integration of data resources,
and applied the GIS cloud technology, in order to obtain
large-scale computing ability and solve those key problems,
such as the distributed storage, processing, query, interop-
erability, and virtualization of massive spatial data [5, 13].
Recently, in China, Shandong Provincial Bureau of Geology
and Mineral Resources also carried out the construction of
“the application system of geological business based on e-
government cloud platform.” It mainly relies on the public
service cloud platform of the e-government in Shandong
province and constructs the government external network
service system and Internet service system to achieve the
unified management and information service of the mineral
resource. Using technical methods of spatial analysis, big
data mining, and three-dimensional geological model, it
develops a basic system framework for geological mining
services, featured by “a (cloud) platform, a (data) center,
and many application systems,” to improve the ability of the
people’s livelihood geological service, promote interaction
with the public, realize socialization services, and promote
the clustering and industrialization of the mineral resources
information services.

4.5.4. Application of Knowledge Visualization Service. With
the continuous development of web technology, human
beings have experienced the “Web 1.0” era, which is charac-
terized by document interconnection, and “Web 2.0”, which
is characterized by data interconnection, and are moving
towards the new “Web 3.0” era based on the interconnected

1

knowledge of the entity. Due to the continuous release of
user-generated content and linking open data on the Internet,
people need to explore knowledge interconnection methods
which both conform to the development of the network
information resources and meet users requirements from
a new perspective according to the knowledge organization
principles in the large data environment, to reveal human
cognition on a deeper level [55].

In this context, knowledge graph (KG) was formally put
forward by Google in May 2012, and its goal is to improve the
search results and describe the various entities and concepts
that exist in the real world and the relationship between these
entities and concepts. KG is a great choice to select the essence
and discard the dross, as well as the sublimation of the present
semantic web technology. In recent years, the applications of
KG have been increasing rapidly, and there is now a mature
method used to draw a KG and conduct intelligent searching
research based on KG [34]. However, the function of KG
has not been fully implemented at present, especially for the
specific object of geological big data; the application aspect
still needs to be further strengthened. Along this direction,
the visualization service for geological data in the web-based
system is attracting more and more attention [56, 57].

5. Conclusion

Big data technologies make it possible to process massive
amount of unstructured and semistructured geological data.
And the geological cloud enables us to explore the application
of demand-driven geological core data and to extract new
information from unstructured data, while supporting the
decision-making in land resources management. Thus, the
geological cloud could effectively organize and use geological
big data, to mine the data scientifically, with the purpose
of producing higher value and achieving the corresponding
service.

In the architecture of geological cloud, this article
describes the application background of CEGIS and the
demands from big data management. Furthermore, we elab-
orate the application requirements and challenges faced in
big data management technologies. Then, more analyses are
provided from four aspects, including data size, data type,
data processing speed, and data processing accuracy, respec-
tively. In addition, this article outlines the research status and
technology development opportunities of big data related in
CEGIS, from the perspectives of big data acquisition and pre-
processing, big data storage and management, big data analy-
sis and mining, highly performable big data cloud computing
platform, and big data technology applications. With the con-
tinuous development of big data technologies in addressing
those challenges related to geological big data, such as the
difficulties of describing and modeling geological big data
with some complex characteristics, CEGIS will move towards
a more mature and more intelligent direction in the future.
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