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The existing incentive mechanisms of crowdsourcing construct the expected utility function based on the assumption of rational
people in traditional economics. A large number of studies in behavioral economics have demonstrated the defects of the traditional
utility function and introduced a new parameter called loss aversion coefficient to calculate individual utility when it suffers a loss.
In this paper, combination of behavioral economics and a payment algorithm based on the loss aversion is proposed. Compared
with usual incentivemechanisms, the node utility function is redefined by the loss aversion characteristic of the node. Experimental
results show that the proposed algorithm can get a higher rate of cooperation with a lower payment price and has good scalability
compared with the traditional incentive mechanism.

1. Introduction

Crowdsensing, which can be described as people/human-
centric sensing, has gradually become the ideal method for
large-scale data collection [1]. The collection of sensed data
relies on every single node that participates in the perception.
Each node is a natural person holding smart devices such as
smart phones or computers. Crowdsensing systems usually
require support from a large amount of sensed data [2–5],
while it would cost smart devices a certain amount of price to
participate in crowdsensing (such as spatial movements and
consumption of memory and power). Nodes do not perceive
selflessly, as they need a certain amount of compensation to
be motivated; on the other hand, the requester of the sensing
tasks would measure the reward of publishing the value of
data. A sensing task usually offers limited reward, so it would
be better to get more valuable sensed data with less reward.

At present, there are a series of incentive mechanisms,
which seek benefit maximization mainly based on utility
function, which is based on the expected function theory
of traditional economics. However, the development of eco-
nomics itself has gradually revised this theory.The behavioral

economics shows that individual decision-making must con-
sider the influence of psychological factors. The traditional
expected utility function is no longer completely reasonable
when psychological-related parameters are involved.

The loss aversion is an important branch of the prospect
theory of behavioral economics. What it describes is loss is
more unbearable than gain that has the same amount of value.
Therefore, individuals are more willing to voluntarily prevent
possible losses. In order to motivate the nodes, this paper,
from the point of view of the nodes, analyzes the decision-
making process of the nodes, models them, introduces the
loss aversion coefficient into the utility function of them,
adjusts the payment mode in the traditional incentive mech-
anisms, effectively stimulates nodes to participate in per-
ception, and enhances the performance of the crowdsensing
system.

The main innovations of this paper are as follows:

(i) The paper uses the loss aversion to build the incentive
mechanism, which revises the cooperative behavior
researches based on traditional economics, so as to
make up for the basic assumption insufficiency in the
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traditional economics about human rationality, self-
interest, complete information, utility maximization,
and preference consistent.

(ii) By using the influence of the loss aversion psychology
on decision-making, a compensation payment algo-
rithm based on the loss aversion is proposed in the
crowdsensing.

2. Related Work

2.1. The Incentive Mechanisms of Crowdsensing. In order to
increase the number of participants in sensing tasks and
ensure the data quality, a series of incentive mechanisms
have been put forward, including monetary incentive, enter-
tainment and gamification incentive, and social connections
incentive [6]. References [7, 8] pointed out that the attributes
of human beings are diversified and individuals’ decision-
making behaviors are influenced not only by their own
cognitive, thinking, preferences, and other factors, but also
by the surrounding environment at the same time. According
to the motivation mechanism, this subject makes use of
the individual’s individuality and sociality and divides the
common incentive mechanisms into individual incentive
mechanisms and social incentive mechanisms.

(1) Individual Incentive Mechanisms. The individual incentive
mechanismsmainly utilize the inherent pursuit of interests of
the nodes, including the desire for money, the motivation to
maintain and manage its own reputation, the pursuit of more
virtual points, and a better entertainment experience.

(i) Mechanisms Based on Monetary Payment. The incentive
mechanisms based on the monetary payment are that the
platform motivates potential participants to join the sensing
task and provides the required sensed data by giving workers
a certain monetary reward. This kind of incentive mecha-
nisms is usually the combination of economics and computer
science. The most common auction mechanisms include
reverse auctions [9–12], portfolio auctions [13],multiattribute
auctions [14], all pay auctions [15], double auctions [16],
and VCG (Vickrey-Clarke-Groves) auctions [17]. In mon-
etary incentive mechanisms, game-theoretic mechanisms
provide good mathematical models to resolve server-to-
player conflicts and determine problems, while providing
sufficient theoretical data to analyze participants’ behavior.
The monetary incentive mechanism can effectively stimulate
the enthusiasm of participants [18] and has a good theoretical
basis. However, it also has obvious shortcomings.The system
usually can hardly establish a suitable price architecture.Most
importantly, the current pricing scheme cannot solve the
dilemma between the requesters and the workers: If paid in
advance, the workers can get the reward without working,
which is called free-riding; if paid afterwards, the requesters
can refuse to pay after getting the required information,
which is called false-reporting [19].

(ii) Mechanisms Based on Entertainment and Gamification.
The incentive mechanisms based on entertainment and
gamification change the sensing tasks to sensing games, so

as to allow workers to contribute to the sensing tasks in
the game process. The mechanisms usually motivate workers
to complete the sensing tasks by generating rankings in
the game, task points and their intrinsic fun, and so on.
The authors in [20] used a ranking scheme and a badge
scheme to motivate workers to participate in. The authors
in [21] designed a collection game called Treasure to collect
information in the gaming area to draw a Wi-Fi coverage
map. The author in [22] used a player’s text or photo tag in
the play area to generate a series of recognizable geographic
information that supports route navigation.

Individual motivation mechanisms neglect the environ-
ment in which the nodes are located. In the crowdsensing,
individual nodes have the ability to interact with other nodes,
and their behaviors and connections are mutually influential.
Some researchers found that, in the incentive mechanisms of
crowdsensing, the position of the workers’ social structure
will affect their resources and access to information, as well as
the degree of completion of the sensing tasks and the amount
of needed compensation [23]. Therefore, a series of social
incentive mechanisms for nodes are proposed.

(2) Social IncentiveMechanisms. Social incentivemechanisms
consider the social aspects of nodes. Crowdsensing is made
up of a large number of nodes, so the choices and behaviors
among nodes are not completely isolated. Nodes adjust self-
cognition at any time by the influence of other nodes and they
draw up their behavioral strategy based on the information in
social networks.

(i) Mechanisms Based on Social Connections. The incentives
mechanisms based on social connections focus on the inter-
actions and relationships among individuals. The authors in
[24] established the social network among the participants
based on Stackelberg, in order to maximize the participants’
utility. Based on social networks, the authors in [25] use a
penaltymechanism to detect dishonest participants and build
a trust system to improve existing incentive mechanisms.
The authors in [26] improve the choice of participants
and payment of remuneration, to enhance the integrity of
the individual by supervision and reporting in nepotism.
Incentive mechanisms based on social connections motivate
the participants to a certain extent, but because of the impact
of network relations itself, the reliability and credibility of
social networks are in bad need of [18].

(ii) Mechanisms Based on Service. The incentive mechanisms
based on service are designed by using the principle ofmutual
benefits. In the crowdsensing, service consumers can also be
considered as service providers. That is, if the nodes want
to get the services provided by the system, the nodes must
also contribute to the system. For example, in the Parking
Information System designed by [27], nodes play the roles of
both consumers and contributors. The authors in [28] have
designed two incentive mechanisms under this framework:
Incentive with Demand Fairness (IDF) and Iterative Tank
Filling (ITF). They are used separately to maximize the
fairness of nodes and the social welfare of the system. Some
researchers consider service incentives from a group level.
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The authors in [29] illustrate the inspiration from blood
donation that contributors are driven not only by their own
utility but also by the effects of their relatives and friends. And
this group incentive has proved to be effective in practice.

The above incentive mechanisms based on the utility are
put forward to maximize utilities of both the platform and
the participants. The model of those incentive mechanisms
can be expressed as the following formula [30]:

𝐼 : 𝑀 → max (𝑈 (𝑆) , 𝑈 (𝑃)) . (1)

That is reflected in the classic monetary incentive mech-
anisms [9–17]: each node makes its decisions to maximize
its payment with the lowest cost. All the nodes, during the
bidding between the server and them, would maintain their
rationality for more benefits. In entertainment and gamifica-
tion incentive mechanisms [20–22], virtual credits and ranks
take the place of money, so that nodes would make decisions
that maximize their interests. Moreover, considering the
interactions within the nodes, social incentive mechanisms
aim at maximizing utilities of groups instead of individuals
[18, 24–29].

All in all, as shown in formula (2), most of incentive
mechanisms still use the traditional expected utility function
to describe the decision-making of the individuals:

𝑈 (𝑆) = max𝐸 [𝑈] = ∑
𝑖

𝑝𝑖𝑈 (𝑥𝑖) . (2)

Formula (2) is used to describe the utility 𝑈 of a node 𝑆,
taking 𝑝𝑖 as the probability for choosing event 𝑥𝑖 and𝑈(𝑥𝑖) as
the utility of event 𝑥𝑖 (the value of 𝑈(𝑥𝑖) could be positive or
negative). Each individual would calculate its expected utility
according to formula (2) and use the result for its decision-
making.

Formula (2) is based on the two hypotheses from tradi-
tional economics: source independence and the invariance of
risk preference [31].

Source independence means the fungibility of wealth.
In traditional economics theory, the values of wealth do
not depend on how it is acquired, nor are they labeled
[32]. That is, nodes measure their gains and losses in a
similar way.The differences between benefits and costs could
be circulated, which is obvious in the mechanisms which
evolved punishment [25, 26]: the cost of punishment and the
benefit of cooperation could be superimposed without any
differences.

The invariance of risk preference means that the risk
preference of the individuals is constant, objective, and
consistent, which has been called process invariance in
traditional economics [33]. In this situation, individuals in
crowdsensing would never change their risk preference, no
matter how the information environment in the system
changes. In the mechanisms of social networks, individuals
attitudes towards risk of pursuing benefits or avoiding losses
are constant, although they would change their decisions
according to their opponents.

However, incentive mechanisms apart from monetary
incentive mechanisms [9–17] (e.g., entertainment and gam-
ification incentive mechanisms [20–22] and social incentive

mechanisms [18, 24–26]) consider not only the economic
gains and losses, but also the psychological factors of the
individuals. So it is not reasonable to calculate individuals’
utilities with the methods from monetary incentive mech-
anisms. Even in the monetary incentive mechanisms, the
impacts of some factors (such as the values of money, the
sources of money, and the risk tendencies of money) on
decision-making cannot be ignored. In addition, the two
hypotheses including the independence of sources and the
invariance of risk preference have been questioned [34].
A number of studies have demonstrated that individuals’
irrational behaviors may be refracted into the program and
that will lead to the occurrence of the irrational decisions
[35].

2.2. Incentive Mechanism from the Perspective of Behavioral
Economics. Behavioral economics put forward a well-known
theory called loss aversion, which states that losses are even
more unbearable when people face the same amount of
benefits and losses [36]. The loss aversion has been proved
to be a common feature embodied in individual decisions.

The loss aversion has changed the expected utility func-
tion in traditional economics and introduced an unprece-
dented loss aversion coefficient 𝜆 to describe the loss aversion
characteristics of individuals, which is used to calculate the
utility of individuals when they suffer losses as the following
formula [37]:

𝑈 (𝑥) = {{{
𝑥, 𝑥 ≫ 0
𝜆𝑥, 𝑥 < 0 𝜆 > 1. (3)

Formula (3) is a simplified form of the loss-aversion-
typed value function, with 0 as the reference point to express
the individual gains and losses. After introducing the loss
aversion coefficient, this function overthrows the traditional
expected utility function and can be used to explain a series of
phenomena that cannot be explained by the expected utility
function, such as Allais paradox [38], reflex effect [39], and
preference reversal [40].

Therefore, the actual individual decision-making must
consider the utility function after the loss aversion coefficient
is considered.

𝑈 (𝑥𝑖) = {{{
𝑈(𝑥𝑖) , 𝑈 (𝑥𝑖) ≫ 0
𝜆𝑈 (𝑥𝑖) , 𝑈 (𝑥𝑖) < 0 𝜆 > 1

𝑈 (𝑆) = ∑
𝑖

𝑝𝑖𝑈(𝑥𝑖) ̸= max𝐸 [𝑈] .
(4)

Formula (4) adds that when the utility𝑈(𝑥𝑖) correspond-
ing to event 𝑥𝑖 is negative, its value changes under the
influence of the loss aversion coefficient, which will affect the
overall utility function.

Besides, the loss aversion also overturns the view of
source independence and the invariance of risk preference
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Figure 1: The value curve of traditional economics versus behavioral economics.

in traditional economics and considers that money has
nonfungibility and individual risk preference is variable [41].

(1) Nonfungibility. Being different from the view of source
independence, behavioral economics holds that when exter-
nal information enters the individual cognitive mental
accounting, it can effectively reflect the trade-off between
expected return and possible loss and confirm whether the
threshold value boundary has been reached [42]. Because
of this effective boundary, money cannot flow freely among
subaccounts. In other words, due to the existence of the loss
aversion, when individuals make decision, the value of funds
is different and irreplaceable according to different sources
and expenditures.The value curve of traditional economics is
like Figure 1(a), and the actual value function should be like
Figure 1(b).

(2) The Variability of Risk Preference. Individual’s risk prefer-
ence plays an important guiding role in individual decision-
making. Behavioral economics considers that the loss aver-
sion leads to the change of individuals’ risk preference.
Individuals are risk-averse when faced to defined returns,
while they tend to seek risks when faced to established losses
[43].Whenmaking economic decisions, individuals aremore
worried about losing money than expecting to gain profits,
which in turn encourages them to have more motivation to
stop the loss. This is also a sign of the loss aversion. The
crowdsensing system is fuzzy and uncertain for nodes. In
addition to considering the proceeds, the nodes in the system
are more worried about their loss than other nodes, which
will greatly affect the decision-making behavior of the nodes.

To sum up, the crowdsensing system is an environment
with unequal information, uncertainty, and ambiguity. Nodes
are inevitably affected by this environment and cannot main-
tain individual rationality, and utility function is bound to be
influenced by psychological factors. Because the loss aversion
theory has been well applied in the fields of economics [44],
game theory [45], biology [46], environmental ecology [47],
and so on, it has proved its feasibility. However, according to
our study, the loss aversion has not been used in the field of

crowdsensing, so we believe that the incentive mechanism
of the past crowdsensing system did not make full use of
the characteristics of the node and target the incentives.
After the loss aversion is introduced, the structure of the
incentive mechanism can be extended to formula (5), where𝐸(𝑆) represents the psychological factors of the nodes:

𝐼 : 𝑀 → max (𝑈 (𝑆) , 𝑈 (𝑃) , 𝐸 (𝑆)) . (5)

3. Our Mechanism

There is a famous grape experiment [48] to verify the loss
aversion, which clearly shows how the loss aversion works in
the psychological aspects. We have established the mapping
of the experiment and the crowdsensing system. We propose
a different payment algorithm by the reasonable analysis
and construction of the model. In this algorithm, the nodes’
loss aversion is aroused, so as to be more proactive in the
perception to improve system efficiency.

3.1.The Introduction of the Loss Aversion. Monkeys were used
as subjects in the grape experiment, and the experimenter
designed two game schemes for monkeys:

(i) Option 1: the experimenter first puts a grape in front
of the a monkey and does a coin toss. The coins face
down, allowing themonkey to only get that one grape;
the coins face up, then allowing the monkey to get an
extra grape.The expectation that eachmonkey can get
grapes is 1 + 50%.

(ii) Option 2: the experimenter places two grapes in front
of a monkey and then does a coin toss. The coins face
down; then the experimenter takes one of the grapes;
the coins face up; then the monkey can get both the
two grapes.The expectation that eachmonkey can get
grapes is 2–50%.

For the sake of reason, the expected benefits of both
experiments are 1.5 grapes. The difference is that, in the first
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Table 1: Mapping of the grape experiment and incentive mechanisms.

Participants Step one Step two Regulation
Grape
experiment
option 1

Monkeys Put one grape in front
of the monkeys Do a coin toss Coins face up; add 1 grape

Grape
experiment
option 2

Monkeys put two grapes in
front of the monkeys Do a coin toss Coins face down; take away

1 grape

Traditional
incentive
mechanism

Network
nodes

The node chooses
whether to participate

The node chooses
whether to participate

Increase the node
contribution 𝑐2 only if the

node cooperates
New incentive
mechanism
based on the
loss aversion

Network
nodes

Increase the node
contribution 𝑐1 + 𝑐2 to
the capable nodes

The node chooses
whether to participate

Decrease the node
contribution 𝑐2 only if the
node does not cooperate

Common

Having a
certain

understand-
ing to

determine
their own
interests

Encourage monkeys
to participate in
experiment;

encourage nodes to
join in system

Although the coin
toss is a probability
event, the choice of
cooperation is the

node’s own decision;
they are for the

subsequent results
and monkeys/nodes
know how it works

Additional gained
contribution (grape) and
feeling happy, or loss of
contribution (grape) and

feeling pain

option, each monkey has 50% chance to get an extra grape
in the case of ensuring a grape is obtained, while the second
option is 50% chance to lose one of the grapes on the premise
that two grapes may be obtained.

If the monkey is a completely rational individual, then
its preference for these two experiments should be the
same. However, the experimental results show that when the
monkeys finally understand they may lose one of the two
grapes in option 2, they all tend to choose option 1. This
experiment shows that the pain brought by the loss of a grape
to the monkeys is heavier than the happiness brought by
getting a grape.

We simulate the grape experiment and propose a new
mechanism for enhanced cooperation based on the loss
aversion, which is different from the traditional incentive
mechanisms, as shown in Table 1.

Theorem 1. The individual’s pain of loss is often greater than
the value of the actual loss whenmeasuring the gains and losses,
expressed as follows:

𝑐2lost > 𝑐2gain . (6)

Proof. Traditional economics argues that the resulting 𝑐2 is
equal in value to the lost 𝑐2, expressed as follows:

𝑐2gain = 𝑐2lost = 𝑐2 . (7)

However, due to the impact of loss of aversion on the value
curve, the individual really perceived that loss part of the
value should be adjusted as follows:

𝑐2lost = 𝜆 𝑐2𝛽 . (8)

Since

𝑐2lost − 𝑐2gain = 𝜆 𝑐2𝛽 − 𝑐2 = (𝜆 − 𝑐21/𝛽) 𝑐2𝛽 (9)

|𝑐2|𝛽 > 0, so when 𝜆 > |𝑐2|1/𝛽, which is |𝑐2| > log𝛽(1/𝜆), we
can get 𝑐2|lost > 𝑐2|gain. That is,

𝑐2lost > 𝑐2gain when 𝑐2 > log𝛽
1𝜆 . (10)

Based on the above analysis, the new mechanism of the
loss aversion is to enlarge the value of 𝑐2 in the psychological
level, so that limited rational nodes tend to choose the coop-
erationwithout losing the contribution value, thus promoting
the enthusiasm of the node.

3.2. SystemModeling. We use the classic crowdsensing archi-
tecture to build the system.The typical system architecture is
shown in Figure 2. The system includes the server platform
and task participants (data providers). The server in the
cloud receives a service request from the data requesters (the
data requester can be the data providers; they are the same
group), assigns the sensing task to the participants, processes
the collected sensed data, and performs other administrative
functions. After a participant receives the sensing task, the
participant senses the required data and then uploads the data
to the server.The server returns the data to the data requesters
after processing.

(i) The finite set of 𝑇 = {𝑡1, 𝑡2, 𝑡3, . . . , 𝑡𝑛} represents
the service requests from the data users, that is, the
sensing tasks that need to be completed in the system.
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Figure 2: Typical system architecture of crowdsensing.

(ii) 𝑁 = {1, 2, 3, . . . , 𝑛} represents the number of workers
of the system; these workers are handheld intelligent
devices in practical applications. A worker can only
join one sensing process at a time.

3.2.1. Platform. Each of the sensing tasks 𝑡𝑖 (𝑖 ∈ 𝑁) has its
own attributes. We extract the main attributes needed in this
paper, denoted as ⟨𝑃(𝑡𝑖), 𝐵(𝑡𝑖),Con(𝑡𝑖), 𝑡𝑖 ∈ 𝑇⟩, 𝑃(𝑡𝑖) means
its payoff, 𝐵(𝑡𝑖) means its budget, and Con(𝑡𝑖) means its
congestion level, respectively, and congestion level indicates
the current degree of participation of the task.

There are various reward pricing schemes in the crowd-
sensing system. A budget-limited perception task has a rated
total remuneration. In order to obtain plenty of high-quality
sensed data in a defined amount, this paper defines that each
sensing task is paid to each worker with a reward of 𝑃(𝑡𝑖) =𝐵(𝑡𝑖)/Con(𝑡𝑖),Con(𝑡𝑖) = |{𝑛 ∈ 𝑁 : 𝑠𝑛 = 𝑡𝑖}|, where 𝑠𝑛
represents the current strategy of a worker𝑁.

In some cases, aworkermay refuse to provide sensed data,
and we define this behavior as sleeping in which the node
does not have to pay any perceived costs and will not receive
any remuneration. We manually introduce 𝑡0 to describe it;𝑡0’s reward and the degree of congestion are always zero. The
expanded task set isT = {𝑡0, 𝑡1, 𝑡2, 𝑡3, . . . , 𝑡𝑛}.
3.2.2. Worker. We describe each worker as a quaternion⟨𝐺𝑡𝑛, 𝐶𝑡𝑛, 𝐴𝑡𝑛, 𝐴𝐼𝑡𝑛, 𝑛 ∈ 𝑁⟩. Knowing that each worker has
his own selfish threshold, and when the external condition
reaches the threshold, the worker will have the power to
engage in labor; we define the variable 𝐺𝑡𝑛 to represent the
intrinsic property of the worker. 𝐶𝑡𝑛 means the objective cost
of the behavior of participation in a task 𝑡 for a node 𝑛.

In addition, we have learned in the second section that the
worker is not entirely rational and less likely to remain ratio-
nal in every decision stage. Due to the cognition, experience,
reference, and other psychological factors, the worker gets
the conclusion that does not exactly match the objective fact
when he analyzes and judges an external condition. So we
define two functions 𝐴𝑡𝑛 and 𝐴𝐼𝑡𝑛. The former indicates the
objective reward that a worker𝑁 can actually obtain when he
participates in a perceived task 𝑇; the latter means his gains
in his cognition. When a worker makes a decision, his actual
reward in his cognition is the latter.

We define that each worker has two kinds of behaviors
within the system: (a) choosing a sensing task and partici-
pating in perception and (b) sleeping. The main reason for
preventing worker from participating in a sensing task is that
there is the cost that must be paid in the process. Obviously,
only when the worker thinks the reward he can get meets
his own selfish threshold will he choose to participate in this
perception task; otherwise he would rather sleep to prevent
the loss of meaningless cost.

The worker maintains a real-time connection with the
server in order to receive the task pushing at any time
and chooses a satisfying task to perform according to his
own conditions. The worker node sends its current decision
information to the server platform, and the server platform
updates the overall policy information in real time, then
updates the participation of task, and gets the latest overall
strategy and the information of task congestion.

3.3. The Construction of Loss Aversion in Crowdsensing

3.3.1. Basic Definitions. This paper needs to use the following
concepts.
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Definition 2 (the benefits of user nodes). Theobjective benefit
of a user’s involvement 𝑢𝑡𝑛 in a sensing task is the difference
between the reward he receives for his sensing task 𝑃(𝑡𝑛) and
the cost of his participation in perception 𝑐𝑡𝑛, as follows:

𝑢𝑡𝑛 = 𝑃 (𝑡𝑛) − 𝑐𝑡𝑛, ∀𝑛 ∈ 𝑁, 𝑡 ∈ 𝑇. (11)

Definition 3 (the congestion degree of a task). The sum of
all nodes’ contributions to a task is its congestion degree
Con(𝑡𝑖) as formula (12).The congestion degree represents the
situation in which a task is currently executed by nodes.

Con (𝑡𝑖) = 𝑛∑
𝑛=1

𝜑𝑡𝑖𝑛 ,

where 𝜑𝑡𝑖𝑛 = {{{
1, 𝑠𝑛 = 𝑡𝑖
0, 𝑠𝑛 ̸= 𝑡𝑖, ∀𝑡𝑖 ∈ 𝑇, 𝑛 ∈ 𝑁.

(12)

We artificially define 𝜑𝑡𝑖𝑛 in formulas (12)–(15) as the
contribution of a node to a task; its value is 0 or 1. Its value
being 1 indicates that the node completes the task, and its
value being 0 indicates that the node does not complete the
task.

Definition 4 (social welfare). The social welfare 𝑈 in crowd-
sensing is the sum of the benefits of all workers as follows:

𝑈 = ∑
𝑡𝑖∈𝑇

∑
𝑛∈𝑁

(𝑃 (𝑡𝑗) − 𝑐𝑡𝑗𝑛 ) 𝜑𝑡𝑗𝑛 . (13)

Definition 5 (the average value of each data). The average
value of each data 𝐸(𝑆) is the ratio of the total reward for all
tasks in the system to the total number of data as follows:

𝐸 (𝑆) = ∑𝑡𝑖∈𝑇∑𝑛∈𝑁 (𝑃 (𝑡𝑗) − 𝑐𝑡𝑗𝑛 ) 𝜑𝑡𝑗𝑛
∑𝑛𝑛=1 𝜑𝑡𝑖𝑛 . (14)

Definition 6 (cooperation rate). The rate of the total number
of cooperators to the total number of nodes:

Cooperation rate = ∑𝑁∑𝑇 𝜑𝑡𝑖𝑛𝑁 . (15)

In order to measure the value of profit or loss from the
reference point, and to successfully describe behavioral char-
acteristics, the concrete expression of the value function is
given as formula (16).This function explains three behavioral
characteristics of the limited rational person: (a) most people
are risk-averse when faced with the profit; (b) most people
are risk-seeking when faced with the loss; (c) people are more
sensitive to the loss than the profit.

V (𝜔) = {{{
(𝜔 − 𝜔0)𝛼 , 𝜔 ≫ 𝜔0
−𝜆 (𝜔0 − 𝜔)𝛽 , 𝜔 < 𝜔0, (16)

where 𝜔0 represents the reference point of the decision-
maker, and if the gain is greater than the reference point, the
decision-maker will perceive the profit, or else the loss will be
perceived. 𝛼 and 𝛽 are the risk attitude coefficient, and 𝜆 is
the loss aversion coefficient.

Table 2: Payoff matrix.

Platform
Cooperation Noncooperation

Worker
Cooperation (−𝑃 (𝑡𝑖) , 𝑃 (𝑡𝑖) − 𝑐𝑡𝑛) (0, −𝑐𝑡𝑛)
Noncooperation (−𝑃 (𝑡𝑖) , 0) (0, 0)

3.3.2. Payoff Matrix. This paper sets 𝑃(𝑡𝑖) as the objective
reward that a node 𝑛 participating in a task 𝑡𝑖 can get,
determined by the budget and the current congestion level
of the task, as follows:

𝑃 (𝑡𝑖) = 𝐵 (𝑡𝑖)
Con (𝑡𝑖) =

𝐵 (𝑡𝑖)∑𝑛𝑛=1 𝜑𝑡𝑖𝑛 . (17)

The payoff matrix of nodes and platforms is shown
in Table 2. Platform selects cooperation, that is, providing
information and rewards of tasks for nodes. In the crowd-
sensing system, platform needs to do this all the time, which
means platform keeps cooperation forever. The nodes select
cooperation; that is, the nodes perform sensing tasks and
feedback data as specified.This behavior needs to pay the cost,
but also receive the appropriate reward; the nodes choose
noncooperation, which are not involved in the perception of
any task, keeping sleeping with paying nothing and receiving
nothing.

3.4. The Reward Payment Algorithm Based on the Loss
Aversion. The decision-making process of this paper focuses
on the loss aversion in the decision-making of the nodes. In
this way, we adjust the traditional pipelined payment model
and divide the payment process into three stages: the release
stage, the selection stage, and the settlement stage.

(a) The First Stage: The Release. In the release phase, first
we establish the highest control authority for the server.
It is reasonable. Although there is no centralized control
to control the behavior of each individual as crowdsensing
is a distributed system, the establishment of the common
reputation mechanism and the virtual integration system are
on the premise of the server’s highest control authority.

As shown in Figure 3, in our system, for each node
registered at the platform, the node obtains a system-specific
part on its account, which allows the platform to pay or
deduct reward to the node after joining in the crowdsensing
system.

Before a sensing task is settled, this part of the node
account that participates in the task is under the supervision
of the server, and if the node exits the system in the middle,
the part is recycled by the platform. Only when a perceived
task is settled will the part of the reward be truly transferred
to the node account and by its domination.

At this stage as described inAlgorithm 1, the platform and
the workers perform the following operations, respectively, as
shown in Algorithm 1. The server platform collects sensing
tasks from the requesters, generates task set, and extracts the
properties of each task. The platform sorts and counts the
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(1) for 𝑛 ∈ 𝑁 do
(2) 𝑛 ← 𝐺𝑡𝑛, 𝐶𝑡𝑛
(3) if 𝑛 is available do
(4) Register on the platform
(5) Create a temporary account which is under the supervision of the system
(6) else quit the system
(7) end if
(8) 𝑠𝑛 = 0
(9) end for
(10) for 𝑡 ∈ 𝑇 do
(11) 𝑡 ← 𝐵(𝑡𝑖), 𝑃(𝑡𝑖),Con(𝑡𝑖)
(12) end for

Algorithm 1: The release.

Withdraw

Finish the work

Join in the system

In charge Quit halfway

Figure 3: The crowdsensing-specific part on nodes’ accounts.

registered users and generates the worker set. The platform
pushes the task information to all users and gives payment
vouchers and declares the rules to the node at the same time.
The nodes that are able to perceive register on the platform
and define their threshold attribute and cost attribute. The
former indicates the demand of nodes, and the latter indicates
the cost of nodes participating in task perception. The nodes
need to keep the real-time communication with the platform
to receive the push perception task of the platform. And the
nodes understand the rules of the platform and are able to
determine their own behavior.

(b) The Second Stage: The Assignment. In the second section,
we already know that nodes are not infinitely greedy, and
different nodes have different target thresholds because of
their own factors. The selfish threshold of the node is the
standard of how the node makes decisions.

(1)TheNode SelectsNoncooperation. From the common sense,
it is easy to know that if the reward that a sensing task
provided to a work node is not higher than the threshold of a
selfish node, the node will not generate sufficient momentum

to participate in perception. Its psychological state at this time
is described as follows:

𝑓 (𝑛; 𝑡) = {unsatisfied | 𝑃 (𝑡𝑖) − 𝑐𝑡𝑛 < 𝐺𝑡𝑛} . (18)

(2) The Node Selects Cooperation

(i) In the Traditional Incentive Mechanisms. When the node
judges that the external conditions meet its own selfish
threshold, the node will participate in perception. Its psycho-
logical state at this time is described as follows:

𝑓 (𝑛; 𝑡) = {satisfied | 𝑃 (𝑡𝑖) − 𝑐𝑡𝑛 > 𝐺𝑡𝑛} . (19)

(ii) In the Loss Aversion Mechanism. The introduction of the
loss aversion not only retains the rational characteristics, but
also considers the situation of limited rational of nodes. Due
to the loss aversion, the node makes not only the rational
judgment, but also an additional judgment whether it can
afford to lose the reward that platform puts in the system-
specific part on its account. If the pain of the loss reaches
a certain threshold, the node will choose to participate in
the perception task to avoid this pain, thus contributing to
cooperative behaviors. Its psychological state at this time is
described as shown in the following:

𝑓 (𝑛; 𝑡) = {satisfied | {𝑃 (𝑡𝑖) − 𝑐𝑡𝑛 > 𝐺𝑡𝑛𝜆𝑃 (𝑡𝑖)𝛽 > 𝐺𝑡𝑛 }} . (20)

As described in Algorithm 2, in the selection phase of the
node, the node selects the task that satisfies itself according
to the above condition, and if it does not, it will sleep itself.
At the same time as the node selection, the platform updates
the congestion degree of tasks and the unit price of the
compensation in real time. The node then judges whether
to participate in the task according to the situation’s change.
Until all the nodes in the system can no longer find the task
to maximize their own rewards, the stage stops.

(c) The Third Stage: The Settlement. Each task has a fixed
opening time; platform settles the task when the time arrived.
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(1) When there are users and tasks in the system do(2) for every 𝑛 ∈ 𝑁 when he is unsatisfied do(3) Search every open task 𝑡𝑖(4) Get the estimated price if participate in this task 𝑃(𝑡𝑖) from platform(5) if 𝑃(𝑡𝑖) − 𝑐𝑡𝑛 > 𝐺𝑡𝑛 do(6) Add 𝑡𝑖 to List(node; time) = {𝑡𝑗 | 𝑡𝑗 is satisfying}(7) else if 𝑃(𝑡𝑖) − 𝑐𝑡𝑛 < 𝐺𝑡𝑛 do(8) if 𝜆𝑃(𝑡𝑖)𝛽 > 𝐺𝑡𝑛 do(9) Add 𝑡𝑖 to List(node; time) = {𝑡𝑗 | 𝑡𝑗 is satisfying}(10) end if(11) end if(12) Choose the task 𝑡∗ = argmax𝑃(𝑡𝑖) and 𝑡𝑖 ∈ List(node; time)(13) end for(14) Until every user cannot find a valuable task

Algorithm 2: The assignment.

The platform checks whether the task has reached the settlement stage(1) for 𝑡𝑖 ∈ 𝑇 do(2) Platform settles the task and issue a response command(3) for every node 𝑛 ∈ userlist = {𝑛 | 𝑠𝑛 = 𝑡𝑖} do(4) if it doesn’t response in time do(5) punish the node(6) else do(7) finish this assignment(8) end if(7) end for(8) Platform process the data and feed back(9) end for

Algorithm 3: The settlement.

The settlement phase as sketched in Algorithm 3 is mainly
carried out as follows.

Platform

(i) Platform determines whether the task reached the
settlement phase.

(ii) When the task reaches the settlement phase, the plat-
form sends a settlement signal to the node receiving
the task; the task that does not reach the settlement
phase is not performed.

(iii) Platform makes the statistics of the sensed data feed-
back and thus finishes the transaction with the nodes
that complete the task on time, and then reclaims
rewards for the nodes that failed to finish on time.

(iv) The platform continues to push unfinished tasks.
(v) The platformwill send the collected sensed data to the

requester. This release ends.

Worker

(i) The nodes that decide to participate in the task do
their work and send the sensed data back to the

platform; the nodes that decide not to participate then
give the rewards back.

(ii) Nodes figure out the reward in the current round.
In the incentive mechanisms including virtual credit and

reputation mechanisms, when we need not consider the
security of payment in advance, the introduction of the loss
aversion should be able to effectively improve the enthusiasm
of the participants. In the monetary payment-type incentive,
this paper sets up the account block structure in the release
stage, so that we can effectively guarantee the security
of unsettled tasks. We believe that because the monetary
payment-type incentive is themost direct incentive, the effect
of the loss aversion may be the most obvious.

The start of a task requires the requester to give the
reward; those that want to get the data and refused to pay will
not start a task at all, so the false-reporting behavior will not
happen; and because of the settlement phase, those malicious
nodes that want to take rewards but do not work return in
vain, so put an end to the node’s free-riding behavior.

4. Simulation

4.1. Parameters Setup. In order to evaluate the incentive effect
of the loss aversion on nodes, we set up two simulation
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Figure 4: The dynamic change of the system selection process.

scenarios, including the loss aversion algorithm (LAA) and
the completely rational algorithm (CRA) [49].

We set the CRA as a control group; in this set of
simulations, the node is completely rational, and its judgment
is mechanical. In the LAA, the node is limited rational and
its loss aversion is easily aroused. We mainly analyze the
algorithm performance from the cooperation rate and the
average value of each data. The cooperation rate intuitively
describes the incentive effect of the algorithm, while the
average value of each dataset shows whether the system can
acquire a sensed data at a lower average price. We evaluate
the scalability of the system with the number of online nodes
and the number of perceived tasks in the system. Evaluate
the influence of nodes with different attributes on the system
with nodes’ gates and costs change. Evaluate the effect of the
loss aversion level on the algorithm with the risk attitude
coefficient and the loss aversion coefficient.

We assume that some tasks within the system require
large amounts of data, so their reward budgets are high; some
require small amount of data, so their reward budgets are
low; for the simulation of this kind of situation, we make
the reward budget of the sensing task 𝑡 for 𝐵𝑡 = 40𝑡. The
reward when a node 𝑛 completes the perceived task 𝑡 is𝑅𝑡𝑛; its value is defined in Section 3.3.2; in this setting the
task reward can get reasonable allocation, neither too high
resulting in waste nor too low to attract workers. The node
requirement𝐺𝑡𝑛 is a randomnumber that belongs to [1, 𝐺max].
A node may have different requirements for each task or
may be the same, which is determined by the node itself. 𝐶𝑡𝑛
is the similar manner. In formula (16), parameters 𝛼 and 𝛽
are the risk attitude coefficients, and 𝜆 is the loss aversion
coefficient. Their reference values are usually derived from
the experimental results of the loss aversion presenters; that
is, 𝛼 = 𝛽 = 0.88 and 𝜆 = 2.25. We take these classical values
as references to discuss the influence of the changes of these

values on the results. The average of 50 times was taken in all
experiments.

4.2. Analysis

4.2.1. Dynamic Changes of the Task Participation. Set 𝑁 =8500 and 𝑇 = 24 to observe the dynamic changes of the
system. Task selection is a dynamic process. The system
constantly adjusts according to the different requirements
of nodes in order to eventually find a sensing task to meet
their requirements. In this process, due to the change of
the congestion level of the task (rise up as a whole, because
the nodes are constantly added, as shown in Figure 4(b)),
the reward of payment to each node will also change. This
may cause the situation that some nodes participate in the
task when the congestion degree is low, but are not willing
to participate when the congestion degree increases; then
these nodes will exit the task to look for other tasks which
meet their demands, resulting in the congestion degrees
decreasing. Until finally all nodes find the satisfying tasks,
the nodes with no satisfying tasks selected to sleep; the
congestion curve of each task tends to be stable. Overall, the
number of cooperators in the system is constantly increasing,
which may have small fluctuations, because there are some
nodes needing strategy adjustment, but in the end they can
reach a stable situation.

4.2.2. The Number of Nodes and Number of Tasks. We
compare the cooperation rates of theCRAand the LAAunder
different conditions to analyze the expansibility and stability
of the system. We set 𝑇 = 24 and compare the lower demand
for nodes with 𝐺max = 20 and 𝐶max = 10 and the higher
demand with 𝐺max = 40 and 𝐶max = 20. Figure 5(a) shows
that increasing the online nodes can gain more data when
the given sensing tasks are unchanged in the system. Still



Scientific Programming 11

2000 30000 4000 5000 6000 7000 8000 90001000
N

1000

2000

3000

4000

5000

6000

N
um

be
r o

f c
oo

pe
ra

to
rs

CRA (GmaＲ = 20)

CRA (GmaＲ = 40)

LAA (GmaＲ = 20)

LAA (GmaＲ = 40)

(a)

2000 30000 4000 5000 6000 7000 8000 90001000
N

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
oo

pe
ra

tio
n 

ra
te

CRA (GmaＲ = 20)

CRA (GmaＲ = 40)

LAA (GmaＲ = 20)

LAA (GmaＲ = 40)

(b)

2000 30000 4000 5000 6000 7000 8000 90001000
N

0

2

4

6

8

10

12

Th
e a

ve
ra

ge
 v

al
ue

 o
f e

ac
h 

da
ta

se
t

CRA (GmaＲ = 20)

CRA (GmaＲ = 40)

LAA (GmaＲ = 20)

LAA (GmaＲ = 40)

(c)

Figure 5: Impact of number of workers𝑁 in the LAA versus the CRA (𝑁 = 5000, 𝐺𝑡𝑛 ∈ [1, 20]).

as shown in Figure 5(a), the superiority of the LAA is more
pronounced when the congestion degree of the system is
high. When 𝐺max = 20 and 𝑁 = 8500, the cooperation rate
of the CRA is 64%, while the cooperation rate of the LAA
is 74.2%. When 𝐺max = 40 and 𝑁 = 8500, the cooperation
rate of the CRA was only 43%, while the LAA remains at57%. This is due to the fact that the increase of the number
of the nodes will cause the increase of the congestion degree
of tasks. The available resources are fewer relative to the
number of the nodes.Thenodes in the LAA aremore inclined
to accept the tasks which are slightly lower than their own
expectations because of their own psychological factors. This

is more obvious in the case of nodes with higher demands.
When there are fewer tasks meeting their own needs, the
nodes in the LAAwill make themselves willing tomake some
concessions under the strong psychological effect.

The average value of each dataset represents the average
reward that the system needs to pay for an effective sensed
data. The lower the value is, the more “cost-effective” the
system is. Figure 5(b) shows the change in the average value of
each dataset in the same situation. Since our tasks are budget-
limited, their total budget is established. Therefore, when the
number of participants is small, the reward assigned to each
node will be very high; when the number of participants is
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Figure 6: Impact of number of tasks 𝑇 in the LAA versus the CRA (𝑁 = 5000, 𝐺𝑡𝑛 ∈ [1, 20]).

too large, the reward is low. Too high unit reward causes
waste, and too low reward cannot attract sufficient numbers
of the nodes to work. When we fix the number of sensing
tasks within the system and increase the number of the online
nodes, at the beginning, the average value of each dataset is
too high because the number of nodes is insufficient. In this
case, the performance of the CRA and the LAA is similar,
because nodes do not have to worry about the fact that
they would find no suitable work when there is a surplus of
resources. When the number of online nodes increases, the
resources become insufficient. The effect of the LAA is very
obvious; it can almost get the data at half the price of the CRA
algorithm.

When the number of online nodes in the system does not
change, we observe the changes in the number of cooperators

with the increase in the number of sensing tasks in Figure 6.
Obviously, when the number of tasks in the system is less,
the number of participants will be less. However, when the
system resources are extremely insufficient, we slowly add
new resources (new sensing tasks) to the system and observe
that the nodes in the LAA are more encouraged. This shows
that, with the resource constraints, putting the same amount
of new resources provokes more nodes in the LAA than the
CRA. Similarly, when the number of online nodes is fixed
and resources are changed, it can be seen that the LAA can
keep a lower average value of each dataset when resources are
extremely tight (when 𝑇 is between 5 and 20).

4.2.3. Upper Bound of the Node Demand Threshold and the
Cost. When the number of online nodes and the number
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Figure 7: Impact of gate of nodes 𝐺𝑡𝑛 in the LAA versus the CRA (𝑇 = 24, 𝑁 = 2500, 5000).

of sensing tasks are unchanging, the selfish threshold of the
node itself and the cost of its participation in the task also
affect the cooperation rate.We compared the two cases where
resources are more abundant (𝑁 = 2500, 𝑇 = 24, 𝐶max =10, and 𝐶𝑡𝑛 < 𝐺𝑡𝑛) and resources are more insufficient
(𝑁 = 5000,𝑇 = 24, 𝐶max = 10, and 𝐶𝑡𝑛 < 𝐺𝑡𝑛). The nodes
will participate in the tasks that meet their demands; this
dynamic searching task process could give priority to low-
demand nodes to find the right task, so as to ensure that the
two algorithms will certainly make nodes cooperate. On one
hand, the LAA’s cooperation curve is significantly better than
the CRA’s. On the other hand, in Figure 7(a), comparing two

curves when𝑁 = 2500 with those when𝑁 = 5000, we found
when 𝐺max = 40, 𝑁 = 2500, the CRA cooperation rate is79.5%, while the LAA cooperation rate is 91.1%. In the case
of 𝑁 = 5000, the CRA cooperation rate is 60.3%, and the
LAA cooperation rate is 74.3%. The difference between the
CRA and the LAA is more obvious in the latter case. With
the increase of 𝐺max, the decrease trend of the LAA curve
slows down, which proves that the high demand node ismore
sensitive to the loss aversion.

The influence of the node threshold on the average value
of each dataset is also obvious. Figure 7(c) compares them
in case of 𝑁 = 2500 and 𝑁 = 5000, respectively. Since
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Figure 8: Impact of gate of nodes 𝐶𝑡𝑛 in the LAA versus the CRA (𝑇 = 24, 𝑁 = 2500, 5000).

the individuals and the number of participants in the system
are changing (the costs of participating in the same task for
different individuals are also different), it is normal that the
data changed in a small range. So we only need to compare
the differences between the two algorithms in the same case.
In the case of 𝐺max = 5, 10, the two datasets are similar. And
when 𝐺max >= 15, it indicates that the node’s demand is
increased. At this time, although the congestion degree does
not change, the tasks which can satisfy the nodes are reduced.𝐺max increases; the average of each dataset becomes higher,
which is reasonable; in this case the LAA can still obtain

data at a relatively low price, reflecting the superiority of
the LAA.

Besides the selfish threshold of the nodes, the cost of
performing a task for nodes will also have a significant
impact. In order to facilitate the analysis, we set 𝐺max =20, 𝑇 = 24, and 𝑁 = 2500, 5000 to compare the situations.𝐶𝑡𝑛 of the nodes is a randomnumber that belongs to [1, 𝐶max].
Figures 8(a) and 8(b) show that as 𝐶max increases, the
cooperation rate decreases. When 𝐶max = 80, 𝑁 = 2500,
the cooperation rate of the CRA is 45%, and the cooperation
rate of the LAA is 59.4%. The latter is about 15% higher



Scientific Programming 15

Cost of nodes Gate
 of nodes

40
35

30
25

20
15105

403530252015105

Cooperation rate

0.3900
0.4502
0.5104
0.5706
0.6308
0.6910
0.7512
0.8114
0.8716
0.9318
0.9920

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

C
oo

pe
ra

tio
n 

ra
te

Figure 9: Impact of gate of nodes and cost of nodes versus
CoopRate.

than the former. When 𝑁 = 5000, the cooperation rate of
the CRA is 28.7%, and the cooperation rate of the LAA is39.8%.

Interestingly, we found that, with the growth of 𝐶max, the
average value of each dataset of the CRA is constantly higher,
while the trend of the LAA is reduced in Figure 9. This is
because, in the CRA algorithm, the main factor that a node
considers is not the cost of the nodes, but the net reward (the
reward minus the cost). As the cost increases, the number of
tasks that can meet the needs of the nodes becomes less, the
number of participating nodes becomes less, and the average
value of each dataset increases. And for the LAA node, due
to the loss aversion, in order to avoid the pain caused by the
loss, the nodes accept the tasks as long as they did not want
to lose the rewards that the task “has paid.” So the number of
partners within the system can be maintained at a high level;
the average value of each dataset is reduced.

We compared the influences of 𝐶max and 𝐺max on the
cooperation rate and still set the scale of 𝑁 = 5000 and𝑇 = 24. It can be seen that the effect of 𝐶max is larger than𝐺max in the LAA. For the same number of increments, 𝐶max
is more pronounced for the reduction of the cooperation rate.
This is because the cost is objective; the LAA cannot reduce
the values of the costs, but the human selfish threshold is
relatively variable; the LAA reduces the node selfish threshold
in fact by expanding its loss part. It is easier for nodes
to compromise when resources become limited and then
secondly to choose a suboptimal task.

4.2.4. The Risk Attitude Coefficient and the Loss Aversion
Coefficient. For the risk attitude coefficient and the loss
aversion coefficient, there are a number of discussions after
the loss aversion has been proposed. In the experiments above
this section, we all use 𝛽 = 0.88 and 𝜆 = 2.25 as the
node’s loss aversion attribute. In this section, we discuss the
changes about these two values, that is, how the degree of
the loss aversion of a node will impact the algorithm. We

set the analysis in the case of 𝑁 = 5000, 𝑇 = 24, 𝐺max =60, 𝐶max = 30.
In order to compare with the completely rational algo-

rithm, we take 𝛽 > 1 and 𝜆 = 1 as the reference point
(when the loss aversion coefficient is 1, it returns to the general
model).

When 𝛽 > 0.8 and 𝜆 > 2.2, the cooperation rate can still
be maintained at a higher and more stable level as shown in
Figure 10(a); the value is about 64%, and when 𝛽 = 0.3 and𝜆 = 1.5, the cooperation rate will be reduced by about 10% in
the same case. For the average value of each dataset, it can be
maintained below 1.6 when 𝛽 > 0.7 and 𝜆 > 2.0, and when𝛽 = 0.3 and 𝜆 = 1.5, it needs to pay 2.4 units to get the data
as shown in Figure 10(b).

Considering the above two graphs, 𝛽 > 0.8 and 𝜆 >2.2 can maintain the higher cooperation rate of the system,
but the average value of each dataset is also higher, which
is not cost-effective for the system. And when 𝛽 > 0.7 and𝜆 > 2.0, although the average value of each dataset is low, the
cooperation rate is not high, which might not collect enough
data. Only when the loss of a node is in the two ranges, that
is, 0.8 < 𝛽 < 2.0 and 2.0 < 𝜆 < 3.5, can the system collect
enough data and purchase data at a lower price, which can
guarantee the quality and prices of the sensed data at the same
time.

5. Conclusion

Cooperative guarantee is always a hotspot in the crowdsens-
ing system. For greedy nodes, the benefits are, of course, the
higher the better, but the limited budget makes the resources
in crowdsensing in most cases insufficient. This is the basic
contradiction in the crowdsensing. In order to alleviate this
contradiction, the traditional incentive mechanisms under
the premise of rational individuals designed a lot of external
mechanisms to regulate the behaviors of nodes. These incen-
tive mechanisms promote the cooperative behaviors of the
nodes from a variety of angles, but how to design a reasonable
internal mechanism for the cooperation is still an unresolved
problem.

This paper presents an incentive mechanism LAA based
on the limited rational premise, which makes full use of
the psychological activities that people cannot ignore in
the decision-making process. It emphasizes the sensitive
characteristics of the node to the loss, which makes the node
expand the value of the lost parts irrationally in its cognition.
By adjusting the architecture and the process of the payment
algorithm, we have stimulated the loss aversion of the nodes,
making the nodes more active in the sensing task. Finally,
we use the experimental data to analyze the efficiency of the
algorithm.

We have realized that considering irrational factors to
solve the problem may have a multiplier effect, and the
nature of the cooperation is still to be discussed more; in
the next step, we consider the following: (1) comparing
the loss aversion algorithm with the more current incentive
mechanism to further improve the performance of crowd-
sensing systems; (2) considering more irrational factors and
stimulating the cooperative psychology of the node from the
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Figure 10: Impact of 𝛽 and 𝜆 versus CoopRate and average value of each data.

framing bias, endowment effect, choice architecture, and so
on. We believe that irrationality thinking can open up new
ideas for crowdsensing systems.

Parameters

𝑁: The number of online nodes in the system,[1000, 8500]𝑇: The number of sensing tasks in the system, [5, 50]𝐵(𝑡𝑖): The reward budget for each perceived task; the value
is 40 ∗ 𝑖𝑃(𝑡𝑖): A reward scheme for the payment of a perceived task
to a single participant aware node; the value is𝐺max: Upper bound of node demand threshold; we set it
20, 40, 60𝐶max: The node cost, related to 𝐺max; the value is 𝑢 ∗ 𝐺max𝑢: A coefficient of the cost to the demand; the value is
0.5, 1, 2𝛼, 𝛽: The risk attitude coefficient; the value is [0.3, 2]𝜆: The loss aversion coefficient; the value is [1, 3.25].
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