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Knowledge graph, a typical multi-relational structure, includes large-scale facts of the world, yet it is still far away from
completeness. Knowledge graph embedding, as a representation method, constructs a low-dimensional and continuous space to
describe the latent semantic information and predict themissing facts. Among various solutions, almost all embeddingmodels have
high time andmemory-space complexities and, hence, are difficult to apply to large-scale knowledge graphs. Some other embedding
models, such as TransE and DistMult, although with lower complexity, ignore inherent features and only use correlations between
different entities to represent the features of each entity. To overcome these shortcomings, we present a novel low-complexity
embedding model, namely, SimE-ER, to calculate the similarity of entities in independent and associated spaces. In SimE-ER,
each entity (relation) is described as two parts. The entity (relation) features in independent space are represented by the features
entity (relation) intrinsically owns and, in associated space, the entity (relation) features are expressed by the entity (relation)
features they connect. And the similarity between the embeddings of the same entities in different representation spaces is high.
In experiments, we evaluate our model with two typical tasks: entity prediction and relation prediction. Compared with the state-
of-the-art models, our experimental results demonstrate that SimE-ER outperforms existing competitors and has low time and
memory-space complexities.

1. Introduction

Knowledge graph (KG), as an important part of the artificial
intelligence, is playing an increasingly more essential role
in different domains [1]: question answer system [2, 3],
information retrieval [4], semantic parsing [5], named entity
disambiguation [6], biological data mining [7, 8], and so
on [9, 10]. In knowledge graphs, facts can be denoted as
instances of binary relations (e.g.,PresidentOf (DonaldTrump,
American)). Nowadays, a great number of knowledge graphs,
such as WordNet [11], Freebase [12], DBpedia [13], YAGO
[14], and NELL [15] usually do not appear simultaneously.
Instead, they were constructed to describe the structured
information in various domains [16], and all of them are fairly
sparse.

Knowledge representation learning [17–19] is considered
as an important task to extract the latent features from
associated space. Recently, knowledge embedding [20, 21], an
effective method of feature extraction [22], was proposed to

compress a high-dimensional and sparse space into a low-
dimensional and continuous space. Knowledge embedding
can be used to derive new unknown facts from known
knowledge bases (e.g., link prediction) and to determine
whether a triplet is correct or not (e.g., triplets classification)
[23]. Moreover embedding representation [24] has been
used to support question answer systems [25] and machine
reading [26].However, almost all embeddingmodels only use
the features and attributes in knowledge graph to represent
entities and relations, which omits the fact that entities and
relations are projections of the facts in independent space.
Besides, almost all of themhave high time andmemory-space
complexities and cannot be used in large-scale knowledge
graphs.

In this research, we propose a novel similarity-based
knowledge embedding model, namely, SimE-ER, which cal-
culates the entity and relation similarities between two
spaces (independent and associated spaces). A sketch of the
model framework is provided in Figure 1. The basic idea
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Figure 1: Framework of our model.
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Figure 2: Motivation in associated space.

of this paper is that independent and associated spaces are
used to represent the irrelevant and interconnected entities
(relations) features, respectively. In independent space, the
features of entities (relations) are independent and irrelevant.
By contrast, the features of entities (relations) in associated
space are interconnected and interacting, and the entities
and relations can be denoted by the entities and relations
connected with them. Plus, the similarities of the same
entities (relations) with different spaces are high. In Figure 1,
we can see that, in independent space, the features of 𝑒1 are
only constructed by themselves, but, in associated spaces,
the entity 𝑒1 is denoted by other entities and relations which
can be described as blue points (lines). We want the features
of 𝑒1 in independent and associated spaces to be similar.
Besides, vector embedding is used to represent knowledge
graphs.

In associated space, take as an example the entity which
Steve Jobs has multiple triplets, such as (Steve Jobs, Apple
Inc., FoundOf ), (Steve Jobs, America, Nationality), and (Steve
Jobs, Laurene Powell, CoupleOf ). If we combine all corrupt
triplets with the same missing entity, such as (. . ., Apple
Inc., FoundOf ), (. . ., America, Nationality), and (. . ., Laurene
Powell, Couple), it is easy to locate that the missing entity 𝑒3 is
Steve Jobs. Similarly, if we combine all the corrupt triplets with
the same relation, such as (Steve Jobs, Apple Inc., . . .), (Jack
Ma, Alibaba, . . .), and (Sundar Pichai, Google, . . .), we can
obtain that the missing relation 𝑟1 is FoundOf.The scenario is
shown in Figure 2. Hence using correlation between different

entities to represent features is an effective method. However,
in practice, it is unsuitable to only use the correction between
different entities and omit the inherent features entities have,
such as the attributes of each entity which are hard to
represent with the correlations between different entities.
Therefore, we construct the independent space which can
preserve the inherent features each entity has. We combine
both independent and associated spaces to represent overall
features of entities and relations, which can in turn represent
the knowledge graph more comprehensively. The motivation
of employing both types of spaces is to model correlation
while reserving individual specificity.

Compared with other embedding models, vector embed-
ding has evident advantages on time and memory-space
complexities. We evaluate SimE-E and SimE-ER on the
popular tasks of entity prediction and relation prediction.The
experiment results validate the competitive results achieved
by the proposed method compared with previous models.

Contributions. To summarize, the main contributions of
this paper are as follows:

(i) We propose a similarity-based embedding model,
namely, SimE-ER. In SimE-ER, we consider the
entity and relation similarities of different spaces
simultaneously, which can extract the features of
entities and relations comprehensively.

(ii) Compared with other embedding models, our model
has lower time and space complexity, which improves
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the effectiveness of processing large-scale knowledge
graphs.

(iii) Through thorough experiments on real-life datasets,
our approach is demonstrated to outperform the
existing state-of-the-art models in entity prediction
and relation prediction tasks.

Organization. We discuss related work in Section 2
and then introduce our method, along with the theoretical
analysis, in Section 3. Afterwards, experimental studies are
presented in Section 4, followed by conclusion in Section 5.

2. Related Work

In this section, we introduce several related works [19] pub-
lished in recent years which get the state-of-the-art results.
According to the relation features, we divide embedding
models into two parts: matrix-based embedding models [27]
and vector-based embedding models [28].

2.1. Matrix-Based Embedding Models. In this part, matrices
(tensors) are used to describe relation features.

Structured Embedding. Structured Embedding Model
(SE) [29] considers that head and tail entities are overlapping
in a specific-relation spaceR𝑛 where the triplet (ℎ, 𝑟, 𝑡) exists.
It uses two mapping matricesM𝑟ℎ andM𝑟𝑡 to extract feature
from ℎ and 𝑡.

Single Layer Model. Compared with SE, Single Layer
Model (SLM) [30] uses a nonlinear activation function to
translate the extracted features and considers the features
after activation to be orthogonal with relation features. The
extracted features are comprised of the entities’ features after
mapping and a bias of their relation.

Neural Tensor Network. Neural Tensor Network (NTN)
[30, 31] is amore complexmodel and considers that the tensor
can be regarded as better feature extractor compared with
matrices.

Semantic Matching Energy. The basic idea of Semantic
Matching Energy (SME) [32] is that if the triplet is correct,
the feature of head entity and tail entity is orthogonal. Similar
to SLM, the features of head (tail) entity are comprised of the
entities’ features after mapping and a bias of their relation.
There are two methods to extract features, i.e., linear and
nonlinear.

Latent FactorModel.Latent FactorModel (LFM) [33, 34]
assumes that features of head entity are orthogonal with those
of tail entity when the head entity is mapped in specific-
relation space. Its score function can be defined as 𝑓𝑟(ℎ, 𝑡) =
hTMrt, where h, Mr, t denote the features of head entity,
relation, and tail entity, respectively.

2.2. Vector-Based Embedding Models. In this part, relations
are described as vector rather than matrix to improve the
effectiveness of representation models.

Translation-Based Model.The basic idea of translation-
based model, TransE [23, 35, 36], is that the relation r is
a translation vector between h and t. The score function
is 𝑓𝑟(h, t) = ‖h + r − t‖𝐿

1
/𝐿

2

, where h, r, and t denote

the head entity, relation, and tail entity embeddings, respec-
tively. Because TransE only processes simple relations, other
translation-based models [37–39] are proposed to improve
TransE.

Combination Embedding Model. CombinE [40] de-
scribes the relation features with the plus and minus combi-
nation of each pair. Compared with other translation-based
models, CombinE can represent relation features in a more
comprehensive way.

Bilinear-Diag Model. DistMult [41] uses a formulation
of bilinear model to represent entities and relations and
utilizes the learned embedding to extract logical rules.

Holographic Embedding Model. HOLE [42] utilizes a
compositional vector space based on the circular correlation
of vectors, which creates fixed-width representations. The
compositional representation has the same dimensionality as
the representation of its constituents.

Complex Embedding Model. ComplEx [43] divides
entities and relations into two parts, i.e., real part and
imaginary part. Real part denotes the features of symmetric
relation, and imaginary part denotes the features of asymmet-
ric relations.

Project EmbeddingModel. ProjE [44], a shared variable
neural network model, uses two-diagonal matrix to extract
the entity and relation features and calculate the similarity
between features and candidate entity. In training, the correct
triplets have high similarity.

Convolutional Embedding Model. ConvE [45] trans-
fers the features into 2D space and uses convolutional neural
network to extract the entity and relation features.

Comparedwithmatrix-based embeddingmodels, vector-
based models have obviously advantages on time andmemo-
ry-space complexities. In these vector-basedmodels, TransE
is a classical baseline and has been applied on many applica-
tions, TransR is an improvedmethod of TransEwhich solves
the complex relation types, and DistMult and ComplEx

use probability-based method to represent knowledge and
achieve state-of-the-art results.

3. Similarity-Based Model

Given a training set 𝑆+ of triplets, each triplet (ℎ, 𝑟, 𝑡) has two
entities ℎ, 𝑡 ∈ E (the set of entities) and relationship 𝑟 ∈ R (the
set of relationship).Ourmodel learns the entities embeddings
(hi, ti, ha, ta) and relationship embeddings (ri, ra) to represent
the feature of entities and relations, where the subscripts 𝑖,
𝑎 denote the independent and associated space. The entity
embedding and relation embedding take value in R𝑑, where
𝑑 is the dimension of entity and relation embedding spaces.

3.1. Our Models. The basic idea of our model is that, for each
entity (relation), the features are divided into two parts. The
first part describes inherent features of entities (relations) in
independent space. The feature embedding vectors can be
denoted as hi, ri, ti. The second part signs triplet features in
associated space, and the feature embedding vectors can be
denoted as ha, ra, ta. In independent space, the feature vectors
are described as the inherent features entities (relations)
have. In associated space, the features of ha are comprised
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of other entities and relations which connect with entity
ha.

The entities (relations) in associated space are projec-
tions of entities (relations) in independent space. Hence the
representation features of the same entity in independent
and associated space are similar, while the representation
features of different entities are not similar. The formula can
be described as follows:

hi ≈ ra ⊙ ta, (1)

ri ≈ ha ⊙ ta, (2)

ti ≈ ha ⊙ ra, (3)

where ⊙ denotes element-wise product. In detail, in (1), if we
combine the features of ra and ta, we can obtain part of the hi
features.That is to say, the hi features are similar with ra⊙ta. In
this paper, we use Cosine to calculate the similarity between
different spaces. Taking head entity as an example, the Cosine
similarity between different spaces can be denoted as

cos (hi, ra ⊙ ta) =
𝐷𝑜𝑡 (hi, ra ⊙ ta)󵄩󵄩󵄩󵄩hi󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩ra ⊙ ta

󵄩󵄩󵄩󵄩
= 𝑆𝑢𝑚 (hi ⊙ ra ⊙ ta)󵄩󵄩󵄩󵄩hi󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩ra ⊙ ta

󵄩󵄩󵄩󵄩
(4)

where Dot denotes the dot-product and Sum denotes the
summation over the vector element. 𝑆𝑢𝑚(hi⊙ra⊙ta) calculates
the similarity, and ‖hi‖ ‖ra ⊙ ta‖ constrain the length of
features. To reduce the training complexity, we just consider
the numerator and use regularization items to replace the
denominator. Hence the similarity of head entity features in
independent and graph spaces can be described as

𝑆𝑖𝑚 (ℎ) = 𝑆𝑢𝑚 (hi ⊙ ra ⊙ ta) . (5)

We expect that the value of hi ⊙ ra ⊙ ta is larger when hi and
ra⊙ta denote the same head entity, while the value of hi⊙ra⊙ta
is smaller otherwise.

To represent entities in a more comprehensive way, we
consider the similarity of head and tail entities simultane-
ously. The score function can be denoted as

𝑆𝑖𝑚 (ℎ, 𝑡) = 𝑆𝑖𝑚 (ℎ) + 𝑆𝑖𝑚 (𝑡)
= 𝑆𝑢𝑚 (hi ⊙ ra ⊙ ta) + 𝑆𝑢𝑚 (ha ⊙ ra ⊙ ti) .

(6)

The embeddingmodel based on the similarity of head and tail
entities is named as SimE-E.

On the basis of entity similarity, we need to consider
relation similarity, which can enhance the representation of
relation features.The comprehensive model, which considers
all the similarities of entity (relation) features in different
spaces, can be described as

𝑆𝑖𝑚 (ℎ, 𝑟, 𝑡) = 𝑆𝑖𝑚 (ℎ) + 𝑆𝑖𝑚 (𝑟) + 𝑆𝑖𝑚 (𝑡)
= 𝑆𝑢𝑚 (hi ⊙ ra ⊙ ta) + 𝑆𝑢𝑚 (ha ⊙ ri ⊙ ta)
+ 𝑆𝑢𝑚 (ha ⊙ ra ⊙ ti) .

(7)

The embedding model based on the similarity of entity
and relation is named as SimE-ER.

3.2. Training. To learn the proposed embedding and encour-
age the discrimination between golden triplets and incorrect
triplets, we minimize the following logistic ranking loss
function over the training set:

𝐿 = ∑
(h,r,t)∈𝑆

log (1 + exp (−𝑌ℎ𝑟𝑡𝑆𝑖𝑚 (ℎ, 𝑟, 𝑡; Θ))) , (8)

whereΘ corresponds to the embeddings hi, ha, ri, ra, ti, ta ∈ R𝑑

and 𝑌ℎ𝑟𝑡 is a label of triplet. 𝑌ℎ𝑟𝑡 = 1 denotes that (ℎ, 𝑟, 𝑡) is
positive and 𝑌ℎ𝑟𝑡 = −1 denotes that (ℎ, 𝑟, 𝑡) is negative. 𝑆 is
a triplets set [28] which contains both positive triplets set 𝑆+
and negative triplets set 𝑆−.

𝑆− = {(ℎ󸀠, 𝑟, 𝑡) | ℎ󸀠 ∈ 𝐸} ∪ {(ℎ, 𝑟, 𝑡󸀠) | 𝑡󸀠 ∈ 𝐸}

∪ {(ℎ, 𝑟󸀠, 𝑡) | 𝑟󸀠 ∈ 𝑅} .
(9)

The set of negative triplets, constructed according to (9),
is composed of training triplets with either head (tail) entity
or relation replaced by a random entity or relation. Only one
entity or relation is replaced for each corrupted triplet with
the same probability. To prevent overfitting, some constraints
are considered when minimizing the loss function 𝐿:

∀hi, ti ∈ |𝐸| ,
ri ∈ |𝑅| ,

󵄩󵄩󵄩󵄩hi󵄩󵄩󵄩󵄩 = 1,
󵄩󵄩󵄩󵄩ri󵄩󵄩󵄩󵄩 = 1,
󵄩󵄩󵄩󵄩ti󵄩󵄩󵄩󵄩 = 1,

∀ha, ta ∈ |𝐸| ,
ra ∈ |𝑅| ,

󵄩󵄩󵄩󵄩ha ⊙ ra
󵄩󵄩󵄩󵄩 = 1,

󵄩󵄩󵄩󵄩ha ⊙ ta
󵄩󵄩󵄩󵄩 = 1,

󵄩󵄩󵄩󵄩ra ⊙ ta
󵄩󵄩󵄩󵄩 = 1.

(10)

Equation (10) is to constrain the length of entity (relation)
features for SimE-E and SimE-ER. We convert it to the
following loss function by means of soft constraints:

𝐿 = ∑
(h,r,t)∈𝑆

log (1 + exp (−𝑌ℎ𝑟𝑡𝑆𝑖𝑚 (ℎ, 𝑟, 𝑡; Θ)))

+ 𝜆 ‖Θ‖22 ,
(11)

where 𝜆 is a hyperparameter to weigh the importance of
soft constraints. We utilize the improved stochastic gradient
descent (Adagrad) [46] to train the models. Comparing
with SGD, Adagrad shrinks learning rate effectively when
the number of iterations increases, which means that it is
insensitive to learning rate.
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Table 1: Complexities of representation models.

Model Relation Parameters Memory-Space Complexity Time Complexity
NTN 𝑊𝑟 ∈ R𝑑×𝑑×𝑘,𝑀𝑟1,𝑀𝑟2 ∈ R𝑑×𝑑 𝑂(𝑛𝑒𝑑 + 𝑛𝑟𝑑2𝑘 + 2𝑛𝑟𝑑2 + 𝑛𝑟𝑑) 𝑂(𝑑2𝑘)
RESCAL 𝑀𝑟 ∈ R𝑑×𝑑 𝑂(𝑛𝑒𝑑 + 𝑛𝑟𝑑2) 𝑂(𝑑2)
SE 𝑀𝑟ℎ,𝑀𝑟𝑡 ∈ R𝑑×𝑑 𝑂(𝑛𝑒𝑑 + 2𝑛𝑟𝑑2) 𝑂(𝑑2)
SLM 𝑀𝑟1,𝑀𝑟2 ∈ R𝑑×𝑑 𝑂(𝑛𝑒𝑑 + 2𝑛𝑟𝑑2 + 2𝑛𝑟𝑑) 𝑂(𝑑2)
LFM 𝑀𝑟, ∈ R𝑑×𝑑 𝑂(𝑛𝑒𝑑 + 𝑛𝑟𝑑2) 𝑂(𝑑2)
TransR 𝑟 ∈ R𝑑,𝑀𝑟 ∈ R𝑑×𝑑 𝑂(𝑛𝑒𝑑 + 𝑛𝑟𝑑2 + 𝑛𝑟𝑑) 𝑂(𝑑2)
DistMult 𝑟 ∈ R𝑑 𝑂(𝑛𝑒𝑑 + 𝑛𝑟𝑑) 𝑂(𝑑)
ComplEx 𝑟 ∈ R𝑑 𝑂(2𝑛𝑒𝑑 + 2𝑛𝑟𝑑) 𝑂(𝑑)
TransE 𝑟 ∈ R𝑑 𝑂(𝑛𝑒𝑑 + 𝑛𝑟𝑑) 𝑂(𝑑)
SimE-E 𝑟 ∈ R𝑑 𝑂(2𝑛𝑒𝑑 + 𝑛𝑟𝑑) 𝑂(𝑑)
SimE-ER 𝑟 ∈ R𝑑 𝑂(2𝑛𝑒𝑑 + 2𝑛𝑟𝑑) 𝑂(𝑑)

Table 2: Dataset statistics.

Dataset #Entity #Relation #Train #Valid #Test
WN18 40,934 18 141,442 5,000 5,000
FB15K 14,951 1,345 483,142 50,000 59,071
FB40K 37,591 1,317 325,350 5,000 5,000

3.3. Comparison with Existing Models. To compare the time
and memory-space complexities between different models,
we show the results in Table 1, where 𝑑 represents the
dimension of entity and relation embeddings, 𝑘 is the number
of tensor’s slices, and 𝑛𝑒 and 𝑛𝑟 are the numbers of entities and
relations, respectively.

The comparison results are showed as follows:

(i) Except for DistMult and TransE, the baselines use
relation matrix to project entities’ features into rela-
tion space, which makes these models have high
memory-space and time complexities. Compared
with thesemodels, SimE-E and SimE-ER have lower
time complexity. SimE-E and SimE-ER can be used
on large-scale knowledge graphs more effectively.

(ii) In comparison to TransE, SimE-E and SimE-ER
can dynamically control the ratio of positive and
negative triplets. It enhances the robustness of repre-
sentation models.

(iii) Compared with SimE-E and SimE-ER, DistMult is
a special case of them when we only consider single
similarity of entity or relation. That is to say, SimE-
E and SimE-ER can extract the features of entities
(relations) more comprehensively.

4. Experiments and Analysis

In this section, our models SimE-E and SimE-ER are evalu-
ated and compared with several baselines which have been
shown to achieve state-of-the-art performance. Firstly, two
classical tasks are adopted to evaluate our models: entity
prediction and relation prediction. Then, we use cases to
verify the effectiveness of our models. Finally, according to
the practical experimental results, we analyze the time and
memory-space costs.

4.1. Datasets. We use two real-life knowledge graphs to
evaluate our method:

(i) WordNet (https://wordnet.princeton.edu/download),
a classical dictionary, is designed to describe corre-
lation and semantic information between different
words. Entities are used to describe the concepts
of different words, and relationships are defined to
describe the semantic relevance between different
entities, such as instance hypernym, similar to, and
member of domain topic. The data version we use
is the same as [23] where triplets are denoted as
(sway 2, has instance, brachiate 1) or (felis 1, mem-
ber meronym, catamount 1). A subset of WordNet is
adopted, named as WN18 [23].

(ii) Freebase (code.google.com/p/wiki-links), a huge and
continually growing knowledge graph, describes large
amount of facts in the world. In Freebase, entities are
described by labels, and relations are denoted by
a hierarchical structure, such as “/𝑡V/𝑡V𝑔𝑒𝑛𝑟𝑒/
𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑠” and “/𝑚𝑒𝑑𝑖𝑐𝑖𝑛𝑒/𝑑𝑟𝑢𝑔 𝑐𝑙𝑎𝑠𝑠/𝑑𝑟𝑢𝑔𝑠”. We
employ two subsets of Freebase, named as FB15K
and FB40K [23].

We show the statistics information of datasets in Table 2.
From Table 2, we see that, compared with WN18, FB15K and
FB40K have more relationships and can be regarded as the
typical large-scale knowledge graphs.

4.2. Experiment Setup

EvaluationProtocol. For each triplet in the test set, each item
of triplets (head entity or tail entity or relation) is removed
and replaced by items in the dictionary in turn, respectively.
Using score function to calculate these corrupted triplets
and sorting the scores by ascending order, the rank of the

https://wordnet.princeton.edu/download
https://code.google.com/archive/p/wiki-links/
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correct entities or relations is stored. For relation in each
test triplet, the whole procedure is repeated. In fact, we need
to consider that some correct triplets are generated in the
process of removing and replacement. Hence, we filter out the
correct triplets from corrupted triplets which actually exist in
training and validation sets. The evaluation measure before
filtering is named as “Raw”, and the measure after filtering
is named as “Filter”. We used two evaluation measures to
evaluate our approach which is similar to [42]:

(i) MRR is an improved measure of MeanRank [23]
which calculates the average rank of all the entities
(relations) and calculates the average reciprocal rank
of all the entities (relations). Compared with Mean-
Rank, MRR is less sensitive to outliers. We report the
results using both Filter and Raw rules.

(ii) Hits@𝑛 reports the ratio of correct entities in Top-
n ranked entities. Because the number of entities is
much larger than that of relations, we take Hits@1,
Hits@3, Hits@10 for entity prediction task and take
Hits@1, Hits@2, Hits@3 for relation prediction task.

A state-of-the-art embedding model should have higher
MRR and Hits@𝑛.

Baselines. Firstly, we compare the proposed methods
with CP which uses canonical polyadic decomposition to
extract the entities and relation features; then we com-
pare the proposed methods with TransE which considers
that tail entity features are close to the combined fea-
tures of head entity and relation. Besides TransR [47],
ER-MLP [48], DistMult [41], and ComplEx [43] are also
used for comparison with our methods. We train CP [49],
DistMult, ComplEx, TransE, and TransR using the codes
provided by authors. We choose the length of dimension
𝑑 among {20, 50, 100, 200}, the weight of regularization 𝜆
among {0, 0.003, 0.01, 0.1, 0.5, 1}, the learning rate among
{0.001, 0.01, 0.1, 0.2, 0.5}, and the ratio of negative and correct
samples 𝛾 among {1, 5, 10, 50, 100}. The negative samples in
different epochs are different.

Implementation. For experiments using SimE-E and
SimE-ER, we select the dimension of the entity and the rela-
tion 𝑑 among {50, 100, 150, 200}, the weight of regularization
𝜆 among {0, 0.01, 0.1, 0.5, 1}, the ratio of negative and correct
samples 𝛾 among {1, 5, 10, 50, 100}, and the mini-batch size
𝐵 among {100, 200, 500, 1,000}. We utilized the improved
stochastic gradient descent (Adagrad) [46] to train the loss
function. With the iteration epoch increasing, the learning
rate in Adagrad is decreases, and Adagrad is insensitive to
learning rate. The initial values of both SimE-E and SimE-
ER are generated by Random function, and the range is
(−6/√𝑑, 6/√𝑑), where 𝑑 is the dimension of feature vector.
Training is stopped using early stopping on the validation set
MRR (using the Filter measure), computed every 50 epochs
with a maximum of 2000 epochs.

In SimE-E model, the optimal configurations on valida-
tion set are

(i) 𝜆 = 1, 𝛾 = 10, 𝑑 = 150, 𝐵 = 100 on WN18,
(ii) 𝜆 = 1, 𝛾 = 20, 𝑑 = 200, 𝐵 = 200 on FB15K,

(iii) 𝜆 = 1, 𝛾 = 20, 𝑑 = 300, 𝐵 = 100 on FB40K.

In SimE-ER model, the optimal configurations on vali-
dation set are

(i) 𝜆 = 1, 𝛾 = 10, 𝑑 = 150, 𝐵 = 100 on WN18,
(ii) 𝜆 = 1, 𝛾 = 20, 𝑑 = 200, 𝐵 = 200 on FB15K,
(iii) 𝜆 = 1, 𝛾 = 20, 𝑑 = 300, 𝐵 = 100 on FB40K.

T-test. In experiments, for each model, we run 15 times inde-
pendently and calculate the mean and standard deviation.
Then we use Student’s t-test with 𝑝−V𝑎𝑙𝑢𝑒 = 0.95 to compare
the performance between different models, and the t-test can
be shown as follows [50, 51].

𝜇1 and 𝑠1 are mean and standard deviation on model
1 with run 𝑛1 times; 𝜇2 and 𝑠2 are mean and standard
deviation on model 2 with 𝑛2 times. Then we can construct
the hypothesis:

𝐻0 : 𝜇1 − 𝜇2 ≤ 0,
𝐻1 : 𝜇1 − 𝜇2 > 0.

(12)

And the t-test can be described as

𝑡 = 𝜇1 − 𝜇2
√1/𝑛1 + 1/𝑛2√(𝑛1𝑠12 + 𝑛2𝑠22) / (𝑛1 + 𝑛2 − 2)

. (13)

The degree of freedom (𝑑𝑓) in t-distribution can be shown as
follows:

𝑑𝑓 =
(𝑠12/𝑛1 + 𝑠22/𝑛2)

2

(1/ (𝑛1 − 1)) (𝑠12/𝑛1)2 + (1/ (𝑛2 − 1)) (𝑠22/𝑛2)2
(14)

In entity and relation prediction tasks, we calculate mean
and standard deviation ofMRR andHit@𝑛 and compare their
performance with t-test.

4.3. Link Prediction. For link prediction [52–54], we tested
two subtasks—entity prediction and relation prediction.
Entity prediction aims to predict the missing ℎ or 𝑡 entity
from the fact triplet (ℎ, 𝑟, 𝑡); similarly, relation prediction is
to determine which relation is more suitable for a corrupted
triplet (ℎ, ∗, 𝑡).

Entity Prediction. This set of experiments tests the
models’ ability to predict entities. Experimental results of
mean and plus/minus standard deviation on bothWN18 and
FB15K are shown in Tables 3, 4, and 5, and we can observe the
following:

(i) On WN18, a small-scale knowledge graph, ComplEx

achieves state-of-the-art results on MRR and Hits@𝑛.
However, on FB15K and FB40K, two large-scale
knowledge graphs, SimE-E and SimE-ER achieve
excellent results on MRR and Hits@𝑛, and the values
ofHits@10 are up to 0.868 and 0.889, respectively.The
outstanding results prove that our models can repre-
sent different kinds of knowledge graphs effectively,
especially on large-scale knowledge graphs.



Scientific Programming 7

Table 3: Experimental results of entity prediction on WN18.

Model
WN18

MRR Hits@𝑛
Filter Raw 1 3 10

CP 0.065 ±0.002 0.051 ±0.001 0.043 ±0.002 0.069 ±0.001 0.107 ±0.002
DistMult 0.821 ±0.003 0.530 ±0.002 0.728 ±0.002 0.914 ±0.002 0.930 ±0.001
ER-MLP 0.712 ±0.002 0.508 ±0.003 0.626 ±0.002 0.775 ±0.002 0.863 ±0.003
TransE 0.445 ±0.002 0.318 ±0.002 0.081 ±0.002 0.801 ±0.001 0.937 ±0.003
TransR 0.415 ±0.002 0.414 ±0.003 0.378 ±0.002 0.635 ±0.003 0.724 ±0.001
ComplEx 0.936 ±0.003 0.575 ±0.002 0.933±0.001 0.939 ±0.001 0.940±0.001
SimE-E 0.823 ±0.003 0.572 ±0.002 0.726 ±0.001 0.917 ±0.002 0.938±0.001
SimE-ER 0.821±0.002 0.576 ±0.002 0.726 ±0.002 0.914 ±0.002 0.940 ±0.002

Table 4: Experimental results of entity prediction on FB15K.

Model
FB15K

MRR Hits@𝑛
Filter Raw 1 3 10

CP 0.333 ±0.003 0.153 ±0.002 0.229 ±0.004 0.381 ±0.003 0.531±0.004
DistMult 0.650 ±0.003 0.242 ±0.003 0.537 ±0.004 0.738 ±0.003 0.828 ±0.003
ER-MLP 0.288 ±0.002 0.155 ±0.002 0.173 ±0.005 0.317 ±0.005 0.501±0.001
TransE 0.481 ±0.004 0.220 ±0.002 0.259 ±0.005 0.651 ±0.002 0.813±0.002
TransR 0.376 ±0.003 0.201 ±0.004 0.245 ±0.002 0.435 ±0.002 0.634 ±0.003
ComplEx 0.691 ±0.003 0.241 ±0.002 0.596 ±0.003 0.752 ±0.002 0.838 ±0.003
SimE-E 0.740 ±0.002 0.259±0.002 0.666±0.002 0.795 ±0.003 0.860 ±0.003
SimE-ER 0.727 ±0.003 0.261 ±0.002 0.636 ±0.003 0.797±0.002 0.868±0.003

Table 5: Experimental results of entity prediction on FB40K.

Model
FB40K

MRR Hits@𝑛
Filter Raw 1 3 10

CP 0.448 ±0.002 0.274 ±0.002 0.392 ±0.003 0.479 ±0.002 0.549±0.002
DistMult 0.573 ±0.003 0.407 ±0.003 0.493 ±0.002 0.613 ±0.002 0.720±0.003
ER-MLP 0.296 ±0.001 0.167 ±0.004 0.181 ±0.001 0.332 ±0.003 0.498±0.003
TransE 0.574 ±0.003 0.383 ±0.001 0.422 ±0.002 0.687 ±0.003 0.808±0.001
TransR 0.355 ±0.001 0.198 ±0.001 0.224 ±0.002 0.441 ±0.002 0.612±0.001
ComplEx 0.680 ±0.001 0.408 ±0.002 0.586 ±0.002 0.753 ±0.002 0.837±0.002
SimE-E 0.816 ±0.001 0.439 ±0.002 0.781 ±0.002 0.848 ±0.002 0.874±0.002
SimE-ER 0.810 ±0.001 0.445 ±0.002 0.756 ±0.002 0.852 ±0.002 0.889±0.002

(ii) ComplEx is better than SimE-ER on WN18, and
the reason is that ComplEx can distinguish sym-
metric and antisymmetric relationship contained
in the relation structure of WN18. However, on
FB15K and FB40K, SimE-E and SimE-ER are better
than ComplEx. The reason is that the number of
relations is much larger than WN18, and the relation
structure is more complex and hard to represent,
which has obvious influence on the representation
ability of ComplEx.

(iii) The results of SimE-E and SimE-ER are similar to
each other. The largest margin is filtered MRR on
FB15K at 0.013. The phenomenon demonstrates that

both SimE-E and SimE-ER can extract the entity
features in knowledge graph and predict the missing
entities effectively.

(iv) Compared with DistMult, the special case of our
models, SimE-E and SimE-ER achieve better results,
especially on FB15K, and the filter MRR is up to
0.740.The results can prove that ourmodelswhich use
irrelevant and interconnected features to construct
independent and associated spaces can represent the
entities and relations features more comprehensively.

We use t-test to evaluate the effectiveness of our mod-
els, and the evaluation results can prove that on FB15K
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Table 6: Experimental results of relation prediction on WN18.

Model
WN18

MRR Hits@𝑛
Filter Raw 1 2 3

CP 0.551 ±0.003 0.550 ±0.002 0.405 ±0.002 0.540 ±0.002 0.629±0.001
DistMult 0.731 ±0.003 0.730 ±0.002 0.535 ±0.002 0.922 ±0.002 0.938 ±0.002
ER-MLP 0.707 ±0.002 0.513 ±0.002 0.614 ±0.001 0.815 ±0.003 0.877 ±0.002
TransE 0.739 ±0.002 0.739 ±0.001 0.622 ±0.002 0.729 ±0.002 0.811 ±0.002
TransR 0.415 ±0.003 0.414 ±0.003 0.378 ±0.003 0.635 ±0.002 0.724 ±0.001
ComplEx 0.866 ±0.003 0.865 ±0.003 0.830±0.001 0.953 ±0.002 0.961±0.002
SimE-E 0.812±0.002 0.812 ±0.001 0.770±0.002 0.954±0.002 0.962±0.001
SimE-ER 0.814 ±0.002 0.814 ±0.001 0.775 ±0.001 0.955 ±0.002 0.965±0.001

Table 7: Experimental results of relation prediction on FB15K.

Model
FB15K

MRR Hits@𝑛
Filter Raw 1 2 3

CP 0.361 ±0.002 0.308 ±0.001 0.240 ±0.002 0.347 ±0.002 0.411 ±0.002
DistMult 0.309 ±0.003 0.285 ±0.003 0.116 ±0.002 0.289 ±0.002 0.412 ±0.004
ER-MLP 0.412 ±0.003 0.268 ±0.002 0.236 ±0.003 0.573 ±0.003 0.631 ±0.003
TransE 0.245 ±0.002 0.281 ±0.002 0.275 ±0.003 0.339 ±0.002 0.381 ±0.003
TransR 0.416 ±0.002 0.343 ±0.002 0.270 ±0.001 0.448 ±0.002 0.573 ±0.002
ComplEx 0.566 ±0.002 0.490 ±0.001 0.371 ±0.002 0.646 ±0.001 0.701 ±0.002
SimE-E 0.579±0.002 0.523 ±0.001 0.321±0.002 0.708±0.002 0.823 ±0.002
SimE-ER 0.593 ±0.002 0.534 ±0.001 0.331±0.002 0.737±0.001 0.842±0.002

Table 8: Experimental results of relation prediction on FB40K.

Model
FB40K

MRR Hits@𝑛
Filter Raw 1 2 3

CP 0.295 ±0.002 0.192 ±0.002 0.231 ±0.002 0.300 ±0.003 0.332±0.003
DistMult 0.470 ±0.002 0.407 ±0.001 0.310 ±0.002 0.536 ±0.003 0.801±0.003
ER-MLP 0.377 ±0.002 0.257 ±0.002 0.231 ±0.002 0.567 ±0.002 0.611±0.002
TransE 0.461 ±0.001 0.373 ±0.002 0.245 ±0.001 0.442 ±0.001 0.521±0.003
TransR 0.431 ±0.002 0.312 ±0.003 0.263 ±0.001 0.411 ±0.002 0.514±0.002
ComplEx 0.576 ±0.002 0.496 ±0.003 0.329 ±0.003 0.595 ±0.002 0.790±0.001
SimE-E 0.589 ±0.002 0.513 ±0.002 0.326 ±0.003 0.606 ±0.002 0.844±0.001
SimE-ER 0.603 ±0.002 0.531 ±0.003 0.336 ±0.003 0.637 ±0.001 0.843±0.001

and FB40K, compared with other baselines, our results
achieve significant improvements, e.g., on theHits@10 results
of ComplEx and SimE-ER, 𝑡 = 26.45 which is larger than
𝑡0.95(28) = 1.701. The t-test results can prove that, on FB15K
and FB40K, our experimental results achieve significant
improvement compared with other baselines.

Relation Prediction. This set of experiments tests the
models’ ability to predict relations. Tables 6, 7, and 8 show
the prediction performance on WN18 and FB15K. From the
tables, we discover the following:

(i) Similar to the results in the entity prediction, on
WN18, ComplEx achieves better results on MRR
and Hits@1, and SimE-ER obtains better results

on Hits@2 and Hits@3. On FB15K, besides the
value of Hits@1, the results of SimE-ER are better
than ComplEx and other baselines, and the value
of Hits@3 is up to 0.842, which is much higher
(improvement of 20.1%) than the state-of-the-art
baselines. ON FB40K, SimE-ER achieves state-of-
the-art results on all the measures; in particular, the
filter MRR is up to 0.603.

(ii) In entity prediction task, the results of SimE-E and
SimE-ER are similar. However, in relation prediction
tasks, SimE-ER achieves significant results on Raw
MRR, Hits@2, and Hits@3. We use the t-test to
verify the results, and the t-values are larger than
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Table 9: MRR for each relation on WN18.

Relation Name #Tri SimE-ER SimE-E ComplEx DistMult

hypernym 1251 0.937 0.927 0.933 0.701
hyponym 1153 0.788 0.520 0.910 0.732
derivationally related form 1074 0.964 0.963 0.946 0.959
member holonym 278 0.715 0.603 0.914 0.701
member meronym 253 0.682 0.767 0.767 0.55
has part 172 0.675 0.602 0.933 0.667
part of 165 0.685 0.819 0.931 0.690
instance hypernym 122 0.703 0.856 0.799 0.726
synset domain topic of 114 0.792 0.847 0.813 0.584
member of domain topic 111 0.695 0.523 0.714 0.799
instance hyponym 108 0.661 0.561 0.945 0.651
also see 56 0.769 0.680 0.603 0.727
verb group 39 0.977 0.977 0.936 0.973
synset domain region of 37 0.736 0.819 1.000 0.694
member of domain region 26 0.468 0.799 0.788 0.504
member of domain usage 24 0.463 0.578 0.780 0.507
synset domain usage of 14 0.928 0.761 1.000 0.750
similar to 3 1.000 1.000 1.000 1.000

𝑡0.95(28) = 1.701. The difference between entity and
relation tasks can demonstrate that considering both
entity and relation similarity can extract relation
features more effectively on the basis of ensuring the
entity-features extraction.

(iii) On FB15K, the gap is significant and SimE-E and
SimE-ER outperform other models, with a MRR (Fil-
ter) of 0.593 and 0.842 of Hits@3. On both datasets,
CP and TransE perform the worst, which illustrates
the feasibility of learning knowledge embedding in
the first case and the power of using two mutual
restraint parts to represent entities and relations in the
second.

We also use t-test to evaluate our model; i.e., comparing
SimE-ER with ComplEx on filter MRR, 𝑡 = 35.72, which is
larger than 𝑡0.95(28) = 1.701. The t-test results can prove that
the performance of SimE-ER is better than other baselines
on FB15K and FB40K.

To analyze the relation features, Table 9 shows the MRR
with Filter of each relation on WN18, where #𝑇𝑟𝑖 denotes
the number of triplets for each relation in the test set. From
Table 9, we conclude the following:

(i) For almost all relations on WN18, compared with
other baselines, SimE-E and SimE-ER achieve com-
petitive results, which demonstrates that ourmethods
can extract different types of latent relation features.

(ii) Compared with SimE-E, the relationMRRs of SimE-
ER are much better on most relations, such as hyper-
nym, hyponym, and derivationally related form.

(iii) On almost all results of relation MRR, SimE-ER is
better than DistMult, a special case of SimE-ER.That
is to say, compared with single embedding space,

using two different spaces to describe entity and
relation, features can achieve better performance.

Case Study. Table 10 shows the detailed prediction results on
test set of FB15K. It illustrates the performance of ourmodels.
Given head and tail entities, the top-5 predicted relations and
relative scores of SimE-ER are depicted in Table 10. From the
table, we observe the following:

(i) In triplet 1, the relation prediction result is ranked
on top-2, and in triplet 2, the result is top-1. The
relation prediction results can prove the performance
of SimE-ER. However, in triplet 1, the correct result
(top-2) has similar score with other prediction results
(top-1, top-3).That is to say, it is difficult for SimE-ER
to distinguish similar relationships.

(ii) For any relation prediction results, the top-5 relation
prediction results are similar; that is to say, similar
relations have similar representation embeddings,
which is in line with common sense.

4.4. Complexity Analysis. To compare the time andmemory-
space complexity of different models, we show the analytical
results of FB15K inTable 11, where𝑑 represents the dimension
of entity and relation space, “Mini-batch” represents the
mini-batch of each iteration, “Params” denotes the number
of parameters in each model on FB15K, and “Time” denotes
the running time of each iteration. Note that all models are
run on standard hardware of Inter(R) Core(TM) i7U 3.5GHz
+ GeForce GTX TITAN.We report the average running time
over one hundred iterations as the running time of each
iteration. From Table 11, we observe the following:

(i) Except for DistMult, SimE-E and SimE-ER have
lower time and memory complexities compared with
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Table 10: Case study of SimE-ER.

Triplet 1 /m/02rgz97 /music/group member/artists supported /m/012d9h Score

Results

1 /music/group member/membership./music/group membership/group 0.997
2 /music/group member/artists supported 0.975
3 /music/group member/instruments played 0.953

4 /music/group member/membership./music/group membership/role 0.913
5 /music/genre/subgenre 0.891

Triplet 2 /m/02hrh1q /organization/role/governors./organization/member /m/03mnk Score

Results

1 /organization/role/governors./organization//member 0.994
2 /organization/role/leaders./organization/leadership/organization 0.983
3 /organization/organization sector/organizations in this sector 0.946

4 /organization/organization member/member of./organization/organization 0.911
5 /people/appointed role/appointment./people/appointment/appointed by 0.767

Table 11: Complexities comparison.

Model 𝑑 Mini-batch Params Time (s)
RESCAL 100 200 14.25M 121.36
NTN 100 100 78.40M 347.65
TransR 100 2145 14.38M 95.96
TransE 200 2145 3.11M 7.53
DistMult 200 100 3.11M 3.23
SimE-E 200 200 5.95M 5.37
SimE-ER 200 200 6.22M 6.63

the baselines, because in SimE-E and SimE-ER, we
only use element-wise products between entities’
and relations’ vectors to generate the representation
embedding.

(ii) On FB15K, the time costs of SimE-E and SimE-ER in
each iteration are 5.37s and 6.63s, respectively, which
are lower than 7.53s, the time cost of TransE which
has fewer parameters. The reason is that the mini-
batch of TransE is 2415 which is much larger than
the mini-batches of SimE-E and SimE-ER. Besides,
for SimE-E and SimE-ER, the number of iterations
is 700 times with 3760 (s) and 4642 (s), respectively.

(iii) Because SimE-E and SimE-ER have low complexity
and high accuracy, they can easily be applied to large-
scale knowledge graph, while using less computing
resources and running time.

5. Conclusion

In this paper, we propose a novel similarity-based embed-
ding model SimE-ER that extracts features from knowledge
graph. SimE-ER considers that the similarity of the same
entities (relations) is high in independent and associated
spaces. Compared with other representation models, SimE-
ER is more effective in extracting the entity (relation) features
and represents entity and relation features more flexibly
and comprehensively. Besides, SimE-ER has lower time and
memory complexities, which indicates that it is applicable on

large-scale knowledge graphs. In experiments, our approach
is evaluated on entity prediction and relation prediction
tasks. The results prove that SimE-ER achieves state-of-the-
art performances. We will explore the following future work:

(i) In addition to the facts in knowledge graph, there also
are large amount of logic and hierarchical correlations
between different facts. How to translate these hier-
archical and logic information into low-dimensional
vector space is an attractive and valuable problem.

(ii) In real world, extracting relations and entities from
large-scale text information is an important yet open
problem. Combining latent features of knowledge
graph and text sets is a feasible method to construct
the connection between structured and unstructured
data. It is supposed to enhance the accuracy and
efficiency of entity (relation) extraction.
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